p-adic polylogarithms and irrationality

by
Pierre Bel (Bordeaux)

1. Results. We denote by $\mathcal{L} i_{s}$ the p-adic polylogarithm function defined for an integer s and p-adic number $x \in \mathbb{C}_{p}$ by

$$
\mathcal{L} i_{s}(x)=\sum_{k=1}^{+\infty} \frac{x^{k}}{k^{s}},
$$

for $|x|_{p}<1$. We denote by $\operatorname{Li}_{s}(z)$ the complex polylogarithm defined by the same series and for complex numbers z and s such that $|z|<1$.

The p-adic polylogarithms have applications to number fields (cf. [Col]) and p-adic L-functions (cf. [Fu]).

In the archimedian case, we have the following diophantine results. The results of M. Hata (cf. [Ha]) improved by G. Rhin and C. Viola (cf. [Rh]) give

Theorem 1. For any integer q such that $|q| \geq 6$, the number $\operatorname{Li}_{2}(1 / q)$ is irrational.
M. Hata also gives explicit conditions on the integer m and the rational number x for $\operatorname{Li}_{m}(x)$ to be an irrational number.

In [Ri], T. Rivoal proves
Theorem 2. Let x be a rational number such that $|x|<1$. The set $\left\{\operatorname{Li}_{s}(x)\right\}_{s \in \mathbb{N}}$ contains infinitely many irrational numbers linearly independent over \mathbb{Q}.
R. Marcovecchio proved this result for x an algebraic number (cf. [Ma]).

In the p-adic case, the diophantine results are fewer than in the archimedian case. In this paper, we prove the following new results.

Theorem 3. Let $\mathbb{K}=\mathbb{Q}(\delta)$ be a number field and p a prime number. Consider \mathbb{K} as embedded into \mathbb{C}_{p} and denote by \mathbb{K}_{p} the completion of this embedding. Suppose that $|\delta|_{p}>1$ and let $d(\delta)$ be the denominator of δ. For
any integer $A \geq 2$, the dimension τ of the \mathbb{K}-vector space spanned by 1 and $\left(\mathcal{L} i_{s}\left(\delta^{-1}\right)\right)_{s \in[1, A]}$ satisfies

$$
\begin{equation*}
\tau \geq \frac{X_{2}-\sqrt{X_{2}^{2}-2 X_{1} X_{3}}}{X_{1}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{1}= & {[\mathbb{K}: \mathbb{Q}] } \\
X_{2}= & ((A+1) \log (A+1)+\log d(\delta)+A(1+\log 2)) \\
& +\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} \log \max \left(1,|\delta|_{v}\right)+\frac{1}{2}[\mathbb{K}: \mathbb{Q}] \\
X_{3}= & \eta_{p}(A+1) \log |\delta|_{p}
\end{aligned}
$$

Remark 1. Under the hypotheses of Theorem 3, we have the lower bound

$$
\begin{equation*}
\tau \geq \frac{\left[\mathbb{K}_{p}: \mathbb{Q}_{p}\right](A+1) \log |\delta|_{p}}{[\mathbb{Q}(\delta): \mathbb{Q}]((A+1) \log (A+1)+\log d(\delta)+A(1+\log 2))+\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} \log \max \left(1,|\delta|_{v}\right)}, \tag{2}
\end{equation*}
$$

which follows from (1).
Corollary 1. For any integer $s \geq 2$ and any integer $a>0$, if the prime number p sastisfies

$$
a \log p>\frac{s}{2}+s \log (s+1)+s^{2} \log (s+1)+\frac{s^{2}}{2}+s^{2} \log 2=: f(s)
$$

then the number $\mathcal{L} i_{s}\left(p^{a}\right)$, which belongs to \mathbb{Q}_{p}, is irrational.
Proof. We apply the inequality (1) with a fixed integer $A=s$ and $\delta=p^{-a}$. In this case $\left[\mathbb{K}_{p}: \mathbb{Q}_{p}\right]=[\mathbb{K}: \mathbb{Q}]=1, \log \left|p^{-a}\right|_{p}=\log d\left(p^{-a}\right)=$ $a \log p$ and $\log \left(\max \left(1,\left|p^{-a}\right|\right)\right)=0$. We thus have

$$
\lim _{p^{a} \rightarrow+\infty} \frac{X_{2}-\sqrt{X_{2}^{2}-2 X_{1} X_{3}}}{X_{1}}=A+1
$$

The equation $\frac{X_{2}-\sqrt{X_{2}^{2}-2 X_{1} X_{3}}}{X_{1}}=A$ has one solution in \mathbb{R}^{+}which is $p^{a}=e^{f(A)}$. We obtain

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Vect}\left(1,\left(\mathcal{L} i_{s}\left(\delta^{-1}\right)\right)_{s \in[1, A]}\right)>A
$$

for $a \log p>f(A)$, which completes the proof.
Corollary 2. The numbers $\mathcal{L} i_{2}(234281)$ and $\mathcal{L} i_{2}\left(2^{18}\right)$, which belongs to \mathbb{Q}_{234281} and \mathbb{Q}_{2} respectively, are irrational.
2. Notations and conventions. In this paper, \mathbb{K} represents a number field and $\mathcal{O}(\mathbb{K})$ its ring of algebraic integers. For an algebraic number β, we denote by $d(\beta)$ the denominator of β, which is defined as the least positive integer l for which $l \beta$ is an algebraic integer.

