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1. Introduction. Fix an integer n ≥ 2 and a n-tuple of indeterminates
x = (x1, . . . , xn). A non-constant polynomial F (x) ∈ k[x] with coefficients
in an algebraically closed field k is said to be indecomposable in k[x] if it is
not of the form u(H(x)) with H(x) ∈ k[x] and u ∈ k[t] with deg(u) ≥ 2. An
element λ∗ ∈ k is called a spectral value of F (x) if F (x)− λ∗ is reducible in
k[x]. It is well-known that

(1) F (x) ∈ k[x] is indecomposable if and only if F (x)− λ is irreducible
in k(λ)[x] (where λ is an indeterminate),

(2) if F (x) ∈ k[x] is indecomposable, then the subset sp(F ) ⊂ k of all
spectral values of F (x)—the spectrum of F (x)—is finite; and in the
opposite case, sp(F ) = k,

(3) more precisely , if F (x) ∈ k[x] is indecomposable and for every
λ∗ ∈ k, n(λ∗) is the number of irreducible factors of F (x) − λ∗

in k[x], then ρ(F ) :=
∑

λ∗∈k(n(λ∗) − 1) ≤ deg(F ) − 1. In partic-
ular , card(sp(F )) ≤ deg(F )− 1.

Statement (3), which is known as Stein’s inequality, is due to Stein [13]
in characteristic 0 and Lorenzini [10] in arbitrary characteristic (but for two
variables); see [11] for the general case.

This paper offers some new results in this context.
In §2, given an indecomposable polynomial F (x) with coefficients in an

integral domain A and a ring morphism σ : A → k with k an algebraically
closed field, we investigate the connection between the spectrum of F (x)
and that of the polynomial F σ(x) obtained by applying σ to the coefficients
of F (x). Theorem 2.1 provides a conclusion à la Bertini–Noether, which,
despite its basic nature, does not seem to be available in the literature:
under minimal assumptions on A, the connection is the expected one gener-
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ically. For example if A = Z, “spectrum” and “reduction modulo a prime p”
commute if p is suitably large (depending on F ). We give other typical appli-
cations, notably for a specialization morphism σ. Related results are given
in [3].

For two variables, we give in §3 an indecomposability criterion for a re-
duced polynomial modulo some prime p (Theorem 3.1) that is more precise
than Theorem 2.1: the condition “for suitably large p” is replaced by some
explicit condition on F (x, y) and p, possibly satisfied for small primes. This
criterion uses some results on good reduction of curves and covers due to
Grothendieck, Fulton et al.; we will follow here Zannier’s version [14]. An-
other criterion based on the Newton polygon of a polynomial is given in [4].
§4 is devoted to the connection between the indecomposability prop-

erties over a field K and over its algebraic closure K. While it has been
known they are equivalent in many circumstances, for example in character-
istic 0, it has remained to handle the inseparable case to obtain a definitive
conclusion. That is the purpose of Proposition 4.1, which, conjoined with
previous works, shows that the only polynomials F (x) indecomposable in
K[x] but decomposable in K[x] are pth powers in K[x], where p > 0 is the
characteristic of K (Theorem 4.2).
§5 is aimed at counting the number of indecomposable polynomials of

a given degree d with coefficients in the finite field Fq. We show that most
polynomials are indecomposable: the ratio Id/Nd of indecomposables of de-
gree d tends to 1 (as d→∞ or as q →∞), and we give some estimate for the
error term 1− Id/Nd. The constants involved in our estimates are explicit.
For simplicity we mostly restrict to polynomials in two variables, as calcula-
tions become more intricate when n > 2. We also consider the one variable
situation (for which the definition of indecomposability is slightly different,
see §4.3) with the restriction that q and d are relatively prime. A unified
treatment of the general case n ≥ 2 is offered in a parallel work of von zur
Gathen [8], who also considers the “wild case” (n = 1 with (q, d) 6= 1) in [9].

2. Spectrum and morphisms

Notation. If σ : A→ B is a ring morphism, we denote the image of a ∈ A
by aσ. For P (x) ∈ A[x], we denote the polynomial obtained by applying σ
to the coefficients of P by P σ(x). If V ⊂ An

A is the Zariski closed subset
associated with a family of polynomials Pi(x) ∈ A[x], we denote by V σ

the Zariski closed subset of An
B associated with the family of polynomials

P σi (x) ∈ B[x].
If S ⊂ A is a multiplicative subset such that all elements from Sσ are

invertible in B, we still denote by σ the natural extension S−1A→ B of the
original morphism σ.



Indecomposable polynomials and their spectrum 81

Fix an integrally closed ring A, with a perfect fraction field K.
An effective divisor D =

∑r
i=1 niai of K is said to be K-rational if

the coefficients of the polynomial P (T ) =
∏r
i=1(T − ai)ni are in K (1).

A morphism σ : A → k to an algebraically closed field k is then said to be
defined at D if the coefficients of P (T ) have a common denominator d ∈ A
such that dσ is non-zero in k (2). In this case we denote by P σ(T ) ∈ k[T ]
the image polynomial of P (T ) by the morphism σ (extended to the fraction
field of A with denominators a power of d) and by Dσ the effective divisor
of k whose support is the set of roots of P σ(T ) and coefficients are the
corresponding multiplicities.

2.1. Statement. For more precision, we use the spectral divisor rather
than the spectrum: it is the divisor spdiv(F ) =

∑
λ∗∈k(n(λ∗) − 1)λ∗ of the

affine line A1(k). Its support is the spectrum of F , and Stein’s inequality
rewrites deg(spdiv(F )) ≤ deg(F )− 1.

Theorem 2.1. Let F (x) ∈ A[x] be indecomposable in K[x]. Then there
exists a non-zero element hF ∈ A such that the following holds. For every
morphism σ : A→ k to an algebraically closed field k, if hσF 6= 0, then F σ(x)
is indecomposable in k[x], the morphism σ : A→ k is defined at the divisor
spdiv(F ), and spdiv(F σ) = (spdiv(F ))σ; in particular , ρ(F σ) = ρ(F ) and
sp(F σ) = (sp(F ))σ.

The first stage of the proof will produce the spectrum as a Zariski closed
subset of the affine line A1

A over the ring A. Specifically the following can be
drawn from the proof: there is a proper (3) Zariski closed subset VF ⊂ A1

A
such that for every morphism σ : A→ k as above,

(∗) the polynomial F σ(x), if it is of degree equal to deg(F ), is indecompos-
able in k[x] if and only if the Zariski closed subset V σ

F ⊂ A1
k is proper ,

and in this case sp(F σ) = V σ
F (k).

When applied to the inclusion morphism A → K, Theorem 2.1 shows that
the spectrum of F (x) is equal to the Zariski closed subset VF (K). In par-
ticular, it is K-rational. The same is true for the spectral divisor of F (x) as
n(λτ ) = n(λ) for each λ ∈ K and each τ ∈ Gal(K/K).

Making the constant hF from Theorem 2.1 explicit is an interesting next
goal. This requires good bounds for the “Noether forms” associated with

(1) Under our hypothesis “K perfect”, this amounts to the invariance of P (T ), or
of D, under Gal(K/K).

