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p-adic polylogarithms and irrationality
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Pierre Bel (Bordeaux)

1. Results. We denote by Lis the p-adic polylogarithm function defined
for an integer s and p-adic number x ∈ Cp by

Lis(x) =
+∞∑
k=1

xk

ks
,

for |x|p < 1. We denote by Lis(z) the complex polylogarithm defined by the
same series and for complex numbers z and s such that |z| < 1.

The p-adic polylogarithms have applications to number fields (cf. [Col])
and p-adic L-functions (cf. [Fu]).

In the archimedian case, we have the following diophantine results. The
results of M. Hata (cf. [Ha]) improved by G. Rhin and C. Viola (cf. [Rh])
give

Theorem 1. For any integer q such that |q| ≥ 6, the number Li2(1/q)
is irrational.

M. Hata also gives explicit conditions on the integer m and the rational
number x for Lim(x) to be an irrational number.

In [Ri], T. Rivoal proves

Theorem 2. Let x be a rational number such that |x| < 1. The set
{Lis(x)}s∈N contains infinitely many irrational numbers linearly independent
over Q.

R. Marcovecchio proved this result for x an algebraic number (cf. [Ma]).
In the p-adic case, the diophantine results are fewer than in the archi-

median case. In this paper, we prove the following new results.

Theorem 3. Let K = Q(δ) be a number field and p a prime number.
Consider K as embedded into Cp and denote by Kp the completion of this
embedding. Suppose that |δ|p > 1 and let d(δ) be the denominator of δ. For
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any integer A ≥ 2, the dimension τ of the K-vector space spanned by 1 and
(Lis(δ−1))s∈[1,A] satisfies

τ ≥ X2 −
√
X2

2 − 2X1X3

X1
,(1)

where

X1 = [K : Q],
X2 = ((A+ 1) log(A+ 1) + log d(δ) +A(1 + log 2))

+
∑
v∈V∞

ηv log max(1, |δ|v) +
1
2

[K : Q],

X3 = ηp(A+ 1) log |δ|p.
Remark 1. Under the hypotheses of Theorem 3, we have the lower

bound

(2) τ ≥ [Kp : Qp](A+ 1) log |δ|p
[Q(δ) : Q]((A+1) log(A+1)+log d(δ)+A(1+log 2)) +

P
v∈V∞

ηv log max(1, |δ|v)
,

which follows from (1).

Corollary 1. For any integer s ≥ 2 and any integer a > 0, if the
prime number p sastisfies

a log p >
s

2
+ s log(s+ 1) + s2 log(s+ 1) +

s2

2
+ s2 log 2 =: f(s),

then the number Lis(pa), which belongs to Qp, is irrational.

Proof. We apply the inequality (1) with a fixed integer A = s and
δ = p−a. In this case [Kp : Qp] = [K : Q] = 1, log |p−a|p = log d(p−a) =
a log p and log(max(1, |p−a|)) = 0. We thus have

lim
pa→+∞

X2 −
√
X2

2 − 2X1X3

X1
= A+ 1.

The equation X2−
√
X2

2−2X1X3

X1
= A has one solution in R+ which is

pa = ef(A). We obtain

dimK Vect(1, (Lis(δ−1))s∈[1,A]) > A

for a log p > f(A), which completes the proof.

Corollary 2. The numbers Li2(234281) and Li2(218), which belongs
to Q234281 and Q2 respectively , are irrational.

2. Notations and conventions. In this paper, K represents a number
field and O(K) its ring of algebraic integers. For an algebraic number β, we
denote by d(β) the denominator of β, which is defined as the least positive
integer l for which lβ is an algebraic integer.
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We set dn = lcm(1, . . . , n). The prime number theorem gives the estimate
dn = en+o(n).

For a prime number p, we denote by vp the p-adic valuation over Q and
| · |p = p−vp(·) the p-adic norm.

Let v be a place of the number field K. Then Kv and Qv denote the
completions of K and Q at this place and ηv stands for the index [Kv : Qv].
V, V∞ and Vf represent the sets of places, of infinite places and of finite
places respectively.