We set $d_{n}=\operatorname{lcm}(1, \ldots, n)$. The prime number theorem gives the estimate $d_{n}=e^{n+o(n)}$.

For a prime number p, we denote by v_{p} the p-adic valuation over \mathbb{Q} and $|\cdot|_{p}=p^{-v_{p}(\cdot)}$ the p-adic norm.

Let v be a place of the number field \mathbb{K}. Then \mathbb{K}_{v} and \mathbb{Q}_{v} denote the completions of \mathbb{K} and \mathbb{Q} at this place and η_{v} stands for the index $\left[\mathbb{K}_{v}: \mathbb{Q}_{v}\right]$. $\mathcal{V}, \mathcal{V}_{\infty}$ and \mathcal{V}_{f} represent the sets of places, of infinite places and of finite places respectively.

For any $\alpha \in \mathbb{K}^{*}$, we have the product formula

$$
\sum_{v \in \mathcal{V}} \eta_{v} \log |\alpha|_{v}=0
$$

Moreover,

$$
\sum_{v \in \mathcal{V}_{\infty}} \eta_{v}=[\mathbb{K}: \mathbb{Q}] .
$$

If α is an element of $\mathcal{O}(\mathbb{K}) \backslash\{0\}$ and \mathfrak{p} a finite place, as $|\alpha|_{v} \leq 1$ for any finite place v of \mathbb{K}, we have

$$
\eta_{\mathfrak{p}} \log |\alpha|_{\mathfrak{p}}+\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} \log |\alpha|_{v} \geq 0
$$

3. A criterion of linear independence. This criterion is an adaptation in the p-adic case of the criterion used in the complex case by R. Marcovecchio (cf. [Ma]). The author did not find any statement in this form in the mathematical literature.

Let m be a positive integer, $L=\left(\ell_{1}, \ldots, \ell_{m}\right) \in \mathbb{K}^{m}, \theta=\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathbb{C}_{p}^{m}$ and $(L, \theta)=\ell_{1} \theta_{1}+\cdots+\ell_{m} \theta_{m}$. For any place v of \mathbb{K}, we define $\|L\|_{v}=$ $\max _{1 \leq j \leq m}\left|\ell_{j}\right|_{v}$.

Lemma 1. Let p be a prime number and \mathbb{K} a number field. Fix an embedding of \mathbb{K} into \mathbb{C}_{p} and denote by $\mathbb{K}_{p}=\mathbb{Q}_{p}(\mathbb{K})$ its completion. Let $\theta=$ $\left(\theta_{1}, \ldots, \theta_{m}\right)$ be a nonzero vector of \mathbb{K}_{p}^{m}. Suppose that there exist real positive numbers $\left(c_{v}\right)_{v \in \mathcal{V}_{\infty}}$, a real number ρ, and m sequences $\left(L_{n}^{(i)}\right)=\left(\left(\ell_{n, j}^{(i)}\right)_{j \in[1, m]}\right)$, with $n \in \mathbb{N}$ and $1 \leq i \leq m$, of vectors in $(\mathcal{O}(\mathbb{K}))^{m}$ such that for all n, the m vectors $L_{n}^{(i)}$ are linearly independent over \mathbb{K} and enjoy the following properties:
(i) for any place $v \in \mathcal{V}_{\infty}, \lim \sup _{n} n^{-1} \log \left\|L_{n}^{(i)}\right\|_{v} \leq c_{v}$,
(ii) $\lim \sup _{n} n^{-1} \log \left|\left(L_{n}^{(i)}, \theta\right)\right|_{p} \leq-\rho$.

Then

$$
\begin{equation*}
\tau=\operatorname{dim}_{\mathbb{K}} \operatorname{Vect}\left(\theta_{1}, \ldots, \theta_{m}\right) \geq \frac{\rho\left[\mathbb{K}_{p}: \mathbb{Q}_{p}\right]}{\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}} \tag{3}
\end{equation*}
$$

Moreover, if d_{n}^{j-1} divides $\ell_{n, j}^{(i)}$ for all $(i, j) \in[1, m]^{2}$, we have more precisely

$$
\begin{equation*}
\tau \geq \frac{\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}+\frac{1}{2}[\mathbb{K}: \mathbb{Q}]-\sqrt{\left(\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}+\frac{1}{2}[\mathbb{K}: \mathbb{Q}]\right)^{2}-2 \rho \eta_{p}[\mathbb{K}: \mathbb{Q}]}}{[\mathbb{K}: \mathbb{Q}]} \tag{4}
\end{equation*}
$$

Proof. By swapping the indices of $\left(\theta_{i}\right)_{i \in[1, m]}$, we can suppose that θ_{1} is nonzero. Furthermore, replacing $\left(\theta_{j}\right)_{j \in[1, m]}$ by $\left(\theta_{j} / \theta_{1}\right)_{j \in[1, m]}$, we assume that $\theta_{1}=1$.

