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1. Introduction. One field of particular interest in Number Theory
concerns the gaps between consecutive primes. Within the last few years,
very important results have been achieved on how small these gaps can
be. The strongest of these results were obtained by Dan Goldston, János
Pintz and Cem Yalçın Yıldırım. The present work begins by generalizing
their results so that they can be applied to related problems in a more
direct manner. Additionally, we improve the bound for F2 (concerning the
maximal gap in a block of three primes) obtained by the results of [4] with
our generalization.

1.1. Previous work. The first result of Goldston, Pintz and Yıldırım [4]
states (1)

∆r = lim inf
n→∞

pn+r − pn
log pn

≤ (
√
r − 1)2

and in particular ∆1 = 0. Using related methods and incorporating ideas
from Maier’s matrix method [8], the authors were able to later improve this
result by a factor of e−γ [5]. In proving this result, they developed a new sieve
method, based closely on that of Selberg, to estimate the number of primes
within an interval. Let H = {h1, . . . , hk} and P (n,H) = (n+h1) . . . (n+hk).
Using the notation of [3], for l ≥ 0, we set

ΛR(n,H, k + l) =
1

(k + l)!

∑
d|P (n,H)
d≤R

µ(d) log
(
R

d

)k+l
.

The main results of [4] follow from two related estimates, given below.
Throughout this paper C and c are absolute constants which may differ at
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(1) In earlier work [6], the constant ∆r is referred to as Er. However, this has been
dropped in more recent works [4, 5] to avoid a notational conflict.
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every occurrence. If an implied constant depends on a value this dependence
will be indicated by a subscript (for example, �M , oM (1), CM denote de-
pendence on M). Define H = H1 ∪ H2 ⊂ [1, h], |Hi| = ki, |H1 ∩ H2| = r,
M = k1 + k2 + l1 + l2.

Proposition 1. If R � N1/2(logN)−4M and h ≤ RC for any C > 0,
then, as R,N →∞,∑

N<n≤2N

ΛR(n,H1, k1 + l1)ΛR(n,H2, k2 + l2)

=
(
l1 + l2
l1

)
(logR)r+l1+l2

(r + l1 + l2)!
(S(H) + oM (1))N.

With this proposition, the authors are able to understand how the
weights behave in an unmodified fashion over an interval. Their second task
is to see how these weights are modified by incorporating the θ function
(θ(n) = log n if n is a prime and 0 otherwise).

Proposition 2. Take h0 6∈ H. If R � N1/4(logN)−BM for a suffi-
ciently large constant BM , and h ≤ R, then, as R,N →∞,∑

N<n≤2N

θ(n+ h0)ΛR(n,H1, k1 + l1)ΛR(n,H2, k2 + l2)

=
(
l1 + l2
l1

)
(logR)r+l1+l2

(r + l1 + l2)!
(S(H ∪ h0) + oM (1))N.

With the observation that if n+h0 is a prime and h0 ∈ H, ΛR(n,H, k+l)
= ΛR(n,H \ h0, (k − 1) + (l + 1)) it is then possible to work around the
restriction that h0 6∈ H, providing a result for general h0.

1.2. Results. Summing over all values for h0 in an interval, the authors
of [4] are able to get a sum of the logarithms of all primes that lay in the
designated interval when multiplied by the Λ weight functions. However, a
natural problem is how to sum over more complex distributions of primes.
Instead of a sum over all primes in an interval, consider the problem of
determining a sum over all primes p such that p + j1 and p + j2 are also
primes. This problem is too complex for a strict asymptotics in this fashion;
however, by modifying the sieve to deal with four Λ functions instead of
two, we give a method by which an upper bound can be reached for the
logarithms of such pairs of primes multiplied by the weight function. Say we
need an upper bound for

(1)
2N∑

n=N+1

θ(n+ h0)θ(n+ h1)
(∑
H
ΛR(n,H, k + l)

)2
.

The Λ function behaves very predictably when n + h0 and n + h1

are prime. Consulting the definition, one quickly derives that (assuming
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h,R<N)

θ(n+ h0)θ(n+ h1) ≤ (log 3N)2
(
Λ(n, {h0, h1}, 2)

2
(logR)2

)2

.

Additionally, if n+h0 and n+h1 are both prime, h0 and h1 do not affect the
second Λ function. Therefore, letting Ω := 4(log 3N)2/(logR)4, we obtain

(1) ≤ Ω
2N∑

n=N+1

Λ(n, {h0, h1}, 2)2
(∑
H
Λ(n,H \ {h0, h1}, k + l)

)2
.

From this we can see that one way to attack the above mentioned and
similar problems is to understand how four Λ functions act when the first
two and second two take disjoint sets as their second arguments. Theorem 1
below addresses this problem. Define |Hi| = ki, Hi ⊂ [1, h], |H1 ∩H2| = r1,
|H3 ∩H4| = r2 and M =

∑4
i=1 ki + li.

Theorem 1. Suppose that (H1 ∪ H2) ∩ (H3 ∪ H4) = ∅ and R �
N1/4(logN)−CM for a sufficiently large CM , and h � RC for any C > 0.
Then, letting u = l1 + l2 + r1 and v = l3 + l4 + r2 we have, as R,N →∞,∑
N<n≤2N

ΛR(n,H1, k1+l1)ΛR(n,H2, k2+l2)ΛR(n,H3, k3+l3)ΛR(n,H4, k4+l4)

=
(
l1 + l2
l1

)(
l3 + l4
l3

)
N

(logR)u+v

u!v!
(S(H1 ∪H2 ∪H3 ∪H4) + oM (1)).

When applying this sieve result, however, a second problem presents
itself if one does not want the Hi sets all taken uniformly from the same
interval. In applying the propositions of [4] a result of Patrick Gallagher [2]
is used on the average of singular series when the sets under consideration
are taken uniformly from an interval. But, if both pairs of sets are taken
from different intervals, their union (which is considered in the singular
series) may not be uniformly varying over all k-element subsets of a given
interval, but instead over a more complex distribution (e.g., over all sets
H ⊂ [1, h] with two elements from [1, h′] and one element from [h′, h′′]).
It is with this in mind that we present Theorem 2, a more general version
of Gallagher’s result. We show that instead of varying the set uniformly
over one interval, if we instead take several subsets which vary uniformly
over subintervals, the singular series of their union will still average to 1
assuming the subintervals obey a certain growth condition. Kevin Ford’s [1]
recent simplification of Gallagher’s proof is the foundation for the extension
presented. Let

∑l
i=1 ki = r and ΩH(p) be the residue classes occupied by

the elements of H modulo p.

Theorem 2. Take an interval [0, h] and take l subintervals [Bi(h), Ci(h)]
⊂ [0, h] where Ci(h)−Bi(h) = di(h). Assume that for some 1 > δ > 0, and
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for all i ≤ l, hδ = o(di(h)). Then, as h→∞,∑
A1,...,Al

Ai⊂[Bi(h),Ci(h)], |Ai|=ki

S
( l⋃
i=1

Ai

)
=

l∏
i=1

dki
i (h)
ki!

(1 + or,δ(1)).

Finally, we apply these two results to a concrete situation. Restating the
usual definition (notice Fn is trivially bounded above by ∆n), we set

Fr = lim inf
n→∞

max
1≤i≤r

pn+i − pn+i−1

log pn
.

Theorem 3. There exists a c > 0 such that F2 ≤ c < (
√

2− 1)2.