(2) Under our hypothesis “A integrally closed”, this amounts to saying the elements ai
themselves have a common denominator d ∈ A (that is, dai is integral over A, i = 1, . . . , r)
such that dσ 6= 0.

(3) That is, distinct from the whole surrounding space (here the affine line A1
A over

the ring A); equivalently, there exists a non-zero polynomial in the associated ideal.
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the polynomial F (x)−λ ∈ K(λ)[x] in §2.3.1. Some work of Busé, Chèze and
Najib in this direction is in progress [3].

2.2. Typical applications

2.2.1. Situation 1. If A = Z, then hF ∈ Z, hF 6= 0. Theorem 2.1,
applied with σ : Z→ Fp the reduction morphism modulo a prime number p
yields:

for all suitably large p, the reduced polynomial F (x) modulo p is in-
decomposable in Fp[x] and its spectral divisor is obtained by reducing
that of F (x), that is, spdiv(F ) = spdiv(F ).

2.2.2. Situation 2. Take A = k[t] with k an algebraically closed field
and t = (t1, . . . , tr) some indeterminates. Denote by F (t, x) the polyno-
mial F (x) of the general statement. Theorem 2.1, applied with σ the spe-
cialisation morphism k[t] → k that maps t = (t1, . . . , tr) to an r-tuple
t∗ = (t∗1, . . . , t

∗
r) ∈ kr yields:

for all t∗ off a proper Zariski closed subset of kr, the specialized po-
lynomial F (t∗, x) is indecomposable in k[x] and its spectral divisor is
obtained by specializing that of F (t, x).

2.2.3. Situation 3. F (x) is the generic polynomial in n variables and
of degree d. Take for A the ring Z[ai] generated by the indeterminates ai cor-
responding to the coefficients of F (x); the multi-index i = (i1, . . . , in) ranges
over the set In,d of all n-tuples of integers ≥ 0 such that i1 + · · ·+ in ≤ d.

Classically the polynomial F (x) is irreducible in Q(ai)[x], hence it is
indecomposable. Theorem 2.1, applied with σ : A → k a specialization
morphism of the ai, shows that all polynomials f(x) ∈ k[x] of degree d are
indecomposable except possibly those from the proper Zariski closed subset
corresponding to the equation hF = 0 (with hF viewed in k[ai]).

For polynomials f(x) outside the closed subset hF = 0, the spectrum
of f is obtained by specializing the generic spectrum. However, we have:

Proposition 2.2. For d > 2 or n > 2, the generic spectrum is empty.
For d = n = 2, it contains a single element , given by

a00 −
a02a

2
10 + a20a

2
01 − a01a10a11

4a02a20 − a2
11

.

For d > 2 or n > 2, polynomials with a non-empty spectrum lie in the
Zariski closed subset hF = 0.

Proof. Assume that the generic spectrum is not empty. If k is an al-
gebraically closed field and Rn,d (resp. Pn,d|a0=0) denotes the set of poly-
nomials P (x) ∈ k[x] of degree ≤ d that are reducible in k[x] (resp. whose
constant term is zero), the correspondence P (x) 7→ P (x)− P (0) induces an
algebraic morphism Rn,d → Pn,d|a0=0 which is generically surjective (that
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is, surjective above a non-empty Zariski open subset of Pn,d|a0=0). It follows
that Rn,d is of codimension ≤ 1 in the space Pn,d of all polynomials in k[x]
of degree ≤ d. This observation provides the desired conclusion in the case
n = 2 and d > 2: indeed codimP2,d

(R2,d) = d− 1 [7, Theorem 2].
For d = n = 2, the equation “(ux+ay+b)(vx+cy+d) = F (x, y) modulo

the constant term” with unknowns u, a, b, v, c, d is readily solved: reduce to
the case a20 = u = v = 1, find the unique solution for the 4-tuple (a, b, c, d)
and compute bd; the generic spectral value is then a00 − bd.

Finally assume that for d ≥ 2 and n > 2, there exists a generic spectral
value λ ∈ K (with K = Q(ai)). Let F (x) − λ = Q(x)R(x) be a non-trivial
factorization in K[x]. Specializing x3, . . . , xn to 0 gives a non-trivial factor-
ization in K[x1, x2] of the generic polynomial of degree d in two variables.
From the first part of the proof, we have d = 2. Furthermore, the above case
provides the necessary value of λ. Now specializing x2 and x4, . . . , xn to 0
leads to a different value. This is a contradiction.

2.3. Proof of Theorem 2.1

2.3.1. 1st stage: elimination theory. This stage is aimed at showing
Proposition 2.3 below, which generalizes the Bertini–Noether theorem
[6, Prop. 9.4.3]. It is proved in the general situation

(Hyp) a polynomial F(λ, x) ∈ A[λ, x] is irreducible in K(λ)[x], where
λ = (λ1, . . . , λs) is an s-tuple of indeterminates (s ≥ 0).

We will use it in the special case F(λ, x) = F (x) − λ. The hypotheses “A
integrally closed” and “K perfect” are not necessary for this stage.

As in Situation 3, consider some indeterminates (ai)i∈In,d corresponding
to the coefficients of a polynomial of degree d in n variables. A polynomial
with coefficients in a ring R corresponds to a morphism φ : Z[ai ]→R; denote
by F (aφi )(x) ∈ A[x] the corresponding polynomial. Let ϕλ : Z[ai ]→A[λ]
be the morphism corresponding to the polynomial from statement (Hyp):
F(λ, x) = F (aϕλi )(x).

From Noether’s theorem [12, §3.1, Theorem 32], there exist finitely many
universal homogeneous forms Nh(ai) (1 ≤ h ≤ D = D(n, d)) in the ai and
with coefficients in Z such that:

(4) for every morphism φ : Z[ai ] → k to an algebraically closed field k,
the polynomial F (aφi )(x), if it is of degree d, is reducible in k[x] if

and only if Nh(aφi ) = 0 for h = 1, . . . , D.

For φ taken to be the morphism ϕλ : Z[ai ] → A[λ] ⊂ K(λ), the ele-
ments Nh(aϕλi ) ∈ A[λ] are polynomials Nh(λ). Let VF ⊂ As

A be the Zariski
closed subset corresponding to the ideal they generate; it is a proper closed
subset. Indeed, as F(λ, x) is irreducible in K(λ)[x], from (4), at least one
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of the polynomials Nh(λ), say Nh0(λ), is non-zero. Denote by aF ∈ A the
product of a non-zero coefficient of Nh0(λ) and the non-zero coefficient of
some monomial of F(λ, x) of degree d in x.

If R is an integral domain and Σ : A[λ]→ R a morphism, then (4), with
φ taken to be Σ ◦ ϕλ : Z[ai ] → R ↪→ κ and κ = Frac(R), shows that the
polynomial FΣ ∈ R[x], if of degree d, is irreducible in κ[x] if and only if at
least one of the elements NΣ

h ∈ R is non-zero (note that FΣ = F (aΣϕλi )(x)

and Nh(aΣϕλi ) = Nh(aϕλi )Σ), or, equivalently, if the corresponding Zariski
closed subset of Spec(R) is proper.