If τ is the dimension of the \mathbb{K}-vector space spanned by the θ_{j}, then there exist $m-\tau$ vectors $\left(A^{(i)}\right)_{i \in[\tau+1, m]}$ of $(\mathcal{O}(\mathbb{K}))^{m}$, linearly independent over \mathbb{K}, such that $\left(A^{(i)}, \theta\right)=0$ for all $i \in[\tau+1, m]$.

By permutation of i, we can suppose that for all $n \in \mathbb{N}$, the vectors $\left(L_{n}^{(1)}, \ldots, L_{n}^{(\tau)}, A^{(\tau+1)}, \ldots, A^{(m)}\right)$ are linearly independent.

Let M_{n} be the matrix whose rows are the vectors

$$
\left(L_{n}^{(1)}, \ldots, L_{n}^{(\tau)}, A^{(\tau+1)}, \ldots, A^{(m)}\right)
$$

i.e. $L_{n}^{(i)}=\left(\ell_{n, 1}^{(i)}, \ldots, \ell_{n, m}^{(i)}\right)$ and $A^{(i)}=\left(a_{1}^{(i)}, \ldots, a_{m}^{(i)}\right)$,

$$
M_{n}=\left(\begin{array}{cccc}
\ell_{n, 1}^{(1)} & \ell_{n, 2}^{(1)} & \cdots & \ell_{n, m}^{(1)} \tag{5}\\
\cdots \cdots \cdots & \cdots \cdots & \cdots & \cdots \cdots \\
\ell_{n, 1}^{(\tau)} & \ell_{n, 2}^{(\tau)} & \cdots & \ell_{n, m}^{(\tau)} \\
a_{1}^{(\tau+1)} & a_{2}^{(\tau+1)} & \cdots & a_{m}^{(\tau+1)} \\
\cdots \ldots \ldots & \ldots \ldots & \cdots & \cdots \cdots \\
a_{1}^{(m)} & a_{2}^{(m)} & \ldots & a_{m}^{(m)}
\end{array}\right)
$$

Since the matrix is nonsingular, we have

$$
\begin{equation*}
\Lambda_{n}=\operatorname{det}\left(M_{n}\right) \neq 0 \tag{6}
\end{equation*}
$$

Since Λ_{n} belongs to $\mathcal{O}(\mathbb{K})$, we deduce from (6) that

$$
\begin{equation*}
0 \leq \eta_{p} \log \left|\Lambda_{n}\right|_{p}+\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} \log \left|\Lambda_{n}\right|_{v} \tag{7}
\end{equation*}
$$

For the infinite places, the expansion of the determinant (5) gives

$$
\left|\Lambda_{n}\right|_{v} \leq m!\left(\max _{\substack{j \in[1, \tau] \\ j \in[1, n]}}\left|\ell_{n, i}^{(j)}\right|_{v}\right)^{\tau}\left(\max _{\substack{j \in[\tau+1, m] \\ j \in[1, n]}}\left|a_{i}^{(j)}\right| v\right)^{m-\tau}
$$

By using assumption (i), this implies that

$$
\begin{equation*}
\limsup _{n} \frac{\log \left|\Lambda_{n}\right|_{v}}{n} \leq \tau c_{v} \tag{8}
\end{equation*}
$$

By multi-linearity of Λ_{n}, we can add the j th column multiplied by θ_{j} to the first. We obtain

By expansion along the first column we obtain

$$
\left|\Lambda_{n}\right|_{p} \leq \max _{j \in[1, \tau]}\left|\left(L_{n}^{(j)}, \theta\right)\right|_{p}\left(\max \left(\max _{\substack{j \in[1, \tau] \\ j \in[1, n]}}\left|\ell_{n, i}^{(j)}\right|_{p}, \max _{\substack{c \in[\tau+1, m] \\ j \in[1, n]}}\left|a_{i}^{(j)}\right|_{p}\right)\right)^{m-1}
$$

Since $\ell_{n, i}^{(j)}$ and $a_{i}^{(j)}$ are algebraic integers, we deduce

$$
\left(\Lambda_{n}\right)_{p} \leq \max _{j \in[1, \tau]}\left|\left(L_{n}^{(j)}, \theta\right)\right|
$$

and an application of (i) implies that

$$
\begin{equation*}
\limsup _{n} \frac{\log \left|\Lambda_{n}\right|_{p}}{n} \leq-\rho \tag{9}
\end{equation*}
$$