Here the c is explicitly computable and we give such a c. While this
falls short of improving the best known result for F2, which is the current
best bound for ∆2 given in [5] as e−γ(

√
2− 1)2, since the previous bound is

the result for ∆2 of [4] with Maier’s matrix method applied to it, it seems
likely that a similar application of the matrix method would provide a corre-
sponding improvement. The best c our method gives is approximately .1707,
a modest improvement over [4]’s .1716. Our proof relies on breaking the in-
terval considered in [4] into three and modifying the weighted difference to
ensure that positivity implies either a prime occurring in the middle interval
or three primes occurring in an end interval. Theorems 1 and 2 are provided
with precise error terms in their corresponding sections.

The only widely available work which has managed to distance the best
known bounds for ∆n and Fn for any n is that of Huxley [6] (for the case
n = 2 it was shown approximately that ∆2 ≤ 1.4105 and F2 ≤ 1.3624).
The lack of other results should not imply a disinterest in the Fn constants;
the question whether F2 < 1 is attributed to Erdős in [8]. As improving
the Fn and ∆n constants have proven very difficult, Erdős’ problem was
not resolved until it was shown that ∆2 < 1 by Maier [8] applying his
matrix method to Huxley’s results. Currently the best bound we have for
F2 is the trivial one afforded by ∆2 in [5]. This paper is a first step in
improving the two constants, with the only conjectured additional result
needed to give an improvement by an application of Maier’s method [7]. It
should be stressed that applying Maier’s method is not at all trivial ([5]
and [8] are entirely devoted to applying the method to [4] and [6] respec-
tively).

2. Proof of Theorem 1

Theorem 1. Suppose that (H1 ∪H2)∩ (H3 ∪H4) = ∅, and h� RC for
any C > 0. Then, for any γ > 0, letting u = l1 + l2 + r1 and v = l3 + l4 + r2
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we have, as R,N →∞,∑
N<n≤2N

ΛR(n,H1, k1+l1)ΛR(n,H2, k2+l2)ΛR(n,H3, k3+l3)ΛR(n,H4, k4+l4)

=
(
l1 + l2
l1

)(
l3 + l4
l3

)
N

(logR)u+v

u!v!
S
( ⋃

0<i≤4

Hi
)

+OM,γ(N(logN)u+v−1+γ +R4(logR)CM ).

2.1. Outline. The proof of Theorem 1 follows the same main outline
as the proof of Proposition 1 from [4], with a few alterations to allow four
weights instead of two. It will be necessary to use Lemma 3 from [4] in the
analysis, which is stated in Section 2.6. We outline the proof below.

(1) We translate the product of Λ functions into a complex integral and
translate part of the integrand into an Euler product (Section 2.2).

(2) We estimate the error term from the translation (Section 2.3).
(3) We are now left with a complex integral over four variables to es-

timate. We introduce a series of zeta functions which estimate the
function and prove a lemma on how well these products of zeta func-
tions estimate our integrand (Lemma 2.1). It is at this point that
our assumption about the disjointness of the unions of the two pairs
of sets is vital (Section 2.4).

(4) By our choice of the zeta weights we are almost able to separate the
integral over four variables into two double integrals; however, there
is some interplay in the G function (which represents the error with
which the product of the zeta functions estimates our product). We
show that the G function is small enough when two of the variables
are fixed and non-negative to use Lemma 2.2 twice (Section 2.7).

2.2. Rewriting the product. First, let

λR(d; a) =


0 if d > R,
1
a!
µ(d)

(
log

R

d

)a
if d ≤ R.

If we let Ωi(p) be defined as the set of different residue classes among −h
mod p where h ∈ Hi and extend it multiplicatively (as in [3] and [4]), then∑
N<n≤2N

ΛR(n,H1, k1+l1)ΛR(n,H2, k2+l2)ΛR(n,H3, k3+l3)ΛR(n,H4, k4+l4)

=
∑

d1,d2,d3,d4

λR(d1, k1 + l1)λR(d2, k2 + l2)λR(d3, k3 + l3)λR(d4, k4 + l4)

×
∑

N<n≤2N
n∈Ω1(d1), n∈Ω2(d2)
n∈Ω3(d3), n∈Ω4(d4)

1.
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From this one derives that∑
N<n≤2N

ΛR(n,H1, k1+l1)ΛR(n,H2, k2+l2)ΛR(n,H3, k3+l3)ΛR(n,H4, k4+l4)

= NT + T ′

where

T =
∑

d1,d2,d3,d4

|Φ(d1, d2, d3, d4)|
[d1, d2, d3, d4]

×λR(d1, k1 + l1)λR(d2, k2 + l2)λR(d3, k3 + l3)λR(d4, k4 + l4),

T ′ = O
( ∑
d1,d2,d3,d4

|Φ(d1, d2, d3, d4)|

×|λR(d1, k1 + l1)λR(d2, k2 + l2)λR(d3, k3 + l3)λR(d4, k4 + l4)|
)
.

Here Φ(·, ·, ·, ·) is defined by Φ(pβ1 , pβ2 , pβ3 , pβ4) = |
⋂
i:βi=1Ωi(p)| for p

prime and βi ∈ {0, 1}, and extended multiplicatively: Φ(n1, n2, n3, n4) =∏
p Φ(pβ1 , pβ2 , pβ3 , pβ4) where βi = 1 if p |ni and 0 otherwise.

2.3. The first error term. In this section we will show that T ′ =
OM (R4(logR)CM ), giving the second error term in Theorem 1. Notice that
the λR(d, k + l) factors can be bounded by a constant power of logR de-
pending only on k and l. It remains to bound∑

d1,d2,d3,d4<R

Φ(d1, d2, d3, d4) ≤
∏

0<i≤4

[∑
d<R

|Ωi(d)|
]4
≤ R4(logR)CM

because |Ωi(d)| is bounded by the kith generalized divisor function. It is
worth noting the R4 in this error term. In all applications which do not
assume Elliot–Halberstam type results on the distribution of primes, Gold-
ston, Pintz and Yıldırım take R = N1/4−ε due to bounds given by the
Bombieri–Vinogradov theorem. In our application, we have this restriction
in an unrelated point in the analysis.

2.4. Introducing the zeta weights. The next step is to write the formula
as an Euler product. Using the complex analytic equality (the integral is
taken over s with <(s) = 1)

λR(d; a) =
µ(d)
2πi

�

(1)

(
R

d

)s ds

sa+1
,

we obtain

T =
1

(2πi)4
�

(1)

�

(1)

�

(1)

�

(1)

F (s1, s2, s3, s4)Rs1+s2+s3+s4

sk1+l1+1
1 sk2+l2+1

2 sk3+l3+1
3 sk4+l4+1

4

ds1 ds2 ds3 ds4,
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where

F (s1, s2, s3, s4) =
∑

d1,d2,d3,d4

µ(d1)µ(d2)µ(d3)µ(d4)
|Φ(d1, d2, d3, d4)|

[d1, d2, d3, d4]ds11 d
s2
2 d

s3
3 d

s4
4

=
∏
p

(
1− |Ω1(p)|

ps1+1
− |Ω2(p)|

ps2+1
+
|Ω1(p) ∩Ω2(p)|

ps1+s2+1
− |Ω3(p)|

ps3+1
− |Ω4(p)|

ps4+1

+
|Ω3(p) ∩Ω4(p)|

ps3+s4+1
+
|Ω1(p) ∩Ω3(p)|

ps1+s3+1
+
|Ω2(p) ∩Ω3(p)|

ps2+s3+1

+
|Ω1(p) ∩Ω4(p)|

ps1+s4+1
+
|Ω2(p) ∩Ω4(p)|

ps2+s4+1
− |Ω1(p) ∩Ω2(p) ∩Ω3(p)|

ps1+s2+s3+1

− |Ω1(p) ∩Ω2(p) ∩Ω4(p)|
ps1+s2+s4+1

− |Ω1(p) ∩Ω3(p) ∩Ω4(p)|
ps1+s3+s4+1

− |Ω2(p) ∩Ω3(p) ∩Ω4(p)|
ps2+s3+s4+1

+
|Ω1(p) ∩Ω2(p) ∩Ω3(p) ∩Ω4(p)|

ps1+s2+s3+s4+1

)
.