Let σ : A → k be a morphism with k algebraically closed. Apply the
above first with Σ taken to be the morphism σ : A[λ]→ k[λ] and then, for
λ∗ ∈ ks, with Σ taken to be the morphism sλ∗ ◦ σ : A[λ] → k obtained by
composing σ : A[λ]→ k[λ] with the specialization morphism sλ∗ : k[λ]→ k
to λ∗. We conclude:

Proposition 2.3 (Bertini–Noether generalized).

(a) The polynomial Fσ(λ, x), if it is of degree d in x, is irreducible in
k(λ)[x] if and only if the Zariski closed subset V σ

F ⊂ As
k is proper.

All these conditions are satisfied if aσF is non-zero in k.
(b) If the polynomial Fσ(λ∗, x) is of degree d, then it is reducible in k[x]

if and only if λ∗ is in the set V σ
F (k).

2.3.2. 2nd stage: implications for the spectrum of F (x). We return to
the situation where F(λ, x) = F (x) − λ. Denote the Zariski closed subset
VF from §2.3.1 by VF ; it is a Zariski closed subset of the affine line A1

A. The
preceding conclusions, conjoined with the connection, recalled in §1, between
indecomposability of F (x) and irreducibility of F (x)−λ, yield statement (∗)
from §2.1.

Denote by sF (λ) the g.c.d. of the polynomials Nh(λ) in the ring K[λ].
Write it as sF (λ) = SF (λ)/c1 with SF (λ) ∈ A[λ] and c1 ∈ A non-zero. The
polynomial SF (λ) is non-zero and its distinct roots in K, say λ1, . . . , λs,
which are the common roots in K of the polynomials Nh(λ), are the spectral
values of F (x) (note that F (x) − λ∗ is of degree d for all λ∗ ∈ K). Thus
we have SF (λ) = c2

∏s
i=1(λ − λi)ni ∈ A[λ] for some exponents ni > 0 and

c2 ∈ A, c2 6= 0. It follows that the set sp(F ) = {λ1, . . . , λs} is K-rational.
As already noted, the same is then true for the spectral divisor spdiv(F ).

2.3.3. 3rd stage: invariance of the spectrum of F via morphisms . Fix a
morphism σ : A→ k with k algebraically closed. Denote by aF the element
aF from §2.3.1 for F = F (x)− λ. If aσF 6= 0, then F σ(x) is of degree d and
indecomposable in k[x]. Furthermore, its spectral values are the roots in k
of the g.c.d. of the polynomials Nσ

h (λ).
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Note that the element c2 above is a common denominator of λ1, . . . , λs;
if cσ2 6= 0, the morphism σ : A→ k is defined at spdiv(F ).

Lemma 2.4. There exists c3 ∈ A, c3 6= 0, such that , if aσF c
σ
1c
σ
2c
σ
3 6= 0, the

polynomial SσF (λ) ∈ k[λ] equals (up to some non-zero multiplicative constant
in k) the g.c.d. in k[λ] of the polynomials Nσ

h (λ) (1 ≤ h ≤ D). In particular ,
sp(F σ) = (sp(F ))σ.

Proof. The problem is whether the g.c.d. commutes with σ. The Eu-
clidean algorithm provides the g.c.d. as the last non-zero remainder. To
reach our goal, it suffices to guarantee that for each division a = bq + r in
K[λ] involved in the algorithm, the identity aσ = bσqσ + rσ, with σ suitably
extended, be the division of aσ by bσ in k[λ]. For this, write a, b, q and r
in the form n(λ)/m with n(λ) ∈ A[λ] and m ∈ A, consider the product β
of denominators m of a, b, q and r with the coefficients of highest degree
monomials in the numerators n(λ) of b and r and require that βσ 6= 0.
Multiplying all elements β for all divisions leading to the g.c.d. of two, then
of all polynomials in question, leads to a non-zero element c3 ∈ A which
satisfies the desired statement.

Remark 2.5. Morphisms and g.c.d. do not commute in general: for ex-
ample gcd(λ, λ+ a) is 1 generically, but equals λ if a = 0.

2.3.4. 4th stage: invariance of spdiv(F ) via morphisms. It remains to
extend the conclusion “sp(F σ) = (sp(F ))σ” to the spectral divisor spdiv(F ).
We will show how to guarantee that, via the morphism σ, the spectral values
remain distinct and the associated decompositions of F (x)−λ have the same
numbers of distinct irreducible factors (4).

Consider the discriminant of the polynomial
∏s
i=1(λ − λi); it is a non-

zero element of K. Write it as c4/c5 with c4, c5 ∈ A, non-zero. If cσ4c
σ
5 6= 0,

the polynomials SF (λ) and SσF (λ) have the same number of distinct roots,
whence card(sp(F σ)) = card((sp(F ))σ) = card(sp(F )).

For i = 1, . . . , s, let F (x) − λi =
∏n(λi)
j=1 Qij(x)kij be a factorization

(into distinct irreducible polynomials) in K[x]. Let E/K be a finite Galois
extension that contains the finite set C of all coefficients involved in all above
factorizations, c6 be a non-zero element of A such that c6c is integral over
A for all c ∈ C, and c7 be the discriminant of a basis of E over K the
elements of which are integral over A. Denote by B the fraction ring of A
with denominator a power of c6c7, and by B′E the integral closure of B in E.
The ring B′E is a free B-module of rank [E : K]. Assume that cσ6c

σ
7 6= 0.

The morphism σ : A → k extends to a morphism B → k, and, as k is

(4) The argument will also show the degrees of these irreducible factors, say Qλ,j ,
remain the same and thus so does the quantity minλ∈sp(F )(

P
j deg(Qλ,j) − 1), which

replaces deg(F )− 1 in Lorenzini’s refined version [10] of Stein’s inequality.
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algebraically closed, this morphism σ : B → k can in turn be extended to a
morphism σ̃ : B′E → k.

The polynomials Qij(x) are in the ring B′E [x] and are absolutely ir-
reducible. The (classical) Bertini–Noether theorem provides a non-zero ele-
ment β ∈ B′E such that, if βeσ 6= 0, then each of the polynomials Qeσ

ij(x) is ab-

solutely irreducible. Therefore the decomposition F σ(x)−λeσ
i =

∏n(λi)
j=1 Qeσ

ij(x)
obtained from the preceding one by applying σ̃, is the factorization of
F σ(x)− λeσ

i into irreducible polynomials in k[x].
It remains to ensure that for i fixed, the polynomials Qeσ

ij(x) are
different, even up to non-zero multiplicative constants. For any two (distinct)
polynomials Qij(x), Qij′(x), the matrix with rows the tuples of coefficients of
the two polynomials has a 2× 2-block with a non-zero determinant. Denote
the product of all such determinants for all possible couples (Qij(x), Qij′(x))
by δ; it is a non-zero element of B′E . Denote then by ν the norm of βδ rel-
ative to the extension E/K. As A is integrally closed, so is B and ν ∈ B.
Write it as ν = c8/(c6c7)γ with c8 ∈ A and γ ∈ N. Condition cσ6c

σ
7c
σ
8 6= 0

implies βeσ
F δ

eσ
F 6= 0. Theorem 2.1 is finally established for hF = aF

∏8
i=1 ci.