Dividing (7) by n and using (8) and (9), we have

$$
0 \leq-\rho \eta_{p}+\tau \sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}
$$

This proves (3), the first lower bound of Lemma 1.
Moreover, if d_{n}^{j-1} divides $\ell_{n, j}^{(i)}$ for all $(i, j) \in[1, m]^{2}$, the expansion of the determinant of (5) shows that $d_{n}^{1+2+3+\cdots+(\tau-1)}=d_{n}^{\tau(\tau-1) / 2}$ divides Λ_{n}. Thus

$$
\Lambda_{n}=d_{n}^{\tau(\tau-1) / 2} \lambda_{n}
$$

with $\lambda_{n} \in \mathcal{O}(\mathbb{K})$.
When n tends to $+\infty$, the following asymptotics hold:

$$
\log \left|d_{n}\right| \sim n, \quad \log \left|d_{n}\right|_{p}=o(n)
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left|\lambda_{n}\right|_{p}=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left|\Lambda_{n}\right|_{p} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left|\lambda_{n}\right|_{v}=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left|\Lambda_{n}\right|_{p}-\frac{\tau(\tau-1)}{2} \tag{11}
\end{equation*}
$$

for any infinite place v. Thus

$$
0 \leq \eta_{p} \log \left|\lambda_{n}\right|_{p}+\sum_{v \in \mathcal{V}_{\infty}} \eta_{v} \log \left|\lambda_{n}\right|_{v}
$$

By dividing by n and using (8)-(11), we conclude that

$$
0 \leq-\rho \eta_{p}+\tau \sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}-\frac{\tau(\tau-1)}{2} \sum_{v \in \mathcal{V}_{\infty}} \eta_{v}
$$

and thus

$$
0 \leq-\rho \eta_{p}+\tau \sum_{v \in \mathcal{V}_{\infty}} \eta_{v} c_{v}-\frac{\tau(\tau-1)}{2}[\mathbb{K}: \mathbb{Q}]
$$

This proves (4), the second lower bound of Lemma 1 .
4. Simultaneous Padé approximants of $\left(\operatorname{Li}_{s}(z)\right)_{s \in[0, A]}$. The results of this section and the next are adapted from the article by T. Rivoal (cf. [Ri]). We construct explicitly the simultaneous Padé approximants of polylogarithms. These approximations provide us with the linear form used to apply the linear independence criterion.

For any integers A, n and q which satisfy $n>0, A \geq 2$ and $0 \leq q \leq A$, we define

$$
R_{n, q}(k)=\frac{(k-A n)_{A n}}{(k)_{n}^{A}(k+n)^{q}}
$$

The $R_{n, q}(k)$ are rational fractions in k of degree $-q$. By partial fraction expansion, we have

$$
R_{n, q}(k)=\sum_{j=0}^{n} \sum_{s=1}^{A} \frac{r_{j, s, n, q}}{(k+j)^{s}}+\delta_{0, q}
$$

where δ is the Kronecker symbol.
For $s \in[1, A]$, we set

$$
P_{s, n, q}(z)=\sum_{j=0}^{n} r_{j, s, n, q} z^{j}
$$

and

$$
P_{0, n, q}(z)=-\sum_{s=1}^{A} \sum_{j=0}^{n} r_{j, s, n, q} \sum_{k=1}^{j} \frac{z^{j-k}}{k^{s}}+\delta_{0, q} \frac{1}{z-1} .
$$

We introduce a class of functions $S_{n, q}(z)$ defined by

$$
S_{n, q}(z)=\sum_{k=1}^{+\infty} R_{n, q}(k) z^{-k}
$$

Proposition 1. The fractions $\left(P_{s, n, q}(z)\right)_{s \in[0, A]}$ and the formal series $S_{n, q}(z)$ in $\mathbb{Q}\left(\left(z^{-1}\right)\right)$ satisfy

$$
S_{n, q}(z)=P_{0, n, q}(z)+\sum_{s=1}^{A} P_{s, n, q}(z) \operatorname{Li}_{s}\left(z^{-1}\right)
$$

and

$$
\operatorname{ord} S_{n, q}(z)=A n+1
$$

Remark 2. For $q=0, S_{n, q}(z)$ is not a Padé approximant, because $P_{0, n, 0}(z)$ is not a polynomial, but it is the case of $(z-1) S_{n, q}(z)$.