In order to express this in a simpler fashion, we define the following func-
tion. Take T ⊂ {1, 2, 3, 4} and let s(T ) =

∑
t∈T st + 1, ΩT (p) =

⋂
t∈T Ωt(p)

and ET (p) = |ΩT (p)|/ps(T ). Rewrite the F function as

F (s1, s2, s3, s4) =
∏
p

[
1 +

∑
T⊂{1,2,3,4}

T 6=∅

(−1)|T |ET (p)
]
.

We now define our version of the G function and prove a lemma on its
growth that we will need later. We set

G(s1, s2, s3, s4)

= F (s1, s2, s3, s4)
ζ(s1 +1)k1ζ(s2 +1)k2

ζ(s1 +s2 +1)r1
ζ(s3 +1)k3ζ(s4 +1)k4

ζ(s3 +s4 +1)r2
.

First, let H = H1 ∪H2 ∪H3 ∪H4 and ∆ :=
∏
hi,hj∈H, hi 6=hj

|hj − hi|.
Choose U := Ck2 log h so that log∆ ≤ U .

Lemma 2.1. Let βi = max(−<(si), 0) and assume βi < 1/4 − ξ for all
0 < i ≤ 4 for some ξ > 0. Then there exists a constant C such that

G(s1, s2, s3, s4)�M,ξ exp(CMU
P
βi log logU).

Proof. We will divide the total product into three separate products and
use the Euler product expansion of the zeta function to bound each part of
the product.

2.4.1. The product of primes under U . We can divide the product into
three parts, one which corresponds to terms of the F function, one which
corresponds to the zeta functions in the numerator of G, and a third which
corresponds to the zeta functions in its denominator.
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We bound the product in the F function for a fixed T by standard means:∏
p≤U

(1 + |ET (p)|) ≤
∏
p≤U

(
1 +

max(ki)
p1−

P
βi

)
≤ exp

(∑
p≤U

max(ki)
p1−

P
βi

)

≤ exp
(

max(ki)U
P
βi
∑
p≤U

1
p

)
� exp(max(ki)U

P
βi log logU).

Since we can bound the total F function by a fixed number of these
products, this portion of the product is � exp(C max(ki)U

P
βi log logU).

Similarly to above, we invoke the results of [4] to bound the ζ functions
in the numerator:∏

p≤U

∣∣∣∣1− 1
psi+1

∣∣∣∣−ki

� exp(3kiUβi log logU).

Since ri is bounded above by max(ki) we can bound the ζ functions in
the denominator as in [4],∏

p≤U

∣∣∣∣1− 1
psi+sj+1

∣∣∣∣ri ≤ ( ∏
p≤U

(
1 +

1
p1−

P
βi

)−1)ri
� exp(max(ki)U

P
βi log logU).

Therefore, the final product for primes less than U is

� exp(C max(ki)U
P
βi log logU).

2.4.2. Primes above U which divide ∆. For this, notice that∏
p|∆
p>U

(
1 +

max(ki)
p1−

P
βi

)
≤ exp

(∑
p|∆
p>U

max (ki)
p1−

P
βi

)
.(2)

Similarly to the analysis in [4], there are fewer than (1 + o(1)) log∆ < U
primes such that p |∆. We can therefore replace the sum above with the
first U numbers greater than U . Hence,

(2) ≤ exp
(

max(ki)
∑

U<n≤2U

1
n1−

P
βi

)
≤ exp(C max(ki)U

P
βi).

And each of the factors can be bounded identically.

2.4.3. Primes above U which do not divide ∆. At this point the choice
of the zeta functions and our restriction on the intersection of the sets be-
comes important. By their selection, the size of the intersections of the Ωi(p)
functions are exactly known in this category. If two of the values occupied
the same residue class modulo a given prime, then their difference would be
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a factor in computing ∆, and therefore the prime would divide ∆, and so it
is not in this product. So for all p such that p -∆,

|Ωi| = ki, |Ω1 ∩Ω2| = r1, |Ω3 ∩Ω4| = r2

and all other combinations are empty by our initial assumption that

(H1 ∪H2) ∩ (H3 ∪H4) = ∅.

In this case, we note the following about the product of terms belonging to
the F function. Assuming U is greater than a certain threshold depending
only on max(ki) and ξ, we have∏
p-∆
p>U

[
1 +

∑
T⊂{1,2,3,4}

T 6=∅

(−1)|T |ET (p)
]

=
∏
p-∆
p>U

(
1− k1

p1+s1
− k2

p1+s2
+

r1
p1+s1+s2

− k3

p1+s3
− k4

p1+s4
+

r2
p1+s3+s4

)

≤
∏
p-∆
p>U

∣∣∣∣(1− k1

p1+s1

)(
1− k2

p1+s2

)(
1 +

r1
p1+s1+s2

)(
1− k3

p1+s3

)

×
(

1− k4

p1+s4

)(
1 +

r2
p1+s3+s4

)(
1 +

C max(ki)
p2−4max (βi)

)∣∣∣∣
�M,ξ

∏
p-∆
p>U

∣∣∣∣(1− k1

p1+s1

)(
1− k2

p1+s2

)(
1 +

r1
p1+s1+s2

)(
1− k3

p1+s3

)

×
(

1− k4

p1+s4

)(
1 +

r2
p1+s3+s4

)∣∣∣∣.
The final inequality follows from the fact that βi < 1/4 − ξ. Now each of
these factors can be paired with its corresponding zeta function. There are
two distinct such pairs, and only two lines of analysis are necessary. We use
the following results from [4]:∏

p-∆
p>U

∣∣∣∣(1− ki
p1+si

)(
1− 1

p1+si

)−ki
∣∣∣∣ ≤ exp(2kiUβi),

∏
p-∆
p>U

∣∣∣∣(1 +
ri

p1+si+sj

)(
1− 1

p1+si+sj

)ri∣∣∣∣ =
∏
p-∆
p>U

(
1 +OM

(
1

p2−2si−2sj

))

where the product on the right hand side of the second inequality is conver-
gent depending only on ξ due to our assumption that βi < 1/4−ξ. Therefore,
the entire product for primes in this category is � exp(C max(ki)U

P
βi).
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Combining the results of all three sections, we see that the total product is

�M,ξ exp(CMU
P
βi log logU)

for some C > 0 which does not depend on any ki value. This growth con-
dition is necessary to invoke the result of [4]. It should also be noted that
as in previous works, G is analytic in the region described in this lemma;
this property will be needed later (it follows from the definition of G and
the bound we have just exhibited). We now give a few results on the zeta
function cited in [4] before stating the necessary lemma.

2.5. Some facts on the zero free region of ζ. First, there is a small con-
stant c̄ ≤ 10−2 such that ζ(σ+ it) 6= 0 in the region σ ≥ 1− 4c̄/log(|t|+ 3).
Furthermore, in this region,

ζ(σ + it)− 1
σ − 1 + it

� log(|t|+ 3),
1

ζ(σ + it)
� log(|t| − 3).

2.6. A necessary lemma. In the analysis presented in this paper, only a
weaker version of the lemma of [4] is needed. The version needed is stated
below. Let

T ∗R(a, b, d, u, v, h) :=
1

(2πi)2
�

(1)

�

(1)

D(s1, s2)Rs1+s2

su+1
1 sv+1

2 (s1 + s2)d
ds1 ds2

where

D(s1, s2) :=
G(s1, s2)W d(s1 + s2)

W a(s1)W b(s2)
and W (s) := sζ(1 + s).