Remark 2.6. The same proof, with the polynomial F(λ, x) from §2.3.1
of the form F (x) − λG(x) with F (x), G(x) ∈ A[x] and degG ≤ degF ,
leads to the more general form of Theorem 2.1 for which indecomposable
polynomials are replaced by indecomposable rational functions (in this case,
“indecomposable” means not of the form u(H(x)) with H(x) and u(t) ra-
tional functions and deg(u) ≥ 2 (5)). A spectral value of a rational function
F (x)/G(x) is an element λ such that the polynomial F (x) − λG(x) is re-
ducible. Statements (1)–(3) from §1 remain true, except that the bound in
Stein’s inequality should be replaced by (deg(F ))2 − 1 [2], [10]. More gen-
erally, one can take F(λ, x) of the form F (x) − λ1G1(x) − · · · − λsGs(x)
with F (x), G1(x), . . . , Gs(x) ∈ A[x] and handle other situations studied in
the literature.

3. An indecomposability criterion modulo p. In this section n = 2,
A is a Dedekind domain and its fraction field K is assumed to be of charac-
teristic 0. Fix also a non-zero prime ideal p of A and assume its residue field
k = A/p is of characteristic p > 0. Denote by x̃ the image of an element x
under the reduction morphism A → k. The situation “A = Z and p = pZ”
is typical.

Let F (x, y) ∈ A[x, y] be an indecomposable polynomial in K[x, y] of
degree d ≥ 1, monic in y.

(5) The degree of a rational function is the maximum of the degrees of its numerator
and denominator.
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Here is our strategy to guarantee indecomposability of F (x, y) modulo p.
Pick λ∗ ∈ A \ sp(F ) (using Stein’s theorem, this can be done for λ∗ not too
large). Thus F (x, y)−λ∗ is irreducible in K[x, y]. It follows from the classical
Bertini–Noether theorem that if “p is large enough”, then the reduced po-
lynomial F (x, y)− λ∗ modulo p is absolutely irreducible. Therefore F (x, y)
is indecomposable modulo p (as there is at least one non spectral value).
However, the constants involved in the condition “p large enough” are too
large for a practical algorithmic use. We will follow an alternative approach,
based on good reduction criteria for covers, and more precisely Zannier’s
criterion [14].

Consider the discriminant with respect to y of F (x, y)− λ:

∆F (x, λ) = discy(F (x, y)− λ).

Denote then the product of all distinct irreducible factors of ∆F (x, λ) in
K(λ)[x] by ∆red

F (x, λ); more precisely, ∆red
F (x, λ) is defined by the following

formula, which is also algorithmically more practical:

∆red
F (x, λ) = c(λ)

∆F (x, λ)
gcd(∆F (x, λ), (∆F )′x(x, λ))

where the g.c.d. is calculated in the ring K(λ)[x] (using the Euclidean algo-
rithm for example) and c(λ) ∈ K(λ) is the rational function, defined up to
some invertible element in A, that makes ∆red

F (x, λ) a primitive polynomial
in A[λ][x]. Consider next the polynomial

∆F (λ) = discx(∆red
F (x, λ)).

We have ∆F (λ) ∈ A[λ] and ∆F (λ) 6= 0. Finally, let ∆0(λ) ∈ A[λ] be the
coefficient of the highest monomial in ∆F (x, λ) (viewed in A[λ][x]).

Theorem 3.1. Assume, in addition to F (x, y) being indecomposable in
K[x, y], that the reduced polynomial ∆̃0(λ)∆̃F (λ) is non-zero in k[λ] and
that p > degy(F ). Then F̃ (x, y) is indecomposable in k[x, y].

The assumption p > degy(F ) can be replaced by the weaker condition
that p does not divide the order of the Galois group of F (x, y)− λ, viewed
as a polynomial in K(λ)(x) (see footnote 8).

The assumptions of Theorem 3.1 may not be sufficient to guarantee the
extra conclusions sp(F̃ ) = s̃p(F ) and spdiv(F̃ ) = ˜spdiv(F ) from Theo-
rem 2.1 (which may not even be well-defined). They, however, still imply
that if VF ⊂ A1

A is the Zariski closed subset from §2.1, then the reduced
Zariski closed subset ṼF ⊂ A1

k
is proper and its points are the spectral

values of F̃ : sp(F̃ ) = ṼF (k).
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Remark 3.2 (an indecomposability test). Theorem 3.1 provides the fol-
lowing procedure to decide whether a non-constant polynomial F (x, y) ∈
Q[x, y] is indecomposable.

One may assume that F (x, y) ∈ Z[x, y] and degy(F ) > 0. Up to chang-
ing y to ay for some a ∈ Z, one may also reduce to the case of F (x, y)
monic with respect to the reverse lexicographic order (for which y > x).
Observe that the polynomial ∆F (x, λ) = discy(F (x, y) − λ) is non-zero in
general (whether F is indecomposable or not): indeed, none of the roots y
of (∂F/∂y)(x, y), which are in Q(x), can also be a root of F (x, y)− λ. Con-
sequently, the polynomial ∆0(λ)∆F (λ) is non-zero in general. Pick a prime
p satisfying the assumptions of Theorem 3.1: p > degy(F ) and ∆̃0(λ)∆̃F (λ)
is non-zero in Fp[λ]. Test for decomposability of F̃ (x, y) (from §4, it is suf-
ficient to only consider decompositions over Fp instead of Fp). If F̃ (x, y) is
decomposable, then F (x, y) is decomposable by Theorem 3.1. As we explain
below, the converse also holds: if F̃ (x, y) is indecomposable, then F (x, y) is
indecomposable.

Namely, if F (x, y) is decomposable then F (x, y) has a non-trivial decom-
position F (x, y) = u(H(x, y)) with u and H with coefficients in Q and even
in Q (see §4). Furthermore, F (x, y) ∈ Z[x, y] being monic forces these coef-
ficients to be in Z. For one variable, this is explained in [5], and in general
one can reduce to this case thanks to a Kronecker substitution. Specifically,
one may assume that H(x, y) is monic (with respect to the same order), and
then so is u, and that H(0, 0) = 0. Write F (x, xm) = u(H(x, xm)) with m
large enough to have F (x, xm) and H(x, xm) monic. From [5, Theorem 2],
u(t) and H(x, xm) must have integral coefficients, and consequently so does
H(x, y) (for m � 1). Finally, reduction modulo p of F (x, y) = u(H(x, y))
provides a non-trivial decomposition of F̃ (x, y).