For any α ∈ K∗, we have the product formula∑
v∈V

ηv log |α|v = 0.

Moreover, ∑
v∈V∞

ηv = [K : Q].

If α is an element of O(K) \ {0} and p a finite place, as |α|v ≤ 1 for any
finite place v of K, we have

ηp log |α|p +
∑
v∈V∞

ηv log |α|v ≥ 0.

3. A criterion of linear independence. This criterion is an adap-
tation in the p-adic case of the criterion used in the complex case by R.
Marcovecchio (cf. [Ma]). The author did not find any statement in this form
in the mathematical literature.

Letm be a positive integer, L = (`1, . . . , `m) ∈ Km, θ= (θ1, . . . , θm)∈Cm
p

and (L, θ) = `1θ1 + · · · + `mθm. For any place v of K, we define ‖L‖v =
max1≤j≤m |`j |v.

Lemma 1. Let p be a prime number and K a number field. Fix an em-
bedding of K into Cp and denote by Kp = Qp(K) its completion. Let θ =
(θ1, . . . , θm) be a nonzero vector of Km

p . Suppose that there exist real positive
numbers (cv)v∈V∞ , a real number ρ, and m sequences (L(i)

n ) = ((`(i)n,j)j∈[1,m]),
with n ∈ N and 1 ≤ i ≤ m, of vectors in (O(K))m such that for all n, the
m vectors L(i)

n are linearly independent over K and enjoy the following prop-
erties:

(i) for any place v ∈ V∞, lim supn n−1 log ‖L(i)
n ‖v ≤ cv,

(ii) lim supn n−1 log |(L(i)
n , θ)|p ≤ −ρ.

Then

τ = dimK Vect(θ1, . . . , θm) ≥ ρ [Kp : Qp]∑
v∈V∞ ηvcv

.(3)
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Moreover , if dj−1
n divides `(i)n,j for all (i, j) ∈ [1,m]2, we have more precisely

τ ≥

∑
v∈V∞

ηvcv + 1
2 [K : Q]−

√( ∑
v∈V∞

ηvcv + 1
2 [K : Q]

)2 − 2ρηp[K : Q]

[K : Q]
·(4)

Proof. By swapping the indices of (θi)i∈[1,m], we can suppose that θ1 is
nonzero. Furthermore, replacing (θj)j∈[1,m] by (θj/θ1)j∈[1,m], we assume that
θ1 = 1.

If τ is the dimension of the K-vector space spanned by the θj , then there
exist m− τ vectors (A(i))i∈[τ+1,m] of (O(K))m, linearly independent over K,
such that (A(i), θ) = 0 for all i ∈ [τ + 1,m].

By permutation of i, we can suppose that for all n ∈ N, the vectors
(L(1)

n , . . . , L
(τ)
n , A(τ+1), . . . , A(m)) are linearly independent.

Let Mn be the matrix whose rows are the vectors

(L(1)
n , . . . , L(τ)

n , A(τ+1), . . . , A(m)),

i.e. L(i)
n = (`(i)n,1, . . . , `

(i)
n,m) and A(i) = (a(i)

1 , . . . , a
(i)
m ),

Mn =



`
(1)
n,1 `

(1)
n,2 · · · `

(1)
n,m

. . . . . . . . . . . . . . . . . . . . . . . . . .

`
(τ)
n,1 `

(τ)
n,2 · · · `

(τ)
n,m

a
(τ+1)
1 a

(τ+1)
2 · · · a

(τ+1)
m

. . . . . . . . . . . . . . . . . . . . . . . . . .

a
(m)
1 a

(m)
2 · · · a

(m)
m


.(5)

Since the matrix is nonsingular, we have

Λn = det(Mn) 6= 0.(6)

Since Λn belongs to O(K), we deduce from (6) that

0 ≤ ηp log |Λn|p +
∑
v∈V∞

ηv log |Λn|v.(7)

For the infinite places, the expansion of the determinant (5) gives

|Λn|v ≤ m!
(

max
j∈[1,τ ]
j∈[1,n]

|`(j)n,i|v
)τ(

max
j∈[τ+1,m]
j∈[1,n]

|a(j)
i |v

)m−τ
.