Assume G(s1, s2) is regular on and to the right of the line

(3) s = − c̄

log(|t|+ 3)
+ it

and satisfies the bound

G(s1, s2)�M exp(CMUβ1+β2 log logU), where U = CM2 log 2h.

Lemma 2.2. Suppose that

0 ≤ a, b, d, u, v ≤M, a+ u ≥ 1, b+ v ≥ 1, d ≤ min(a, b)

where M is any large constant. Let h � RC for any C > 0. Then, as
R→∞,

T ∗R(a, b, d, u, v, h) =
(
u+ v

u

)
(logR)u+v+d

(u+ v + d)!
G(0, 0)

+OM ((logR)u+v+d−1(log logR)CM ).

2.7. Splitting the four integrals. The goal of this section is to split the
four integrals in the expression for T into two pairs of two integrals and use
Lemma 2.2 twice. We will apply Lemma 2.1 to show that each of the pairs
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of integrals is acceptable to use with Lemma 2.2. Let ki + li + 1 = ui and
introduce the following notation (let sj = σj + itj):

ζ(s1 + s2 + 1)r1

ζ(s1 + 1)k1ζ(s2 + 1)k2
= ζ1(s1, s2),

ζ(s3 + s4 + 1)r2

ζ(s3 + 1)k3ζ(s4 + 1)k4
= ζ2(s3, s4).

This allows a simplification of the expression for T as (let d = ds1ds2ds3ds4)

T =
�

(1)

�

(1)

�

(1)

�

(1)

G(s1, s2, s3, s4)ζ1(s1, s2)ζ2(s3, s4)
Rs1+s2+s3+s4

su1
1 s

u2
2 s

u3
3 s

u4
4

d.

The integrand above is analytic in s3 to the right of the line <(z) = 0 as
long as <(si) > 0 for all other si, and the same holds true for s4. Checking
Lemma 2.1, one sees that the integrand in T vanishes as either |t3| → ∞
or |t4| → ∞. One can therefore shift the integral over both variables to
the vertical line L which passes through 1/logN . Therefore, with a quick
substitution,

T =
1

(2πi)2
�

(L)

�

(L)

Q(s3, s4)ζ2(s3, s4)
Rs3+s4

su3
3 s

u4
4

ds3 ds4

where

Q(s3, s4) :=
1

(2πi)2
�

(1)

�

(1)

G(s1, s2, s3, s4)ζ1(s1, s2)
Rs1+s2

su1
1 s

u2
2

ds1 ds2.

2.8. Applying the lemma. By Lemma 2.1, when s3, s4 are fixed on the
line <(s3) = <(s4) = 1/logN (which implies β3 = β4 = 0) and taking ξ as
a small enough absolute constant depending only on the absolute constant
c̄ to ensure the region βi ≤ 1/4 − ξ includes the zero free region described
previously, we have

G(s1, s2, s3, s4)�M exp(CMUβ1+β2 log logU)

to the right of the line described before Lemma 2.2. Therefore the G function
is acceptable to use Lemma 2.2 where s3 and s4 are fixed and positive
and the integral is being evaluated over the s1 and s2 variables. Using the
substitution with the W function defined as in Lemma 2.2, we obtain

Ds3,s4(s1, s2) =
G(s1, s2, s3, s4)W r1(s1, s2)

W k1(s1)W k2(s2)
,

Q(s3, s4) =
1

(2πi)2
�

(1)

�

(1)

Ds3,s4(s1, s2)
Rs1+s2

sl1+1
1 sl2+1

2 (s1 + s2)r1
ds1 ds2.

Because the analyticity of G in the s1 and s2 variables is maintained
when s3 and s4 are fixed and positive, the lemma can be applied by letting
a = k1, b = k2, u = l1, v = l2 and d = r1. As long as k1 + l1 ≥ 1 and
k2 + l2 ≥ 1 (for the rest of the section, assume that each ki is positive,
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implying the previous inequality; the case when at least one of the ki is zero
will be addressed separately at the end of the section). Lemma 2.2 implies,
as long as <(s3),<(s4) ≥ 0,

Q(s3, s4) =
(
l1 + l2
l1

)
(logR)l1+l2+r1

(l1 + l2 + r1)!
G(0, 0, s3, s4)

+OM ((logN)l1+l2+r1−1(log logN)CM ).

This implies

T =
(
l1 + l2
l1

)
(logR)l1+l2+r1

(l1 + l2 + r1)!

�

(L)

�

(L)

G(0, 0, s3, s4)ζ2(s3, s4)
Rs3+s4

su3
3 s

u4
4

ds3 ds4

+O((logN)l1+l2+r1−1(log logN))
�

(L)

�

(L)

∣∣∣∣ζ2(s3, s4)
Rs3+s4

su3
3 s

u4
4

∣∣∣∣ ds3 ds4.
Since the first integrand vanishes as t1 → ∞ or t2 → ∞, one can shift the
lines of integration of the first line above back to the line <(z) = 1. There
are therefore two values left to evaluate:

T1 =
�

(1)

�

(1)

G(0, 0, s3, s4)ζ2(s3, s4)
Rs3+s4

su3
3 s

u4
4

ds3 ds4,

T2 =
�

(L)

�

(L)

∣∣∣∣ζ2(s3, s4)
Rs3+s4

su3
3 s

u4
4

∣∣∣∣ ds3 ds4.
2.9. Evaluating T1, the main term and some error. Since the roles of

(s1, s2) and (s3, s4) are symmetric in Lemma 2.1 (when s1 = s2 = 0, β1 =
β2 = 0), one can switch the roles of s1, s2 with s3, s4 and reapply Lemma 2.2
to get

T1 =
(
l3 + l4
l3

)
(logR)l3+l4+r2

(l3 + l4 + r2)!
G(0, 0, 0, 0)

+OM ((logN)l3+l4+r2−1(log logN)CM ).

2.10. Evaluating T2, the second error term. Fix any absolute constant
γ ∈ (0, 1). Since Rs3+s4 is absolutely bounded on the line 1/logN ,

T2 �
�

(L)

�

(L)

∣∣∣∣ ζ(s3 + s4 + 1)r2

ζ(s3 + 1)k3ζ(s4 + 1)k4
1

sk3+l3+1
3 sk4+l4+1

4

∣∣∣∣ ds3 ds4.
Now observe that with k3 ≥ 1, when <(s3) ≥ 0 and |s3| ≤ 1,∣∣∣∣ 1

ζ(s3 + 1)k3sk33

∣∣∣∣�M 1�M
1
|sγ3 |

,

and when |s3| > 1, there is the general inequality that follows from the
growth conditions enumerated in Section 2.4 (since if <(s3) ≥ 0, s3 + 1
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trivially falls in the region described),∣∣∣∣ 1
ζ(s3 + 1)k3sk33

∣∣∣∣�M

∣∣∣∣ 1
ζ(s3 + 1)k3s3

∣∣∣∣�M
(log(|t3|+ 3))k3

|sγ3 |
,

and finally, the inequality

|ζ(s3 + s4 + 1)r2 | �M (log(|t3 + t4|+ 3))r2 max
(

1,
1

|s3 + s4|

)r2
.