Proof of Theorem 3.1. The prime ideal p ⊂ A determines a discrete val-
uation v of K whose valuation ring is the localized ring Ap; the fraction field
of Ap and its residue field remain equal to K and k respectively. The hy-
potheses and conclusions from Theorem 3.1 are unchanged if A is replaced
by Ap. The valued field (K, v) can then also be replaced by any finite ex-
tension of the completion Kv, and A by the new valuation ring; the discrete
valuation v uniquely extends, the residue field is replaced by some (finite)
extension of k, the indecomposability properties of F (x, y) over K or over
Kv are equivalent.

Thus we may and will assume that (K, v) is a complete discretely valued
field, that A is its valuation ring (which is integrally closed) and that the
field K and the residue field k contain as many (finitely many) algebraic
elements over the original fields as necessary.
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The polynomial ∆F (x, λ) is in A[x, λ] and its factorization into irre-
ducible polynomials in K(λ)[x] can be written

∆F (x, λ) = δ0(λ)
s∏
i=1

∆i(x, λ)αi

where the polynomials ∆i(x, λ) are in A[x, λ], irreducible in K(λ)[x], pair-
wise distinct (even up to some constant in K), and primitive in A[λ][x],
where δ0(λ) ∈ A[λ] and where the αi are positive integers. Then, up to some
invertible element in A, we have

∆red
F (x, λ) =

s∏
i=1

∆i(x, λ).

Also note that the polynomial ∆0(λ) is a multiple in A[λ] of the product of
δ0(λ) and the highest monomial coefficients δ1(λ), . . . , δs(λ) of the polyno-
mials ∆1(x, λ), . . . ,∆s(x, λ) (viewed in A(λ)[x]).

Pick next λ̃∗ ∈ k such that ∆̃0(λ̃∗)∆̃F (λ̃∗) 6= 0 in k, then lift it to
some element λ∗ ∈ A such that λ∗ /∈ sp(F ). This is possible in view of the
preliminary remark.

The set of roots of ∆F (x, λ∗) contains the set of finite (6) branch points
of the cover of P1

x (7) determined by the (absolutely irreducible) polynomial
F (x, y)−λ∗. The preliminary remark makes it possible to assume that these
roots are in K. Furthermore, as δ̃i(λ̃∗) 6= 0, we have δi(λ∗) ∈ A \ p, i =
1, . . . , s; therefore these roots are integral over A and so are in A.

As ∆F (λ∗) 6= 0, the roots of ∆red
F (x, λ∗) in K are distinct, and as

δ0(λ∗) 6= 0, they are the roots of ∆F (x, λ∗). As ∆̃0(λ̃∗) 6= 0, ∆̃F (x, λ̃∗) is
not the zero polynomial. As ∆̃F (λ̃∗) 6= 0, the roots of ∆̃red

F (x, λ̃∗), which are
those of the polynomial ∆̃F (x, λ̃∗), are distinct. Thus we conclude that the
distinct roots of the polynomial ∆F (x, λ∗), and a fortiori the branch points
of the cover considered above, have distinct reductions modulo the ideal p.

It follows from standard results on good reduction of covers, and more
precisely here, from the main theorem of [14] that, under the assumption
p > degy(F ) (8), F̃ (x, y) − λ̃∗ is absolutely irreducible. Hence F̃ (x, y) is
indecomposable in k[x, y].

(6) That is, distinct from the point at infinity.

(7) The subscript “x” indicates that the cover is induced by the correspondence
(x, y) 7→ x. In fact, the problem is symmetric in the variables x and y which can be
switched in our statement.

(8) It suffices to assume that p does not divide the order of the Galois group of
F (x, y) − λ∗, which divides the order of the Galois group of F (x, y) − λ, which itself
divides (degy(F ))!.
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4. Indecomposability over K versus K

4.1. Statements (for n ≥ 2 variables). The indecomposability property
over an algebraically closed field, which we recalled in §1, can in fact be
defined over an arbitrary field: just require that the polynomials u(t) and
H(x) involved have their coefficients in the field in question. The results
below identify the only cases where the property is not the same over some
field K and over some extension E. The following result handles the case
where E/K is purely inseparable, which was missing in the literature.

Proposition 4.1. Let E/K be a purely inseparable algebraic field ex-
tension of characteristic p > 0 and F (x) ∈ K[x]. Assume F (x) is not of the
form bG(x)p + c with G(x) ∈ E[x] and b, c ∈ K. Then F (x) is indecompos-
able in K[x] if and only if it is indecomposable in E[x].

If E = K, the assumption on F (x) merely says that F (x) is not a pth
power in K[x], which in turn is equivalent to at least one exponent in F (x)
not being a multiple of p. Clearly this assumption cannot be removed: for
example, if α ∈ K \K but αp = a ∈ K then xp + ayp is indecomposable in
K[x] but decomposable in K[x].

In [1, Proposition 1], Arzhantsev and Petravchuk show the equivalence
from Proposition 4.1 without any assumption on F (x), but in the case of
a separable extension E/K (possibly of positive transcendence degree). As
any extension is a purely inseparable algebraic extension of some separable
extension, conjoining their result with ours shows that, under the assump-
tion on F (x) from Proposition 4.1, the equivalence holds for an arbitrary
extension E/K. We can be more precise.

Theorem 4.2. Let E/K be a field extension and F (x) ∈ K[x] be a
non-constant polynomial. Then the following are equivalent :

(i) F (x) is indecomposable in K[x] but decomposable in E[x].
(ii) (a) K is of characteristic p > 0 and E/K is inseparable,

(b) F (x) = bG(x)p + c for some G(x) ∈ E[x] and b, c ∈ K,
(c) G(x)p is indecomposable in K[x].

Condition (ii)(c) implies that G(x) is not of the form u(H(x)) with
u ∈ E[t], H(x) ∈ E[x], deg(u) ≥ 2 and both u(t)p ∈ K[t] and H(x)p ∈ K[x].
But there are other possible polynomials that should be excluded whose
description is more intricate.

4.2. Proofs

Proof of Proposition 4.1. The converse part is obvious. For the direct
part, assume F (x) is decomposable in E[x]. Then it is decomposable over
some finite extension of K contained in E, which admits a finite system
of generators α1, . . . , αs with irreducible polynomial over K of the form
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xp
n − a with a ∈ K. The multiplicativity of the degree and of the separable

degree imply that the extensions K(α1, . . . , αj+1)/K(α1, . . . , αj) are purely
inseparable for j = 1, . . . , s− 1. By induction one reduces to the case s = 1,
and then a new induction reduces to the case E = K(α) with αp = a
∈ K \Kp.

Assume F (x) = h(G(x)) with h(t) ∈ K(α)[t] such that deg(h) ≥ 2 and
G(x) ∈ K(α)[x]. We deduce

F (x)p = ph(G(x)p)

where, if h(t) =
∑deg(h)

i=0 hit
i, we set ph(t) =

∑deg(h)
i=0 hpi t

i. As ph(t) ∈ K[t]
and G(x)p ∈ K[x] (since yp ∈ K for all y ∈ K(α)), this shows that the
field K(F (x), G(x)p) is of transcendence degree 1 over K. From Gordan’s
Theorem [12, §1.2, Th. 3], there exists θ(x) ∈ K(x) such that

K(F (x), G(x)p) = K(θ(x)).