Proof. We have

$$
\begin{aligned}
S_{n, q}(z) & =\sum_{k=1}^{+\infty} R_{n, q}(k) z^{-k}=\sum_{k=1}^{+\infty}\left(\delta_{0, q}+\sum_{s=1}^{A} \sum_{j=1}^{n} \frac{r_{j, s, n, q}}{(k+j)^{s}}\right) z^{-k} \\
& =\frac{\delta_{0, q}}{z-1}+\sum_{s=1}^{A} \sum_{j=1}^{n} z^{j} r_{j, s, n, q} \sum_{k=1}^{+\infty} \frac{z^{-(k+j)}}{(k+j)^{s}} \\
& =\frac{\delta_{0, q}}{z-1}+\sum_{s=1}^{A} \sum_{j=1}^{n}\left[z^{j} r_{j, s, n, q} \operatorname{Li}_{s}\left(z^{-1}\right)-\sum_{k=1}^{j} \frac{z^{-k}}{k^{s}}\right] \\
& =P_{0, n, q}(z)+\sum_{s=1}^{A} P_{s, n, q} \operatorname{Li}_{s}\left(z^{-1}\right)
\end{aligned}
$$

The first assertion is proved. Since $R_{n, q}(k)$ vanishes for k between 1 and $A n$ and $R_{n, q}(A n+1)$ is nonzero, we deduce the second assertion.
5. Auxiliary results. We keep the notation of Section 4.

REMARK 3. By construction, for $s \geq 1$, the $P_{s, n, q}$ are polynomials of degree at most n, and at most $n-1$ if $s>q$. Moreover, for $q \geq 1$, the $r_{n, q, n, q}=(-(A+1) n)_{A n} /(-n)_{n}^{A}$ do not vanish, hence $P_{q, n, q}(z)$ is a polynomial of degree n.

Proposition 2. For all $s \in[1, A]$, we have

$$
d_{n}^{A-s} P_{s, n, q}(z) \in \mathbb{Z}[z] \quad \text { and } \quad d_{n}^{A}\left(P_{0, n, q}(z)-\delta_{0, q} \frac{1}{z-1}\right) \in \mathbb{Z}[z]
$$

Proof. It is sufficient to show that $d_{n}^{A-s} r_{j, s, n, q}$ is an integer. We suppose that $j \in[0, n-1]$ (the case $j=n$ is similar, with $s \leq q$). We have

$$
r_{j, s, n, q}=\frac{(-1)^{A-s}}{(A-s)!}\left(\frac{d}{d l}\right)^{A-s}\left[R_{n, q}(-l)(j-l)^{A}\right]_{\mid l=j}
$$

We can write

$$
R_{n, q}(-l)(j-l)^{A}=\frac{(-l-A n)_{A n}}{(-l)_{n}^{A}(n-l)^{q}}(j-l)^{A}=\left(\prod_{c=1}^{A} F_{c}(l)\right) H(l),
$$

where $F_{c}(l)=\frac{(-l-c n)_{n}}{(-l)_{n+1}}(j-l)$ and $H(l)=(-l+n)^{A-q}$.
By partial fraction expansion of $F_{c}(l)$, we obtain

$$
F_{c}(l)=1+\sum_{\substack{i \neq j \\ 0 \leq i \leq n}} \frac{(j-i) f_{i, c}}{i-l},
$$

where

$$
\begin{equation*}
f_{i, c}=\frac{(-i-c n)_{n}}{\prod_{\substack{h \neq i \\ 0 \leq h \leq n}}(h-i)}=(-1)^{i+n}\binom{c n+i}{n}\binom{n}{i} . \tag{12}
\end{equation*}
$$

We deduce from (12) that the $f_{i, c}$ are integers. Setting $D_{\lambda}=\frac{1}{\lambda!}\left(\frac{d}{d l}\right)^{\lambda}$, we have, for all $\lambda \geq 0$,

$$
D_{\lambda}\left(F_{c}(l)\right)=\delta_{0, \lambda}+\sum_{\substack{i \neq j \\ 0 \leq i \leq n}} \frac{(j-i) f_{i, c}}{(i-l)^{\lambda+1}} .
$$

We have shown that the $d_{n}^{\lambda} D_{\lambda}\left(F_{c}(l)\right)_{\mid l=j}$ are integers for all $\lambda \geq 0$. Moreover, $D_{\lambda}(H(l))_{\mid l=j}$ is an integer.

Using the Leibniz identity, we have

$$
D_{A-s}\left[R_{n, q}(-l-x)(j-l)^{A}\right]=\sum_{\nu}\left(D_{\nu_{0}}\left(F_{1}\right)\right) \cdots\left(D_{\nu_{A-1}}\left(F_{A}\right)\right)\left(D_{\nu_{A}}(H)\right)
$$

$\left(\nu \in \mathbb{N}^{A+1}\right.$ with $\left.\nu_{0}+\cdots+\nu_{A}=A-s\right)$. We deduce from this that $d_{n}^{A-s} r_{j, s, n, q}$ is an integer and thus $d_{n}^{A-s} P_{s, n, q}(z)$ is an element of $\mathbb{Z}[z]$.