By using assumption (i), this implies that

lim sup
n

log |Λn|v
n

≤ τcv.(8)
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By multi-linearity of Λn, we can add the jth column multiplied by θj to
the first. We obtain

Λn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(L(1)
n , θ) `

(1)
n,2 · · · `

(1)
n,m

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

(L(τ)
n , θ) `

(τ)
n,2 · · · `

(τ)
n,m

0 a
(τ+1)
2 · · · a

(τ+1)
m

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 a
(m)
2 · · · a

(m)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By expansion along the first column we obtain

|Λn|p ≤ max
j∈[1,τ ]

|(L(j)
n , θ)|p

(
max

(
max
j∈[1,τ ]
j∈[1,n]

|`(j)n,i|p, max
j∈[τ+1,m]
j∈[1,n]

|a(j)
i |p

))m−1
.

Since `(j)n,i and a
(j)
i are algebraic integers, we deduce

(Λn)p ≤ max
j∈[1,τ ]

|(L(j)
n , θ)|

and an application of (i) implies that

lim sup
n

log |Λn|p
n

≤ −ρ.(9)

Dividing (7) by n and using (8) and (9), we have

0 ≤ −ρηp + τ
∑
v∈V∞

ηvcv.

This proves (3), the first lower bound of Lemma 1.
Moreover, if dj−1

n divides `(i)n,j for all (i, j) ∈ [1,m]2, the expansion of the

determinant of (5) shows that d1+2+3+···+(τ−1)
n = d

τ(τ−1)/2
n divides Λn. Thus

Λn = dτ(τ−1)/2
n λn

with λn ∈ O(K).
When n tends to +∞, the following asymptotics hold:

log |dn| ∼ n, log |dn|p = o(n).

This implies that

lim
n→+∞

1
n

log |λn|p = lim
n→+∞

1
n

log |Λn|p(10)

and

lim
n→+∞

1
n

log |λn|v = lim
n→+∞

1
n

log |Λn|p −
τ(τ − 1)

2
,(11)
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for any infinite place v. Thus

0 ≤ ηp log |λn|p +
∑
v∈V∞

ηv log |λn|v.

By dividing by n and using (8)–(11), we conclude that

0 ≤ −ρηp + τ
∑
v∈V∞

ηvcv −
τ(τ − 1)

2

∑
v∈V∞

ηv,

and thus

0 ≤ −ρηp + τ
∑
v∈V∞

ηvcv −
τ(τ − 1)

2
[K : Q].

This proves (4), the second lower bound of Lemma 1.

4. Simultaneous Padé approximants of (Lis(z))s∈[0,A]. The results
of this section and the next are adapted from the article by T. Rivoal
(cf. [Ri]). We construct explicitly the simultaneous Padé approximants of
polylogarithms. These approximations provide us with the linear form used
to apply the linear independence criterion.

For any integers A, n and q which satisfy n > 0, A ≥ 2 and 0 ≤ q ≤ A,
we define

Rn,q(k) =
(k −An)An
(k)An (k + n)q

.

The Rn,q(k) are rational fractions in k of degree −q. By partial fraction
expansion, we have

Rn,q(k) =
n∑
j=0

A∑
s=1

rj,s,n,q
(k + j)s

+ δ0,q,

where δ is the Kronecker symbol.
For s ∈ [1, A], we set

Ps,n,q(z) =
n∑
j=0

rj,s,n,qz
j

and

P0,n,q(z) = −
A∑
s=1

n∑
j=0

rj,s,n,q

j∑
k=1

zj−k

ks
+ δ0,q

1
z − 1

.

We introduce a class of functions Sn,q(z) defined by

Sn,q(z) =
+∞∑
k=1

Rn,q(k)z−k.
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Proposition 1. The fractions (Ps,n,q(z))s∈[0,A] and the formal series
Sn,q(z) in Q((z−1)) satisfy

Sn,q(z) = P0,n,q(z) +
A∑
s=1

Ps,n,q(z) Lis(z−1)

and
ordSn,q(z) = An+ 1.