Furthermore from [12, §1.2, Th. 4], one may assume that θ(x) ∈ K[x]. Thus{
F (x) = u(θ(x)) with u(t) ∈ K(t),
G(x)p = v(θ(x)) with v(t) ∈ K(t).

As F (x) and G(x)p are polynomials, u(t), v(t) are necessarily in K[t]. It
follows from the indecomposability of F (x) over K that deg(u) = 1, which
gives G(x)p = w(F (x)) for some w ∈ K[t]. But then G(x)p = w ◦ h(G(x)),
which, since G(x) is non-constant, amounts to T p = w ◦ h(T ) where T is
an indeterminate. As deg(h) ≥ 2 and p is a prime, we have deg(w) = 1 and
deg(h) = p, which gives F (x) = bG(x)p + c for some b, c ∈ K.

Note that because of the inductive process, the conclusion “b, c ∈ K”
should really be that b, c are in the first subfield of the initial reduction. But
F (x) being in K[x] then implies that bγp ∈ K for some non-zero γ ∈ E and
bG(0)p+c ∈ K. Up to changing G(x) to γ−1G(x)−γ−1G(0), one can indeed
conclude that b, c ∈ K in the general situation.

Proof of Theorem 4.2. (i)⇒(ii): If Ks/K is the maximal separable ex-
tension contained in E, then, from the Arzhantsev–Petravchuk result, F (x)
is indecomposable in Ks[x]. In particular E 6= Ks, which gives (ii)(a). Propo-
sition 4.1 then provides condition (ii)(b) except that b and c are a priori
in Ks, but using again the final note of the proof of Proposition 4.1, one can
indeed choose b, c ∈ K. Condition (ii)(c) then readily follows from (ii)(b)
and the indecomposability of F (x) in K[x]. The other implication (ii)⇒(i)
is clear.

4.3. One variable. In Proposition 4.1, F (x) is a polynomial in two vari-
ables or more. In one variable, the indecomposability definition should be
modified (for otherwise it is trivial): a polynomial F (x) ∈ k[x] is said to be
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indecomposable in k[x] if it is not of the form u(H(x)) with H(x) ∈ k[x]
and u ∈ k[t] with deg(u) ≥ 2 and deg(H) ≥ 2.

Proposition 4.3. The conclusion of Proposition 4.1 holds for one vari-
able polynomials.

Proof. The same proof can be used as for Proposition 4.1. It leads to{
F (x) = u(θ(x)) with u(t) ∈ K[t],
G(x)p = v(θ(x)) with v(t) ∈ K[t].

But from the indecomposability of F (x) over K, we now deduce that deg(u)
= 1 or deg(θ) = 1.

The case deg(u) = 1 is handled as before. In the other case, we de-
duce from deg(θ) = 1 that K(F (x), G(x)p) = K(x), which implies that
K(α)(h(G(x)), G(x)p) = K(α)(x) and so that

K(α)(x) ⊂ K(α)(G(x)),

which forces deg(G) = 1 and contradicts the decomposability assumption in
one variable made at the beginning of the proof.

5. Counting indecomposable polynomials over finite fields. For
each integer d ≥ 1, denote the number of polynomials in Fq[x] (x =
(x1, . . . , xn)) of degree d by Nd. We have

Nd =


(q(

n+d−1
n−1 ) − 1) · q(

n+d−1
n ) for general n,

q(d+1)(d+2)/2(1− q−d−1) for n = 2,
(q − 1)qd for n = 1.

Denote the number of those polynomials which are indecomposable (resp.
decomposable) by Id (resp. Dd). We have Nd = Id +Dd.

We will study separately the case of n ≥ 2 variables (§5.1–§5.4) and the
case n = 1 (§5.5).

5.1. Main result. From §5.1 to §5.4, we assume n ≥ 2.

Theorem 5.1.

(a) Id/Nd tends to 1 when d → ∞ with q fixed , and when q → ∞ with
d fixed.

(b) If d is a product of at most two prime numbers p ≤ p′, then either

• d = p and Dd = qd(qn − 1), or
• d = p2 and Dd = qp−1Np + (qd − q2p−1)(qn − 1), or
• d = pp′ with p < p′ and

Dd = qp−1Np′ + qp
′−1Np + (qd − 2qp+p

′−1)(qn − 1).
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(c) Assume n = 2. If d is the product of at least three primes, then

∣∣∣∣Dd

Nd
− αd

∣∣∣∣ ≤ αdβd where


αd =

q`−1+(d/`+1)(d/`+2)/2

q(d+1)(d+2)/2
,

βd =
d

qd/`
,

and ` > 1 is the first (hence prime) divisor of d.

A version of statement (c) in the general case of n variables is given
in [8]. For n = 2, his first order estimate for Dd/Nd is the same as ours, that
is, αd; his error term is improved by a factor O(q).

5.2. An induction formula. Let K be an arbitrary field. Let F = u ◦H
be a decomposition of F ∈ K[x] with u ∈ K[t], deg u ≥ 2, and H ∈ K[x]. We
say that F = u ◦H is a normalized decomposition if H is indecomposable,
monic (i.e. the coefficient of the leading term of a chosen order is 1) and its
constant term equals zero. Given a decomposition F = u ◦H, there exists
an associated normalized decomposition F = u′ ◦H ′. The following lemma
shows it is unique.

Lemma 5.2. Let F = u ◦H = u′ ◦H ′ be two normalized decompositions
of F ∈ K[x]. Then u = u′ and H = H ′.

Proof. It follows from u(H) − u′(H ′) = 0 that H and H ′ are alge-
braically dependent over K. By Gordan’s theorem [12, §1.2, Theorems 3
and 4] (already used in §4.2), there exists a polynomial θ(x) ∈ K[x] such
that K[θ] = K[H,H ′]. That is, there exist v, v′ ∈ K[t] such that H = v(θ)
and H ′ = v′(θ). As the two decompositions of F are normalized, H and H ′

are indecomposable, so deg v = deg v′ = 1, and so using the other normal-
ization conditions, we obtain H = H ′. Finally, it follows from u(H) = u′(H)
that u = u′.

Corollary 5.3 (induction formula). With notation as in §5.1, we have

Id = Nd −
∑

d′|d, d′<d

qd/d
′−1 × Id′ .

Proof. Let d′ ≥ 1 be a divisor or d. There are (q−1)qd/d
′
polynomials u ∈

Fq[t] of degree d/d′ and Id′/q(q−1) normalized indecomposable polynomials
H ∈ Fq[x] of degree d′. The formula follows, as from Lemma 5.2, every
polynomial F counted by Dd can be uniquely written as F = u ◦H with u
and H as above for some integer d′ such that d′ | d, d′ < d.

Combined with I1 = N1 = q(qn − 1) this formula provides an algorithm
to compute Id and Dd, which is convenient for small d.
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5.3. Proof of Theorem 5.1(a) and (b). The formulas in (b) directly follow
from Corollary 5.3. If d = p is a prime number, we have Dp = qp−1I1 =
qp−1N1 = qp(qn − 1). If d = p2 then

Dd = qp−1Ip + qp
2−1I1 = qp−1(Np − qp(qn − 1)) + qp

2
(qn − 1).