Substituting ω3 = x3 + iy3 = s3 logN and letting d = ds3 ds4, d̂ = dω3 dω4

gives

T2 �M

�

(L)

�

(L)

(log(|t3|+ 3))k3(log(|t4|+ 3))k4(log(|t3 + t4|+ 3))r2

|sl3+1+γ
3 sl4+1+γ

4 |

×max
(

1,
1

|s3 + s4|

)r2
d

�M (logN)r2
�

(L)

�

(L)

(log(|t3|+3))k3(log(|t4|+3))k4(log(|t3 + t4|+3))r2

|sl3+1+γ
3 sl4+1+γ

4 |
d

�M (logN)l3+l4+r2+2γ

×
�

(1)

�

(1)

(
log
(∣∣ y3

logN

∣∣+3
))k3(log

(∣∣ y4
logN

∣∣+3
))k4(log

(∣∣y3+y4
logN

∣∣+3
))r2

|ωl3+1+γ
3 ωl4+1+γ

4 |
d̂

�M,γ (logN)l3+l4+r2+2γ ,

because the final integral is absolutely convergent since li ≥ 0 and γ > 0.

2.11. Combining the results. Finally, using the fact that G(0, 0, 0, 0) =
S(H1 ∪H2 ∪H3 ∪H4) and labeling l1 + l2 + r1 = u and l3 + l4 + r2 = v, we
obtain

T =
(
l1 + l2
l1

)(
l3 + l4
l3

)
(logR)u+v

u!v!
S(H1 ∪H2 ∪H3 ∪H4)

+OM,γ((logN)u+v−1+3γ).

Since we can pick γ as any positive value, this implies the theorem when
combined with the additional error term from Section 2.3. Now, let us ad-
dress the case where some ki are zero. If two ki values are zero, the theorem
is implied by the result of Proposition 1 from [4] because there are only
two remaining weight functions. The remaining case is when only one ki
value is zero. In this case, instead of four integrals, there are only three re-
maining. The analysis up to Section 2.9 is identical, with the only change
being that there are three integrals instead of four. At Section 2.9 instead
of invoking Lemma 2.1, one would use the analysis of Proposition 1 (Special
Case) of [4], which is the equivalent statement of Proposition 1 with only
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one weight function instead of two (it is only explicitly shown for l = 0 but
as mentioned in Section 6 of [4], the analysis generalizes to all l ≥ 0). The
corresponding analysis of Section 2.10 follows identically with one integral
instead of two.

3. Proof of Theorem 2, Gallagher extension. In this section, we
will show that Kevin Ford’s [1] simplification of P. X. Gallagher’s proof can
be extended to give an estimate for a more involved sum over singular series
which is useful in applying Theorem 1. The importance of the theorem is
that it allows the two pairs of weights we consider to vary over different
intervals.

Theorem 2. Take an interval [0, h] and take l subintervals [Bi(h), Ci(h)]
⊂ [0, h] where Ci(h)−Bi(h) = di(h). Assume that for some 1 > δ > 0, and
for all i ≤ l, hδ = o(di(h)). Then∑

A1,...,Al
Ai⊂[Bi(h),Ci(h)], |Ai|=ki

S
( l⋃
i=1

Ai

)
=

l∏
i=1

dki
i (h)
ki!

(
1 +Or,δ

(
1

log log h

))
.

First, recall the definition of the singular series:

S(H) =
∏
p

(
1− |ΩH(p)|

p

)(
1− 1

p

)−|H|
.

Similarly to the proof of Lemma 2.1 define, with H =
⋃
Ai,

∆ :=
∏

h6=h′∈H
|h− h′|, y := (δ/2) log h, r :=

∑
0<i≤l

ki.

The first statement to show will be that it suffices to consider all Ai
such that i 6= j ⇒ Ai ∩ Aj = ∅ because the number of such sets vastly
exceeds all others. The singular series itself can be bounded above without
much trouble; notice that the product for all p > h is �r 1 since the sizes
of |H| and |ΩH(p)| will be equal. The product over primes h is � logr h by
Mertens’ theorem. Since hδ grows more slowly than any di(h),

(4)
∑

A1,...,Al
Ai⊂[Bi(h),Ci(h)], |Ai|=ki

S
( l⋃
i=1

Ai

)

=
∑

A1,...,Al
Ai⊂[Bi(h),Ci(h)]
|Ai|=ki, |

S
Ai|=r

S
( l⋃
i=1

Ai

)
+Or

(
h−δ logr h

l∏
i=1

dki
i (h)

)
.

The sum on the right hand side is easier to evaluate because the exponent
in the definition of the singular series will now be a constant −r. Now, fix
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any A1, . . . , Al which fall within the subintervals such that |
⋃
Ai| = r. It is

shown in [1] that∏
p>y

(
1− |ΩH(p)|

p

)(
1− 1

p

)−r
= 1 +Or,δ

(
1

log log h

)
.

The sum on the right hand side of (4) is equal to

(5)
(

1 +Or,δ

(
1

log log h

))∏
p≤y

(
1− 1

p

)−r
×

∑
A1,...,Al

Ai⊂[Bi(h),Ci(h)]
|Ai|=ki, |

S
Ai|=r

∏
p≤y

(
1− |ΩH(p)|

p

)
.

Let P =
∏
p≤y p and note that P = ey+o(y) = hδ/2+o(1). The right-

most product in (5) is 1/P times the number of n, 0 ≤ n < P , such that
(
∏
α∈H(n+α), P ) = 1. We can now also eliminate the |

⋃
Ai| = r condition

with an error term Or(h−δ
∏
i d
ki
i (h)); this leaves the second factor of (5) as∑

A1,...,Al
Ai⊂[Bi(h),Ci(h)]

|Ai|=ki

1
P

P−1∑
n=0

∏
α∈H

∑
e|(n+α,P )

µ(e) +Or

(
h−δ

l∏
i=1

dki
i (h)

)

=
1
P

P−1∑
n=0

∑
A1,...,Al

Ai⊂[Bi(h),Ci(h)]
|Ai|=ki

∏
α∈H

∑
e|(n+α,P )

µ(e) +Or

(
h−δ

l∏
i=1

dki
i (h)

)
.

Let Q(α, ei) = 1 if ei |n + α and 0 otherwise. Then, letting H′ =
{α1, . . . , αr} where the first k1 elements are in [B1(h), C1(h)], the next k2

are from [B2(h), C2(h)] and so on, with the last kl being from the interval
[Bl(h), Cl(h)], we have∑

A1,...,Al
Ai⊂[Bi(h),Ci(h)]

|Ai|=ki

∏
α∈H

∑
e|(n+α,P )

µ(e) =
[ l∏
i=1

1
ki!

]∑
H′

∏
α∈H′

∑
e|(n+α,P )

µ(e)

=
[ l∏
i=1

1
ki!

]∑
H′

∑
e1,...,er|P

µ(e1) . . . µ(er)
[ r∏
j=1

Q(αj , ej)
]
,

and therefore the second factor of (5) is, apart from the error term, equal to

1
P

P−1∑
n=0

[ l∏
i=1

1
ki!

] ∑
e1,...,er|P

µ(e1) . . . µ(er)
[∑
H′

r∏
j=1

Q(αj , ej)
]
.
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For fixed e1, . . . , er, Q(αi, ei) will be 1 a total of dj(h)/ei + O(1) times
over all choices of ai from [Bj(h), Cj(h)] independent of all other aj . By the
definition, exactly kj of the ai were chosen from [Bj(h), Cj(h)]. Since P is
an upper bound for each ei and hδ grows much more slowly than any di(h),
it follows that∑

H′

r∏
j=1

Q(αj , ej) =
dk11 (h) . . . dkl

l (h)
e1 . . . er

(1 +Or(h−δP )).

We have now eliminated the dependence on n and therefore the P and∑P−1
n=0 cancel out, leaving the right side of (5) as[ l∏
i=1

dki
i (h)
ki!

] ∑
e1,...,er|P

µ(e1) . . . µ(er)
e1 . . . er

(1 +Or(h−δP )) +Or

(
h−δ

l∏
i=1

dki
i (h)

)
.