Remark 2. For q = 0, Sn,q(z) is not a Padé approximant, because
P0,n,0(z) is not a polynomial, but it is the case of (z − 1)Sn,q(z).

Proof. We have

Sn,q(z) =
+∞∑
k=1

Rn,q(k)z−k =
+∞∑
k=1

(
δ0,q +

A∑
s=1

n∑
j=1

rj,s,n,q
(k + j)s

)
z−k

=
δ0,q
z − 1

+
A∑
s=1

n∑
j=1

zjrj,s,n,q

+∞∑
k=1

z−(k+j)

(k + j)s

=
δ0,q
z − 1

+
A∑
s=1

n∑
j=1

[
zjrj,s,n,q Lis(z−1)−

j∑
k=1

z−k

ks

]

= P0,n,q(z) +
A∑
s=1

Ps,n,q Lis(z−1).

The first assertion is proved. Since Rn,q(k) vanishes for k between 1 and An
and Rn,q(An+ 1) is nonzero, we deduce the second assertion.

5. Auxiliary results. We keep the notation of Section 4.

Remark 3. By construction, for s ≥ 1, the Ps,n,q are polynomials of
degree at most n, and at most n − 1 if s > q. Moreover, for q ≥ 1, the
rn,q,n,q = (−(A+ 1)n)An/(−n)An do not vanish, hence Pq,n,q(z) is a polyno-
mial of degree n.

Proposition 2. For all s ∈ [1, A], we have

dA−sn Ps,n,q(z) ∈ Z[z] and dAn

(
P0,n,q(z)− δ0,q

1
z − 1

)
∈ Z[z].

Proof. It is sufficient to show that dA−sn rj,s,n,q is an integer. We suppose
that j ∈ [0, n− 1] (the case j = n is similar, with s ≤ q). We have

rj,s,n,q =
(−1)A−s

(A− s)!

(
d

dl

)A−s
[Rn,q(−l)(j − l)A]|l=j .
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We can write

Rn,q(−l)(j − l)A =
(−l −An)An
(−l)An (n− l)q

(j − l)A =
( A∏
c=1

Fc(l)
)
H(l),

where Fc(l) = (−l−cn)n

(−l)n+1
(j − l) and H(l) = (−l + n)A−q.

By partial fraction expansion of Fc(l), we obtain

Fc(l) = 1 +
∑
i 6=j

0≤i≤n

(j − i)fi,c
i− l

,

where

fi,c =
(−i− cn)n∏
h6=i

0≤h≤n

(h− i)
= (−1)i+n

(
cn+ i

n

)(
n

i

)
.(12)

We deduce from (12) that the fi,c are integers. Setting Dλ = 1
λ!

(
d
dl

)λ, we
have, for all λ ≥ 0,

Dλ(Fc(l)) = δ0,λ +
∑
i 6=j

0≤i≤n

(j − i)fi,c
(i− l)λ+1

·

We have shown that the dλnDλ(Fc(l))|l=j are integers for all λ ≥ 0. More-
over, Dλ(H(l))|l=j is an integer.

Using the Leibniz identity, we have

DA−s[Rn,q(−l − x)(j − l)A] =
∑
ν

(Dν0(F1)) · · · (DνA−1(FA))(DνA(H))

(ν ∈ NA+1 with ν0 + · · ·+νA = A−s). We deduce from this that dA−sn rj,s,n,q
is an integer and thus dA−sn Ps,n,q(z) is an element of Z[z].

Proposition 3. If β is an element of the number field K and if v is
an infinite place of K, then for s ∈ [0, A], we have

lim sup
n
|Ps,n,q(β)|1/nv ≤ (A+ 1)A+12A max(1, |β|v).

Proof. It is sufficient to bound rj,s,n,q. We have

rj,s,n,q =
1

2πi

�

|t+j|=1/2

Rn,q(t)(t+ j)s−1 dt

=
1

2πi

�

|t+j|=1/2

(t−An)An
(t)An (t+ n)q

(t+ j)s−1 dt.
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Hence

|rj,s,n,q| ≤
1

2π
π sup
|t+j|=1/2

|(t−An)An| |(t+ j)s−1|
|(t)An (t+ n)q|

≤ 2−s sup
|t+j|=1/2

|(t−An)An|
|(t)An (t+ n)q|

.