Proposition 3. If β is an element of the number field \mathbb{K} and if v is an infinite place of \mathbb{K}, then for $s \in[0, A]$, we have

$$
\limsup _{n}\left|P_{s, n, q}(\beta)\right|_{v}^{1 / n} \leq(A+1)^{A+1} 2^{A} \max \left(1,|\beta|_{v}\right) .
$$

Proof. It is sufficient to bound $r_{j, s, n, q}$. We have

$$
\begin{aligned}
r_{j, s, n, q} & =\frac{1}{2 \pi i} \int_{|t+j|=1 / 2} R_{n, q}(t)(t+j)^{s-1} d t \\
& =\frac{1}{2 \pi i} \int_{|t+j|=1 / 2} \frac{(t-A n)_{A n}}{(t)_{n}^{A}(t+n)^{q}}(t+j)^{s-1} d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|r_{j, s, n, q}\right| & \leq \frac{1}{2 \pi} \pi \sup _{|t+j|=1 / 2} \frac{\left|(t-A n)_{A n}\right|\left|(t+j)^{s-1}\right|}{\left|(t)_{n}^{A}(t+n)^{q}\right|} \\
& \leq 2^{-s} \sup _{|t+j|=1 / 2} \frac{\left|(t-A n)_{A n}\right|}{\left|(t)_{n}^{A}(t+n)^{q}\right|} .
\end{aligned}
$$

As $|t+j|=1 / 2$, we have

$$
\begin{aligned}
\left|(t-A n)_{A n}\right| & =\prod_{k=1}^{A n}|t-k|=\prod_{k=1}^{A n}|t+j-k-j| \\
& \leq \prod_{k=1}^{A n}\left(\frac{1}{2}+|-k-j|\right) \leq \prod_{k=1}^{A n}(1+|k+j|)
\end{aligned}
$$

so

$$
\begin{equation*}
\left|(t-A n)_{A n}\right| \leq \frac{(A n+j+1)!}{(j+1)!} \tag{13}
\end{equation*}
$$

and

$$
\begin{aligned}
\left|(t)_{n}\right| & =\prod_{k=0}^{n-1}|t+k|=\prod_{k=0}^{n-1}|t+j-j+k| \\
& \geq \prod_{k=0}^{n-1}\left(\left|-\frac{1}{2}+|k-j|\right|\right) \geq \frac{1}{8} \prod_{\substack{0 \leq k \leq n-1 \\
k \notin\{j-1, j, j+1\}}}(-1+|k-j|)
\end{aligned}
$$

so

$$
\begin{equation*}
\left|(t)_{n}\right| \geq \frac{1}{8 n^{3}} j!(n-j)! \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|(t+n)^{q}\right|=|(t+j-j+n)|^{q} \geq\left||n-j|-\frac{1}{2}\right|^{q} \geq 2^{-A} \tag{15}
\end{equation*}
$$

We deduce from (13)-(15) that

$$
\left|r_{j, s, n, q}\right| \leq 2^{4 A-s} n^{3 A} \frac{(A n+j+1)!}{(j+1)!j!^{A}(n-j)!^{A}}
$$

Thus

$$
\begin{equation*}
\left|r_{j, s, n, q}\right| \leq 2^{4 A} n^{3 A} \frac{(A n)!}{n!^{A}}\binom{n}{j}^{A}\binom{A n+j+1}{A n} \tag{16}
\end{equation*}
$$

The multinomial series

$$
\left(x_{1}+\cdots+x_{m}\right)^{k m}=\sum_{\substack{n_{1}, \ldots, n_{m} \geq 0 \\ n_{1}+\cdots+n_{m}=k m}} \frac{(k m)!}{n_{1}!\cdots n_{m}!} x_{1}^{n_{1}} \cdots x_{m}^{n_{m}}
$$

applied to $x_{1}=\cdots=x_{m}=1$ and $n_{1}=\cdots=n_{m}=k$ gives $(k m)!/ k!^{m} \leq m^{k m}$.

Using the upper bounds $(A n)!/ n!^{A} \leq A^{A n},\binom{n}{j} \leq 2^{n}$ and $\binom{A n+j+1}{A n} \leq$ $\binom{A n+n+1}{A n}$, we deduce that

$$
\left|r_{j, s, n, q}\right| \leq A^{A n} 2^{4 A-s} 2^{n(A+1)} n^{3 A}\binom{A n+n+1}{A n}
$$

By Stirling's formula,

$$
\lim _{n \rightarrow+\infty}\left(\binom{A n+n+1}{A n}\right)^{1 / n}=\frac{(A+1)^{A+1}}{A^{A}}
$$