After substituting this in the previous bound on the growth of P in terms
of h, we obtain[ l∏
i=1

dki
i (h)
ki!

] ∑
e1,...,er|P

µ(e1) . . . µ(er)
e1 . . . er

(1 +Or(h−δ/2+o(1)))

+Or

(
h−δ

l∏
i=1

dki
i (h)

)
=
[ l∏
i=1

dki
i (h)
ki!

]∏
p≤y

(
1− 1

p

)r
(1 +Or(h−δ/2+o(1))) +Or

(
h−δ

l∏
i=1

dki
i (h)

)
.

Multiplying the above with the left side of (5) and incorporating the error
term from (4) shows that the original sum equals
l∏

i=1

dki
i (h)
ki!

(
1+Or,δ

(
1

log log h

))
+
∏
p≤y

(
1−1

p

)−r
Or,δ

(
h−δ/2+o(1)

l∏
i=1

dki
i (h)

)
.

Using Mertens’ theorem again to bound the product over p≤ y as�r (log y)r

allows us to incorporate the second error term into the first, which implies
the theorem.

4. Application to F2. In this section, we will show an example applica-
tion of the previous two theorems. We will use them to show an improvement
over the result for F2 obtained in [4].

Theorem 3. There exists a c > 0 such that F2 ≤ c < (
√

2− 1)2.

Following Goldston, Pintz and Yıldırım’s lead, some sets of size k will
be counted with multiplicity of k! according to their permutations. If a
subset is meant to be taken with multiplicity in this fashion, we will use
the notation ⊂∗. Goldston, Pintz and Yıldırım proved their result for ∆2 by
the following method. They showed that assuming h > (

√
2− 1)2 logN , the
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difference

(6) A(v) :=
2N∑

n=N+1

[ ∑
1≤h0≤h

θ(n+h0)−2 log 3N
][ ∑
H⊂∗{1,...,h}
|H|=k

ΛR(n;H, k+ l)
]2
,

where
R = NΘ, h = λ log 3N and v = λ,Θ, k, l, N,

is positive, which implies there are three primes in the interval n + H :=
n+{1, . . . , h} (H = [1, h]) for some n ∈ [N + 1, . . . , 2N ]. For our derivation,
we will modify their analysis in the following way. Instead of considering
one, we will consider three intervals, where h′ = δh, δ < 1/2:

H1 := {i ∈ Z : 0 < i ≤ h′}, H2 := {i ∈ Z : h′ < i < h− h′},
H3 := {i ∈ Z : h− h′ ≤ i ≤ h}.

If we could modify the difference A(v) in such a way that positivity
not only implied that there are three primes in the interval n+H but also
that one of these primes came from n + H2 we could then guarantee that
F2 ≤ (h−h′)/log 3N = λ(1−δ) whenever the modified difference is positive.
If no primes come from the central interval and there are in total fewer than
three primes, the difference (6) is already negative. Moreover, if three primes
lie in n + H1 or three lie in n + H3, it would imply F2 ≤ h′, which would
imply F2 < λ(1 − δ) since δ < 1/2. If there are five or more primes, either
three primes come from an end interval or there is one in the central interval.
With a little consideration, we can see that in order for positivity to imply
our bound on F2 all we need to do is add another negative term to the
difference (6) which would ensure that the following “bad cases” also lead
to the difference not being positive:

(1) Two primes in n+H1, one in n+H3 and no other in n+H.
(2) One prime in n+H1, two in n+H3 and no other in n+H.
(3) Two primes both in n+H1 and in n+H3 and no other in n+H.

If the added term made these three cases negative as well, we could
guarantee that F2 ≤ λ(1− δ). The proof strategy now relies on the fact that
the number of triples of primes coming from these very short intervals (H1

and H3) should be approximately proportionate to δ3 times the number of
triples of primes coming from the whole interval (if we assign each number n
an independent probability of 1/log n of being prime). As we expand the in-
terval by a factor of 1+δ, the positive contribution from the first term in (6)
grows linearly with respect to this factor. The negative contribution adds
substantially less to the overall sum than the positive term increases when δ
is small. This provides the leverage we need to lower the bound for F2 even
though our total interval is bigger than the one used in [4]’s proof for ∆2.
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Consider the following term:

B1(v, δ) :=
2N∑∗

n=N

( ∑
|H|=k

ΛR(n,H, k + l)
)2

log 3N,

where the starred summation indicates that the term n is only counted if the
interval n+H1 has exactly two primes and n+H3 has at least one prime. Let
B2 be the same summation where n+H3 has exactly two primes and n+H1

has at least one. One can see that subtracting B1(v, δ) + B2(v, δ) would
satisfy the requirements that all three cases above would not contribute
positivity to the overall sum. So, if we can show for a given choice of λ, δ, that
there exist Θ < 1/4 and k, l ∈ N such that A(v)−B1(v, δ)−B2(v, δ) > 0
it will imply F2 ≤ λ(1− δ).

Now, we use a second set of weights to find an upper bound for B1(v, δ)
(the analysis can be repeated identically for B2(v, δ)):
B1(v, δ)

≤ Ω1

2N∑
n=N

∑
A1⊂H1, A2⊂H3

|A1|=2, |A2|=1

ΛR(n,A1∪A2, 3)2
[ ∑
H⊂∗H
|H|=k

ΛR(n,H\(A1∪A2), k+ l)
]2

where Ω1 := (36 log(3N)/(logR)6). This bound holds because if for all a ∈
A1 ∪A2, n+ a is prime, then

ΛR(n,A1 ∪A2, 3)2 =
(logR)6

36
,

ΛR(n,H, k + l) =
∑
|H|=k

ΛR(n,H \ (A1 ∪A2), k + l).

And in all other cases, the square of the terms ensures positivity. Let
∑

A1,A2

be the sum over all sets A1⊂H1, A2⊂H3 such that |A1| = 2, |A2| = 1, and

S1(v, δ) :=
2N∑
n=N

∑
A1,A2

ΛR(n,A1 ∪A2, 3)2
[ ∑
H⊂H
|H|=k

ΛR(n,H\ (A1 ∪A2), k+ l)
]2
.

This yields the bound (notice that we do not consider the sets with multi-
plicity k! in S1)

B1(v, δ) ≤ S1(v, δ)(k!)2
36

(logR)6
log 3N.

4.1. Simplifying the equation. The goal of this section is to provide an
estimate for S1(v, δ). Fix the sets A1, A2. Then∑
H⊂H
|H|=k

ΛR(n,H \ (A1 ∪A2), k + l) =
3∑
j=0

(
3
j

) ∑
H⊂H, |H|=k−j
(A1∪A2)∩H=∅

ΛR(n,H, k + l).
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Here the
(
3
j

)
terms result from the choice of which elements of A1 ∪ A2

were removed from the set under consideration. Letting
∑j1,j2
H1,H2

be the
sum over all H1,H2 ⊂ H such that |H1| = k − j1 and |H2| = k − j2
and (H1 ∪H2)∩ (A1 ∪A2) = ∅ (where the dependence on A1 and A2 of the
summation is understood but not indicated), we obtain

S1(v, δ) =
2N∑
n=N

∑
A1,A2

ΛR(n,A1∪A2, 3)2
[ 3∑
j=0

(
3
j

) ∑
H⊂H, |H|=k−j
(A1∪A2)∩H=∅

ΛR(n,H, k+l)
]2

=
2N∑
n=N

∑
A1,A2

ΛR(n,A1 ∪A2, 3)2

×
3∑

j1,j2=0

(
3
j1

)(
3
j2

) j1,j2∑
H1,H2

ΛR(n,H1, k + l)ΛR(n,H2, k + l)

=
3∑

j1,j2=0

min(k−j1,k−j2)∑
r=0

(
3
j1

)(
3
j2

)
S′1(v, δ, j1, j2, r),

where

S′1(v, δ, j1, j2, r)

:=
2N∑
n=N

∑
A1,A2

j1,j2,r∑
H1,H2

ΛR(n,A1 ∪A2, 3)2ΛR(n,H1, k + l)ΛR(n,H2, k + l),

and
∑j1,j2,r
H1,H2

is the sum over all H1,H2 ⊂ H such that |H1| = k − j1 and
|H2| = k−j2, (H1∪H2)∩(A1∪A2) = ∅ and |H1∩H2| = r (once again there
is a dependence on A1 and A2). By Theorem 1 (recall that if |H1| = k − j1
and the third argument of the Λ function is k + l, the l value increases
to l + j1),

S′1(v, δ, j1, j2, r) = N

(
2l + j1 + j2
l + j1

)
(logR)3(logR)2l+r+j1+j2

3!(2l + r + j1 + j2)!