As |t+ j| = 1/2, we have

|(t−An)An| =
An∏
k=1

|t− k| =
An∏
k=1

|t+ j − k − j|

≤
An∏
k=1

(
1
2

+ |−k − j|
)
≤

An∏
k=1

(1 + |k + j|),

so

(13) |(t−An)An| ≤
(An+ j + 1)!

(j + 1)!
,

and

|(t)n| =
n−1∏
k=0

|t+ k| =
n−1∏
k=0

|t+ j − j + k|

≥
n−1∏
k=0

(∣∣∣∣−1
2

+ |k − j|
∣∣∣∣) ≥ 1

8

∏
0≤k≤n−1

k/∈{j−1, j, j+1}

(−1 + |k − j|),

so

(14) |(t)n| ≥
1

8n3
j! (n− j)!,

and

(15) |(t+ n)q| = |(t+ j − j + n)|q ≥
∣∣∣∣|n− j| − 1

2

∣∣∣∣q ≥ 2−A.

We deduce from (13)–(15) that

|rj,s,n,q| ≤ 24A−sn3A (An+ j + 1)!
(j + 1)! j!A (n− j)!A

.

Thus

|rj,s,n,q| ≤ 24An3A (An)!
n!A

(
n

j

)A(An+ j + 1
An

)
.(16)

The multinomial series

(x1 + · · ·+ xm)km =
∑

n1,...,nm≥0
n1+···+nm=km

(km)!
n1! · · ·nm!

xn1
1 · · ·x

nm
m

applied to x1 = · · ·= xm = 1 and n1 = · · ·= nm = k gives (km)!/k!m ≤ mkm.
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Using the upper bounds (An)!/n!A ≤ AAn,
(
n
j

)
≤ 2n and

(
An+j+1
An

)
≤(

An+n+1
An

)
, we deduce that

|rj,s,n,q| ≤ AAn24A−s2n(A+1)n3A

(
An+ n+ 1

An

)
.

By Stirling’s formula,

lim
n→+∞

((
An+ n+ 1

An

))1/n

=
(A+ 1)A+1

AA
.

Hence

|rj,s,n,q| ≤ ((A+ 1)A+12A)n+o(n).

Thus for s ≥ 1,

|Ps,n,q(β)|v ≤
n∑
j=0

|rj,s,n,q| |β|jv ≤ (n+ 1)((A+ 1)A+12A)n+o(n) max(1, |β|v)n

and

|P0,n,q(β)|v ≤
A∑
s=1

n∑
j=0

|rj,s,n,q|
j∑

k=1

|β|j−kv

ks
+ δ0,q

∣∣∣∣ 1
β − 1

∣∣∣∣
v

≤ A(n+ 1)((A+ 1)A+12A)n+o(n) max(1, |β|v)n + δ0,q

∣∣∣∣ 1
β − 1

∣∣∣∣
v

.

This yields the conclusion.

6. Independence of linear forms. The results of this section are
adapted from an article of Marcovecchio (cf. [Ma]). We set

Mn(z) = (Ps,n,q(z))s∈[0,A]
q∈[0,A]

.(17)

Proposition 4. There exists a constant γ ∈ Q∗ such that

detMn(z) = γ(z − 1)−1.

Proof. For (s, q) 6= (0, 0), Ps,n,q is a polynomial whereas P (0)
0,n is a rational

fraction with one simple pole at z = 1. Hence the determinant of (17) is a
rational fraction with at most a simple pole at z = 1. By multi-linearity of
determinant, we add the jth column multiplied by Lis(z−1) to the first. We
obtain

detMn(z) =

∣∣∣∣∣∣∣∣
Sn,0(z) P1,n,0(z) · · · · · · PA,n,0(z)

...
. . .