Computations are similar for d = pp′. To prove (a) we write

Nd − Id = Dd =
∑

d′|d, d′<d

qd/d
′
Id′ ≤

∑
d′|d, d′<d

qd/d
′
Nd′ .

The sum has at most d terms and each is ≤ qdNd/2, whence

1− Id
Nd
≤ dqd

Nd/2

Nd
,

and the announced result follows, as the right-hand side term tends to 0 in
the two situations considered in the statement of Theorem 5.1(a).

5.4. Proof of Theorem 5.1(c). In this subsection we assume that n = 2
and that d has at least three prime divisors.

5.4.1. A technical lemma

Lemma 5.4. Let b(d) = 1
2(d+ 1)(d+ 2). Let ` > 1 be the first divisor of

d and `′ > ` be the second divisor of d. Let λ ≥ `′ be a divisor of d and
`′′ > 1 be the first divisor of d/`. Then

(1) b(d/`′) + `′ ≥ b(d/λ) + λ,
(2) b(d/`) + `− d/` ≥ b(d/`′) + `′,
(3) b(d/`) + 1− d/` ≥ b(d/``′′) + `′′.

Proof. (1) We have

b(d/`′) + `′ − b(d/λ)− λ =
1
2

(
d

`′
− d

λ

)(
d

`′
+
d

λ
+ 3− 2

`′λ

d

)
≥ 0,

because d/`′ − d/λ ≥ 0 and
d

`′
+
d

λ
+ 3− 2

`′λ

d
≥ d

`′
+ 4− 2`′ ≥ 0,

as d has at least three prime divisors.
(2) We have ``′ ≤ d so `′ − ` ≤ d/`. Moreover, d/`′ ≤ d/`− 2 and for all

d ≥ 6 we have b(d/`′) ≤ b(d/`− 2). Hence

b(d/`)− b(d/`′) + `− `′ − d/` ≥ b(d/`)− b(d/`− 2)− 2d/` = 1.

(3) If we set δ = d/` then

b(δ) + 1− δ − b(δ/`′′)− `′′ = 1
2

(
δ − δ

`′′

)(
δ +

δ

`′′
− 2
)

+
1
2

(
3δ − 5

δ

`′′
− 2`′′ + 2

)
.
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Now δ− δ/`′′ ≥ 0, δ+ δ/`′′− 2 ≥ 0 and as δ has at least two prime divisors,
it follows that u(`′′) = 3δ − 5δ/`′′ − 2`′′ + 2 ≥ u(2) = δ/2− 2 ≥ 0.

5.4.2. An upper bound for Dd. Using the notation of Lemma 5.4, we
have

Dd = q`−1Id/` +
∑

λ|d, λ>`

qλ−1Id/λ (Corollary 5.3)

≤ q`−1Nd/` +
∑

λ|d, λ>`

qλ−1Nd/λ

≤ qb(d/`)+`−1

(
1− 1

qd/`+1

)
+

∑
λ|d, λ>`

qλ−1qb(d/λ)

(explicit formula for Nd/λ)

≤ qb(d/`)+`−1

(
1− 1

qd/`+1

)
+ (d− 1)qb(d/`

′)+`′−1 (Lemma 5.4(1))

≤ qb(d/`)+`−1

(
1− 1

qd/`+1

)(
1 +

d

qb(d/`)−b(d/`′)+`−`′

)
(

because
d− 1

1− q−d/`−1
≤ d
)

≤ qb(d/`)+`−1

(
1− 1

qd/`+1

)(
1 +

d

qd/`

)
(Lemma 5.4(2)).

5.4.3. A lower bound for Dd. Start from Dd ≥ q`−1Id/`. Then use §5.4.2
(or the formulas already proved from Theorem 5.1(b)) to bound Id/` =
Nd/` −Dd/` from below. We obtain

Dd ≥ q`−1 ×
(
qb(d/`)

(
1− 1

qd/`+1

)
− qb(d/``′′)+`′′−1

(
1− 1

qd/``′′+1

)(
1 +

d/`

qd/``′′

))
≥ q`−1

(
1− 1

qd/`+1

)
(qb(d/`) − 2qb(d/``

′′)+`′′−1)
(

because
d/`

qd/``′′
≤ 1
)

= q`−1

(
1− 1

qd/`+1

)
qb(d/`)

(
1− 2

qb(d/`)−b(d/``′′)+1−`′′

)
≥ qb(d/`)+`−1

(
1− 1

qd/`+1

)(
1− 2

qd/`

)
(Lemma 5.4(3)).
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5.4.4. Final estimate for Dd/Nd. The upper and lower bounds for Dd

yield the inequalities

qb(d/`)+`−1

qb(d)
× 1− q−d/`−1

1− q−d−1
×
(

1− 2
qd/`

)
≤ Dd

Nd

≤ qb(d/`)+`−1

qb(d)
× 1− q−d/`−1

1− q−d−1
×
(

1 +
d

qd/`

)
,

a little more precise than the announced statement.

5.5. One variable. Here we assume n = 1. For polynomials in one vari-
able, we use the definition of indecomposability given in §4.3.

5.5.1. Main result

Theorem 5.5. Assume q and d are relatively prime.

(a) If d is a product of at most two prime numbers p ≤ p′, then either

• d = p and Dd = 0, or
• d = p2 and Dd = q−1

q q2p, or
• d = pp′ with p < p′ and

2
q − 1
q

qp+p
′ − q5 ≤ Dd ≤ 2

q − 1
q

qp+p
′
.

(b) Assume d is the product of at least three prime numbers. Let ` > 1
be the first divisor of d and `′ > ` be its second divisor. Then

d

2`
1

qd/`−d/`2−`+1
≤ Dd

Nd
− αd ≤

d− 2
2q`+d/`−`′−d/`′

where αd =
2

qd−`−d/`+1
.

As a consequence, Id/Nd tends to 1 when d → ∞ with q fixed, and
q →∞ with d fixed.

Theorem 5.5 fails if the assumption (q, d) = 1 is removed. For example for
q = 2 and d even one can compute that Dd/Nd ∼ 3·2−d/2 while αd = 4·2−d/2
in this case.

From now on we assume q and d are relatively prime. The rest of the
paper is devoted to the proof of Theorem 5.5. Our strategy is similar to the
one used for n ≥ 2. We view the set Dd of all decomposable polynomials
f(x) ∈ Fq[x] of degree d as the union of smaller sets which we will estimate.
More specifically, we write

Dd =
⋃

λ|d, `≤λ≤d/`

Dλ,d/λ

where Dλ,d/λ ⊂ Dd is the subset of all f(x) which admit a decomposition
f = u ◦ v with u, v ∈ Fq[x], deg u = λ ≥ 2, deg v = d/λ ≥ 2, v monic and
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of constant term equal to 0. A difference with the case n ≥ 2 is that we do
not have a partition.