×
∑
A1,A2

j1,j2,r∑
H1,H2

(S(A1 ∪A2 ∪H1 ∪H2) + oM (1)).

Since |H1| = |H3| = δ|H| where δ is an absolute constant, the growth
condition for Theorem 2 is satisfied where the subintervals are taken as
[B1, C1] = H1, [B2, C2] = H2, [B3, C3], [B4, C4], [B5, C5] = H and two ele-
ments are from [B1, C1], one from [B2, C2], k−j1−r from [B3, C3], k−j2−r
from [B4, C4], and r from [B5, C5]. The elements from the first interval cor-
respond to the elements of A1, from the second to A2, from the third to
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H1 \ H2, from the fourth to H2 \ H1, and from the fifth to H1 ∩ H2. We
can almost use the theorem, except that we have the additional restriction
that the five sets are pairwise disjoint. (By definition the Ai sets are dis-
joint from each other and any Hi. Obviously the sets H1 \ H2, H1 ∩ H2

and H2 \ H1 are pairwise disjoint.) Since we showed in the proof of Theo-
rem 2 that each of the singular series is bounded above by a constant power
of log h, the sum of the singular series where the sets are not disjoint is
�M (log h)CMh2k−r−j1−j2+2. From the theorem and the previous fact that
the sum over disjoint sets we consider dominates the entire sum, it follows
that∑

A1,A2

r∑
H1,H2

S(A1 ∪A2 ∪H1 ∪H2) =
δ3h2k−r−j1−j2+3

2!(k − j1 − r)!(k − j2 − r)!r!

× (1 + oM (1)).

Therefore,

S′1(v, δ, j1, j2, r) = N

(
2l + j1 + j2
l + j1

)
(logR)3

6
(logR)2l+r+j1+j2

(2l + r + j1 + j2)!

× δ3h2k−r−j1−j2+3

2(k − j1 − r)!(k − j2 − r)!r!
(1 + oM (1)).

It is now possible to step back to evaluate S1(v, δ). Define the following
notation (with an empty product being defined as 1):

γ(ji, k, r) = (k − r)(k − r − 1) . . . (k − r − ji + 1),

β(j1, j2, l, r) = (r + 2l + 1)(r + 2l + 2) . . . (r + 2l + j1 + j2),

a(j1, j2, l) =
(

2l + j1 + j2
l + j1

)(
2l
l

)−1

,

µ(j1, j2, k, l, r) =
γ(j1, k, r)γ(j2, k, r)a(j1, j2, l)

β(j1, j2, r, l)

(
3
j1

)(
3
j2

)
.

We define this in order to put our previous derivation into a form more
comparable with the work of [4]. Notice that

k!k!
(k − j1 − r)!(k − j2 − r)!r!(2l + r + j1 + j2)!

=
(
k

r

)2 r!
(2l + r)!

γ(j1, k, r)γ(j2, k, r)
β(j1, j2, r, l)

=
(
k

r

)2 1
(r + 1)(r + 2) . . . (r + 2l)

γ(j1, k, r)γ(j2, k, r)
β(j1, j2, r, l)

.
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With this, it is possible to rewrite the S1 function. Defining x=(logR)/h,
and χ := N(logR)2l+6h2k/(k!)2, we obtain

S1(v, δ)∼χ
(

2l
l

) 3∑
j1,j2=0

min(k−j1,k−j2)∑
r=0

(
k

r

)2 δ3xr+j1+j2−3µ(j1, j2, k, l, r)
12(r + 1) . . . (r + 2l)

≤χ
(

2l
l

) 3∑
j1,j2=0

k∑
r=0

(
k

r

)2 δ3xr+j1+j2−3µ(j1, j2, k, l, r)
12(r + 1) . . . (r + 2l)

=χ

(
2l
l

) k∑
r=0

(
k

r

)2 xr

(r+1) . . . (r+2l)

3∑
j1,j2=0

δ3xj1+j2−3µ(j1, j2, k, l, r)
12

.

And therefore, an upper bound for our original sum is

B1(v, δ) =
2N∑∗

n=N+1

( ∑
|H|=k

ΛR(n,H, k + l)
)2

log 3N

≤ N(logR)2lh2k(log 3N)
(

2l
l

) k∑
r=0

(
k

r

)2 xr

(r + 1) . . . (r + 2l)

×
3∑

j1,j2=0

3δ3xj1+j2−3µ(j1, j2, k, l, r)(1 + oM (1))

∼ Nh2k+1

(
2l
l

)
(logR)2l

k∑
r=0

(
k

r

)2 xr

(r + 1) . . . (r + 2l)

×
[

3δ3

Θx2

] 3∑
j1,j2=0

xj1+j2µ(j1, j2, k, l, r),

with identical reasoning giving the same bound for B2(v, δ). In [4] the au-
thors derive two facts:

2N∑
n=N+1

2(logN)
( ∑
|H|=k

ΛR(n,H, k + l)
)2

∼ 2Nh2k(log 3N)
(

2l
l

)
(logR)2l

k∑
r=0

(
k

r

)2 xr

(r + 1) . . . (r + 2l)
,

2N∑
n=N+1

( ∑
1≤h0≤h

θ(n+ h0)
∑
|H|=k

ΛR(n,H, k + l)
)2

∼ Nh2k+1

(
2l
l

)
(logR)2l

k∑
r=0

(
k

r

)2 xr

(r + 1) . . . (r + 2l)

(
2a(1, 0, l)k
r + 2l + 1

x+ 1
)
.
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It follows that if after factoring out(
2l
l

)
Nh2k+1(logR)2l

(which controls all dependence on N) the remaining factor is positive, then
F2 ≤ λ(1 − δ). Therefore, it suffices to show (where the 3 in the final term
becomes a 6 because we are considering both B1 and B2) that

k∑
r=0

(
k

r

)2 xr

(r + 1) . . . (r + 2l)

×
(

2a(1, 0, l)k
r + 2l + 1

x+ 1− 2x
Θ
− 6δ3

Θx2

3∑
j1,j2=0

xj1+j2µ(j1, j2, k, l, r)
)

is positive. This will imply F2 ≤ λ(1− δ).

4.2. The derivation. First notice that by bounding each component in-
dividually, we obtain

µ(j1, j2, k, l, r) ≤ 2j1+j2

(
k − r
r

)j1+j2( 3
j1

)(
3
j2

)
,

which implies
3∑

j1,j2=0

xj1+j2µ(j1, j2, k, l, r)≤
( 3∑
j=0

(
3
j

)
2jxj

(
k−r
r

)j)2

=
(

2x
k−r
r

+1
)6

.