Hence

$$
\left|r_{j, s, n, q}\right| \leq\left((A+1)^{A+1} 2^{A}\right)^{n+o(n)}
$$

Thus for $s \geq 1$,

$$
\left|P_{s, n, q}(\beta)\right|_{v} \leq \sum_{j=0}^{n}\left|r_{j, s, n, q}\right||\beta|_{v}^{j} \leq(n+1)\left((A+1)^{A+1} 2^{A}\right)^{n+o(n)} \max \left(1,|\beta|_{v}\right)^{n}
$$

and

$$
\begin{aligned}
\left|P_{0, n, q}(\beta)\right|_{v} & \leq \sum_{s=1}^{A} \sum_{j=0}^{n}\left|r_{j, s, n, q}\right| \sum_{k=1}^{j} \frac{\left.|\beta|\right|_{v} ^{j-k}}{k^{s}}+\delta_{0, q}\left|\frac{1}{\beta-1}\right|_{v} \\
& \leq A(n+1)\left((A+1)^{A+1} 2^{A}\right)^{n+o(n)} \max \left(1,|\beta|_{v}\right)^{n}+\delta_{0, q}\left|\frac{1}{\beta-1}\right|_{v}
\end{aligned}
$$

This yields the conclusion.
6. Independence of linear forms. The results of this section are adapted from an article of Marcovecchio (cf. [Ma]). We set

$$
\begin{equation*}
M_{n}(z)=\left(P_{s, n, q}(z)\right)_{\substack{s \in[0, A] \\ q \in[0, A]}} \tag{17}
\end{equation*}
$$

Proposition 4. There exists a constant $\gamma \in \mathbb{Q}^{*}$ such that

$$
\operatorname{det} M_{n}(z)=\gamma(z-1)^{-1}
$$

Proof. For $(s, q) \neq(0,0), P_{s, n, q}$ is a polynomial whereas $P_{0, n}^{(0)}$ is a rational fraction with one simple pole at $z=1$. Hence the determinant of (17) is a rational fraction with at most a simple pole at $z=1$. By multi-linearity of determinant, we add the j th column multiplied by $\operatorname{Li}_{s}\left(z^{-1}\right)$ to the first. We obtain

$$
\operatorname{det} M_{n}(z)=\left|\begin{array}{ccccc}
S_{n, 0}(z) & P_{1, n, 0}(z) & \cdots & \cdots & P_{A, n, 0}(z) \\
\vdots & & \ddots & & \vdots \\
S_{n, A}(z) & P_{1, n, A}(z) & \cdots & \cdots & P_{A, n, A}(z)
\end{array}\right|
$$

The elements of the first column are formal power series in z^{-1} of valuation $A n+1$ (Proposition 1). The other columns are polynomials of degree at most n in z (Remark 3). We deduce that the determinant is a rational fraction in z of degree at most -1 . Remark 3 shows that the elements above the diagonal have degree at most $n-1$ in z. Hence only the product of diagonal elements can be of degree -1 in z, the others have a strictly lower degree. Remark 3 also implies that $P_{q, n, q}(z)$ is exactly of degree n in z. We thus have an element of degree exactly -1 . The degree of $\operatorname{det} M_{n}(z)$ in z is -1 , proving the assertion.

7. Transfer from complex to p-adic and proof of Theorem 3

Proposition 5. Let $\alpha \in \mathbb{C}_{p}$ with $|\alpha|_{p}>1$ and set

$$
U_{n, q}(\alpha)=d_{n}^{A}\left(P_{0, n, q}(\alpha)+\sum_{s=1}^{A} P_{s, n, q}(\alpha) \mathcal{L} i_{s}\left(\alpha^{-1}\right)\right)
$$

Then

$$
\limsup _{n} \frac{1}{n} \log \left|U_{n, q}(\alpha)\right|_{p} \leq-A \log |\alpha|_{p}
$$

We will prove this proposition using the following two lemmas.
Lemma 2. We have

$$
U_{n, q}(\alpha)=\sum_{k=0}^{+\infty} u_{k, n} \alpha^{-k}
$$

where $\left(u_{k, n}\right)$ is a sequence of rational numbers independent of α, with $u_{k, n}=0$ for all $k \leq A n$.

Proof. In the field $\mathbb{Q}\left(\left(X^{-1}\right)\right)$ of Laurent series, we have

$$
U_{n, q}(X)=d_{n}^{A} S_{n, q}(X)
$$

Proposition 1 proves that this series has valuation at least $A n+1$ in X. We can write

$$
U_{n, q}(X)=\sum_{k=A n+1}^{+\infty} u_{k, n} X^{-k}
$$

Moreover, the Laurent series $U_{n, q}(X)$ is convergent on \mathbb{C}_{p} for $|X|_{p}>1$, since $\mathcal{L} i_{s}\left(X^{-1}\right)$ is convergent on the same domain and $U_{n, q}(\alpha)$ is the sum of this series for $X=\alpha$.