...
Sn,A(z) P1,n,A(z) · · · · · · PA,n,A(z)

∣∣∣∣∣∣∣∣ .
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The elements of the first column are formal power series in z−1 of valu-
ation An+ 1 (Proposition 1). The other columns are polynomials of degree
at most n in z (Remark 3). We deduce that the determinant is a rational
fraction in z of degree at most −1. Remark 3 shows that the elements above
the diagonal have degree at most n − 1 in z. Hence only the product of
diagonal elements can be of degree −1 in z, the others have a strictly lower
degree. Remark 3 also implies that Pq,n,q(z) is exactly of degree n in z. We
thus have an element of degree exactly −1. The degree of detMn(z) in z
is −1, proving the assertion.

7. Transfer from complex to p-adic and proof of Theorem 3

Proposition 5. Let α ∈ Cp with |α|p > 1 and set

Un,q(α) = dAn

(
P0,n,q(α) +

A∑
s=1

Ps,n,q(α)Lis(α−1)
)
.

Then
lim sup

n

1
n

log |Un,q(α)|p ≤ −A log |α|p.

We will prove this proposition using the following two lemmas.

Lemma 2. We have

Un,q(α) =
+∞∑
k=0

uk,nα
−k

where (uk,n) is a sequence of rational numbers independent of α, with
uk,n = 0 for all k ≤ An.

Proof. In the field Q((X−1)) of Laurent series, we have

Un,q(X) = dAnSn,q(X).

Proposition 1 proves that this series has valuation at least An+ 1 in X. We
can write

Un,q(X) =
+∞∑

k=An+1

uk,nX
−k.

Moreover, the Laurent series Un,q(X) is convergent on Cp for |X|p > 1, since
Lis(X−1) is convergent on the same domain and Un,q(α) is the sum of this
series for X = α.

Lemma 3. The terms uk,n satisfy

|uk,n|p ≤ (k + n+ 1)A.

Proof. The p-adic absolute value of the kth term of the expansion of
Lis(X−1) in Q((X−1)) is at most ks. As
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• Un,q(X) = dAn (P0,n,q(X) +
∑A

s=1 Ps,n,q(X)Lis(X−1)),
• dAnPs,n,q is an element of Z[X] of degree at most n, for v an infinite

place,
• dAnP0,n,q is an element of Z[[X−1]][X] of degree at most n,

we infer that
|uk,n|p ≤ (k + n+ 1)A.

Proof of Proposition 5. Using Lemmas 2 and 3, we find

|Un,q(α)|p ≤ sup
k≥An+1

(k + n+ 1)A|α|−kp = ((A+ 1)n+ 2)A|α|−Anp

for n sufficiently large (indeed k 7→ (k+n+1)A|α|−kp is a decreasing function
on [An+ 1,+∞[). Proposition 5 is thus proved.

Proof of Theorem 3. Using Proposition 2 and Remark 3, we find that
d(α)n+1(α− 1)dAnPs,n,q(α) is an algebraic integer.

Using Proposition 3, we have

(18) lim sup
n

1
n

log |d(α)n+1(α− 1)dAnPs,n,q(α)|v

≤ (A+ 1) log(A+ 1) +A(1 + log 2) + log d(α) + log max(1, |α|v) = cv

for any infinite place v.
For the p-adic absolute values, using Proposition 5 and the inequality

|d(α)|p ≤ |α|−1
p , we obtain

− lim sup
n

1
n

log |d(α)n+1(α− 1)dAnUn,q(α)|p ≥ (A+ 1) log |α|p = ρ.

Proposition 4 gives the linear independence of the linear forms (Un,q)q∈[0,A]

in 1, . . . ,LiA(α−1). Since
∑

v∈V∞ ηv=[K : Q] and the hypotheses of Lemma 1
are checked, we obtain

dimQ(α) Vect(1, (Lis(α−1))s∈[1,A])

≥ [Qp(α) : Qp](A+ 1) log |α|p
[Q(α) : Q]((A+ 1) log(A+ 1) +A log 2 +A+ log d(α)) +

P
v∈V∞

ηv log max(1, |α|v)
.

Inequality (2) is thus proved. Using Proposition 2, we can apply inequal-
ity (4) of Lemma 1 to obtain (1).
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