There are now two parts of the proof remaining. Let (similarly to [4])

f(r) =
(
k

r

)2 xr

(r + 1)(r + 2) . . . (r + 2l)
,

P (r, δ) =
2a(1, 0, l)k
r + 2l + 1

x+ 1− 2x
Θ
− 6δ3

Θx2

(
2x

k − r
r

+ 1
)6

.

We will show that with good choices for k, l, λ,Θ, δ,
∑k

r=0 f(r)P (r, δ) will
be positive, giving the bound F2 ≤ λ(1− δ). In a sense, f(r) will contribute
to the magnitude of the rth term while P (r, δ) will control the sign. First,
notice that the term f(r) is maximized when (one can justify this heuristic
by a little computation, but it is not necessary, the decay when the terms
are much bigger or smaller will be shown shortly)

r ∼ k

z + 1
where z =

1√
x
.

Let r0 = [k/(z + 1)].
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We would now like to find, with a given choice of x, the maximal δ such
that the maximal term is positive. (It is possible that a given x will have no
valid corresponding δ if the interval we are considering is simply too small.
In these cases there will be a contradiction with the definition of δ, giving
a value that is not in [0, 1/2) as δ was defined to be.) If we took Θ = 1/4
while in reality it can only be taken to be 1/4 − ε, and k/l = k while in
reality it can only be taken as k(1 − ε) (in applications in [4], l = o(k))
we would obtain, in a sense, the function P (r, δ) “approaches”. Call this
function P ′(r, δ) and notice

P ′
(

k

z + 1
, δ

)
=

4k
k
z+1

x+ 1− 8x− 24δ3

x2

(
2x

k − k
z+1
k
z+1

+ 1
)6

> 0

(since x 6= 0 in this application, we can divide by it; also, recall x = z−2)

⇔ 4(z + 1) + z2 − 8− 24δ3(z + 2)6 > 0

⇔ (z + 2)2 − 8− 24δ3(z + 2)6 > 0.

This is equivalent to

δ3 ≤ (z + 2)2 − 8
24(z + 2)6

.

So, if δ is exactly the cube root of the value on the right above, then
P ′(k/(z + 1)) = 0. If it is below that root, one can check easily that
P ′(k/(z + 1)) is positive.

Theorem 4.1. Let λ > 0, z = 2
√
λ and

δ′ = 3

√
(z + 2)2 − 8
24(z + 2)6

.

If δ′ ∈ [0, 1/2), then F2 ≤ λ(1− δ′).

Proof. Fix λ and δ′ for the rest of the proof that satisfy the above con-
ditions (any constants from here on may depend on λ and δ). We claim
that for any δ < δ′ the total sum is positive assuming the k, l values are
sufficiently large with l = o(k) and Θ = (1/4)(1− 1/l). This will imply that
F2 ≤ λ(1 − δ). Since δ can be taken arbitrarily close to δ′ this will imply
F2 ≤ λ(1− δ′).

Lemma 4.2. Let δ = δ′ 3
√

1− ε. Then there is a small constant ν > 0,
which depends on ε, such that for k, l > C(ε) and l/k < c(ε), we have
P (r) > c′(ε) > 0 for r ∈ [r0 − νk, r0 + νk].

Proof. Take r ∈ [r0 − νk, r0 + νk]. We will analyze each term of P (r, δ)
separately (recalling that we have set x as a constant +O(l−1) (x = Θ/λ)
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and k/r0 as a constant +O(k−1)). As k, l→∞ with l = o(k) and ν → 0,

2a(1, 0, l)k
r + 2l + 1

x ≥ 4
r0/k

x+O(l/k) +O(l−1) +O(ν),

1− 2x
Θ

= 1− 8x+O(l−1),

6δ3

x2Θ

(
2x

k − r
r

+ 1
)6

≤ 24δ′3

x2

(
2x
(
k

r0
− 1
)

+ 1
)6

+O(ν)− c(ε) +O(l−1),

with c(ε) > 0. Combining these, one sees a correlation with P ′(k/z + 1, δ′),

P (r, δ) ≥ P ′(k/z + 1, δ′) + c(ε) +O(l/k) +O(l−1) +O(k−1) +O(ν)

≥ c(ε) +O(l/k) +O(l−1) +O(k−1) +O(ν),

which proves the statement. We first fix ε and then select l, k large enough
and ν small enough such that P (r, δ) ≥ c(ε)/2 for all r ∈ [r0−νk, r0 +νk].

The rest of the proof will proceed in the following manner: First we will
show that for r < r0 − νk/2 = r1 or r > r0 + νk/2 = r2, the values f(r)
rapidly decrease by at least a constant factor in magnitude. This will imply
the negative terms (which are smaller than r0−νk and greater than r0 +νk)
will all be exponentially small in k and their total sum can be bounded by
the r0 term. For notational simplicity, let ν ′ = ν/2.

First, we begin analyzing the terms below r1. Take any r < r1. We have

f(r + 1)
f(r)

=
(
k − r
r + 1

)2 x(r + 1)
r + 2l + 1

>

(
k − r
r + 1

)2 xr

r + 2l + 1
.

Notice first that, since r < ck where c < 1,

(k − r)(r)
(r + 2l + 1)(r + 1)

=
(

r2

kr − r2
+

(2l + 2)r
kr − r2

+
2l + 1
kr − r2

)−1

=
(

r

k − r
+O(l/k)

)−1

≥
(

r0 − ν ′k
k − r0 + ν ′k

+O(l/k)
)−1

=
(
k − r0 + ν ′k

r0 − ν ′k

)
(1 +O(l/k))

≥
(
k

r0
(1 + c(ν))− 1

)
(1 +O(l/k)) where c(ν) > 0

≥
(
k

r0
− 1
)

(1 + c(ν)/2) for k/l small enough.

Secondly,
k − r
r + 1

≥ k − r0
r0

for k, l sufficiently large.
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Therefore,

f(r + 1)
f(r)

>

(
k − r
r + 1

)2 x(r + 1)
r + 2l + 1

≥
(
k − r0
r0

)2

x(1 + c(ν)/2) by the definition of r0

= 1 + c′(ν)/2 +O(k−1) +O(l−1).

So, as the terms go below the r1st, the ratio between any two terms decreases
by a constant factor. Therefore, the sum of all terms below r0 − νk is a
polynomial in k (there are at most k such terms and P (r, δ) is bounded
easily by a polynomial in k) times an inverse exponential in k times the r0
term. The r0 term will therefore be greater in magnitude than (any constant
multiple of) the sum of all negative terms r with r < r1 for k sufficiently
large. Now we will show the same holds with r > r2 (let c(ν) and c′(ν)
denote small positive constants depending on ν):

f(r + 1)
f(r)

≤
(
k − r
r + 1

)2

x ≤
(
k

r
− 1
)2

x ≤
(

k

r0 + kν ′
− 1
)2

x

≤
(
k

r0
(1−c(ν))−1

)2

x ≤ (1−c′(ν))
(
k

r0
−1
)2

x = 1−c′(ν)+O(k−1 + l−1).

Therefore, these terms decay exponentially. Since, as before, P (r, δ) is
bounded above by a polynomial in k and f(r) is bounded above by an inverse
exponential in k when compared to the r0 term, the sum of all such r > r2
can easily be bounded by half the term at r0. This completes the proof of
positivity, which implies the theorem.

Notice that if we take λ = (
√

2 − 1)2, this implies δ = 0 and the nec-
essary condition is satisfied. This is precisely the result implied by [4]. One
can check that if we increase λ by a very small amount so that the δ′

value increases and stays within the allotted interval (since it varies con-
tinuously with respect to λ) the value λ(1− δ′) will initially decrease. This
proves the theorem. One can numerically check that taking λ = .172 implies
δ′ ∼ .007794, which implies F2 < .172(1− .007794) < .17066.
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