Lemma 3. The terms $u_{k, n}$ satisfy

$$
\left|u_{k, n}\right|_{p} \leq(k+n+1)^{A} .
$$

Proof. The p-adic absolute value of the k th term of the expansion of $\mathcal{L} i_{s}\left(X^{-1}\right)$ in $\mathbb{Q}\left(\left(X^{-1}\right)\right)$ is at most k^{s}. As

- $U_{n, q}(X)=d_{n}^{A}\left(P_{0, n, q}(X)+\sum_{s=1}^{A} P_{s, n, q}(X) \mathcal{L} i_{s}\left(X^{-1}\right)\right)$,
- $d_{n}^{A} P_{s, n, q}$ is an element of $\mathbb{Z}[X]$ of degree at most n, for v an infinite place,
- $d_{n}^{A} P_{0, n, q}$ is an element of $\mathbb{Z}\left[\left[X^{-1}\right]\right][X]$ of degree at most n,
we infer that

$$
\left|u_{k, n}\right|_{p} \leq(k+n+1)^{A}
$$

Proof of Proposition 5. Using Lemmas 2 and 3, we find

$$
\left|U_{n, q}(\alpha)\right|_{p} \leq \sup _{k \geq A n+1}(k+n+1)^{A}|\alpha|_{p}^{-k}=((A+1) n+2)^{A}|\alpha|_{p}^{-A n}
$$

for n sufficiently large (indeed $k \mapsto(k+n+1)^{A}|\alpha|_{p}^{-k}$ is a decreasing function on $[A n+1,+\infty[)$. Proposition 5 is thus proved.

Proof of Theorem 3. Using Proposition 2 and Remark 3, we find that $d(\alpha)^{n+1}(\alpha-1) d_{n}^{A} P_{s, n, q}(\alpha)$ is an algebraic integer.

Using Proposition 3, we have

$$
\begin{align*}
& \limsup _{n} \frac{1}{n} \log \left|d(\alpha)^{n+1}(\alpha-1) d_{n}^{A} P_{s, n, q}(\alpha)\right|_{v} \tag{18}\\
\leq & (A+1) \log (A+1)+A(1+\log 2)+\log d(\alpha)+\log \max \left(1,|\alpha|_{v}\right)=c_{v}
\end{align*}
$$ for any infinite place v.

For the p-adic absolute values, using Proposition 5 and the inequality $|d(\alpha)|_{p} \leq|\alpha|_{p}^{-1}$, we obtain

$$
-\limsup \frac{1}{n} \log \left|d(\alpha)^{n+1}(\alpha-1) d_{n}^{A} U_{n, q}(\alpha)\right|_{p} \geq(A+1) \log |\alpha|_{p}=\rho
$$

Proposition 4 gives the linear independence of the linear forms $\left(U_{n, q}\right)_{q \in[0, A]}$ in $1, \ldots, \mathcal{L} i_{A}\left(\alpha^{-1}\right)$. Since $\sum_{v \in \mathcal{V}_{\infty}} \eta_{v}=[\mathbb{K}: \mathbb{Q}]$ and the hypotheses of Lemma 1 are checked, we obtain

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{Q}(\alpha)} \operatorname{Vect}\left(1,\left(\mathcal{L} i_{s}\left(\alpha^{-1}\right)\right)_{s \in[1, A]}\right) \\
& \quad \geq \frac{\left[\mathbb{Q}_{p}(\alpha): \mathbb{Q}_{p}\right](A+1) \log |\alpha|_{p}}{[\mathbb{Q}(\alpha): \mathbb{Q}]((A+1) \log (A+1)+A \log 2+A+\log d(\alpha))+\sum_{v \in \mathcal{V} \infty} \eta_{v} \log \max \left(1,|\alpha|_{v}\right)} .
\end{aligned}
$$

Inequality (2) is thus proved. Using Proposition 2, we can apply inequality (4) of Lemma 1 to obtain (1).

Acknowledgements. I would like to thank the referee for helpful suggestions on improvement of the text.

References

[Col] R. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), 171-208.
[Fu] H. Furusho, p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-adic KZ equation, ibid. 155 (2004), 253-286.
[Ha] M. Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. 69 (1990), 133-173.
[Ma] R. Marcovecchio, Linear independence of forms in polylogarithms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (2006), 1-11.
[Rh] G. Rhin and C. Viola, The permutation group method for the dilogarithm, ibid. 4 (2005), 389-437.
[Ri] T. Rivoal, Indépendance linéaire de valeurs des polylogarithmes, J. Théor. Nombres Bordeaux 15 (2003), 551-559.

Institut de Mathématiques de Bordeaux UMR 5251
Université Bordeaux 1
351, cours de la Libération
F-33405 Talence Cedex, France
E-mail: pierre.bel1@free.fr

Received on 3.9.2008
and in revised form on 23.12.2008