5.5.2. 1st stage: upper bounds. (Assumption (q, d) = 1 is not used in this
subsection.) For every divisor λ ≥ 1 of d, denote the cardinality of Dλ,d/λ
by Dλ,d/λ. We have

Dλ,d/λ ≤ Nλ

Nd/λ

q(q − 1)
=
q − 1
q

qλ+d/λ.

If ` > 1 is the first divisor of d and `′ > ` the second divisor, we have

Dd ≤
∑

λ|d, `≤λ≤d/`

Dλ,d/` ≤
q − 1
q

∑
λ|d, `≤λ≤d/`

qλ+d/λ.

The idea is that the main contribution comes from D`,d/` and Dd/`,`.
If d is the product of exactly two prime numbers ` and d/`, then these

are the only contributions and we have the desired upper bound. Otherwise
we write λ+ d/λ ≤ `′ + d/`′ to bound the extra terms and obtain

Dd ≤
q − 1
q

q`+d/`
(

2 +
d− 2

q`+d/`−`′−d/`′

)
,

which yields all announced upper bounds in Theorem 5.5. We also deduce
this practical bound:

Dd ≤ d
q − 1
q

q`+d/`

(as `+ d/`− `′ − d/`′ ≥ 1).

5.5.3. 2nd stage: uniqueness results. We will use Ritt’s theorems to con-
trol the number of possible decompositions of a given polynomial.

Proposition 5.6. Let K be a field and f ∈ K[x] be a polynomial of
degree d > 0. Assume the characteristic p of K does not divide d. Suppose
we have two decompositions f = u ◦ v = u′ ◦ v′ of f with

• u, v, u′, v′ indecomposable,
• deg u = deg u′ ≥ 2, deg v = deg v′ ≥ 2,
• v, v′ monic with a zero constant term.

Then u = u′ and v = v′.

Proof. This follows from the first Ritt theorem [12, §1.3, Theorem 7],
which more generally describes in which cases an equality G1 ◦ · · · ◦ Gr =
H1 ◦ · · · ◦Hs with Gi, Hj indecomposable of degree > 1 may hold.

As an immediate consequence, we obtain the case d = p2 of Theo-
rem 5.5(a): namely, we have Dp2 = Dp,p = q−1

q q2p.
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5.5.4. 3rd stage: lower bounds for Dd/`,` and D`,d/`.

Lemma 5.7. Assume d is not a prime number. Then

D`,d/` ≥
q − 1
q

q`+d/`
(

1− d/`

qd/`−d/`2−`+1

)
,

and the same inequality holds with D`,d/` replaced by Dd/`,`.

Proof. We only give the proof for D`,d/` as computations for Dd/`,` are
the same. In D`,d/` we will only count those polynomials f which decompose
as f = u ◦ v with u and v as in Proposition 5.6. Then we obtain

D`,d/` ≥
1

q(q − 1)
I` · Id/`

≥ 1
q(q − 1)

N` (Nd/` −Dd/`) (D` = 0 as ` is prime)

=
1

q(q − 1)
(q − 1)q`((q − 1)qd/` −Dd/`)

=
q − 1
q

q`+d/`
(

1−
Dd/`

(q − 1)qd/`

)
.

If d is the product of exactly two primes then Dd/` = 0 and

(∗) D`,d/` ≥
q − 1
q

q`+d/`,

which in this case is better than the announced result.
If d is the product of at least three primes, use the practical upper bound

for Dd obtained in Stage 1 to write Dd/` ≤ d
`
q−1
q q`+d/`

2
and deduce

D`,d/` ≥
q − 1
q

q`+d/`
(

1−
(d/`) q−1

q q`+d/`
2

(q − 1)qd/`

)
=
q − 1
q

q`+d/`
(

1− d/`

qd/`−d/`2−`+1

)
.

5.5.5. Estimating the multiple decompositions. Next we write

Dd ≥ card(D`,d/` ∪ Dd/`,`) = D`,d/` +Dd/`,` − card(D`,d/` ∩ Dd/`,`).

In order to estimate Dd we need to estimate the intersection.

Lemma 5.8. We have
card(D`,d/` ∩ Dd/`,`) ≤

d

`
qd/`

2+2`−1,

Dd ≥ 2
q − 1
q

q`+d/`
(

1− 2d
`

1
qd/`−d/`2−`+1

)
.



Indecomposable polynomials and their spectrum 99

The lower bound for Dd is the remaining inequality to be proved in
Theorem 5.5(b). The more precise inequality (∗∗) in the proof below will
complete the proof of Theorem 5.5(a) in the special case d = pp′.

Proof of Lemma 5.8. (a) If gcd(`, d/`) = 1 then card(D`,d/`∩Dd/`,`)≤ q5.
Indeed, let f ∈ D`,d/` ∩ Dd/`,` and let f = u ◦ v be a decomposition

with deg u = ` and deg v = d/`. We follow Ritt’s second theorem (see
[12, §1.4, Theorem 8] and the notation there). The hypotheses of that result
are satisfied because the derivative u′ of u is non-zero; otherwise f ′ = 0, and
so f ∈ Fq[xp] and the characteristic p of Fq divides d = deg f . In the first
case of Ritt’s second theorem we have L1 ◦ u = xrP (x)n and v ◦ L2 = xn

(where r ≥ 0, P ∈ Fq[x] and L1, L2 are linear functions). In our situation we
get n = d/` and ` = r + (d/`) degP . Then degP = (`2 − `r)/d ≤ `2/d < 1,
so degP = 0, L1 ◦ u = x` and v ◦ L2 = xd/`. Considering all possible linear
functions yields at most (q − 1)2q2 such decompositions. In the second case
of Ritt’s second theorem we have L1 ◦u = Dm(x, an) and v ◦L2 = Dn(x, a),
a ∈ Fq (where Dn(x, a) denote Dickson’s polynomials). We here obtain
m = ` and n = d/`. Considering all possible linear functions and all a ∈ Fq
yields at most (q − 1)2q3 such decompositions. Finally, we obtain

(∗∗) card(D`,d/` ∩ Dd/`,`) ≤ (q − 1)2q2 + (q − 1)2q3 ≤ q5.

(b) If gcd(`, d/`) 6= 1 then card(D`,d/` ∩ Dd/`,`) ≤ d
` q

d/`2+2`−1.
Indeed, let f ∈ D`,d/` ∩ Dd/`,` and let f = u ◦ v be a decomposition

with deg u = ` and deg v = d/`. By Ritt’s first theorem and because
gcd(`, d/`) 6= 1, either u or v is decomposable. But as ` is a prime, D` is
empty and so v ∈ Dd/`. Thus we obtain

card(D`,d/` ∩ Dd/`,`) ≤ N`
1

q(q − 1)
Dd/`

≤ 1
q(q − 1)

(q − 1)q`
d

`
q`+d/`

2
(end of §5.5.2)

≤ d

`
qd/`

2+2`−1.

The conclusion follows, as for all d > 6 we have d/`2 + 2`− 1 ≥ 5.
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