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1. Introduction. For a given set A ⊂ N0 of non-negative integers, here
and throughout the paper, the counting function A(n) is defined as the
number of elements of A not exceeding n, i.e., A(n) = |A ∩ {0, 1, . . . , n}|.
Consider the following functions:

r(A,n) = |{(a1, a2) ∈ A×A : a1 + a2 = n}|,
r1(A,n) = |{(a1, a2) ∈ A×A : a1 + a2 = n and a1 ≤ a2}|,
r2(A,n) = |{(a1, a2) ∈ A×A : a1 + a2 = n and a1 < a2}|.

A well-studied problem concerning these functions is to determine necessary
and sufficient conditions on A for their (eventual) monotonicity. Here and
throughout the paper, monotonicity refers to monotonicity in n. In other
words, for what sets A can we find an n0 such that r(A,n+ 1) ≥ r(A,n) for
all n > n0? Although the three functions look similar, and in fact |r(A,n)−
2r2(A,n)| ≤ 1 and |r1(A,n) − r2(A,n)| ≤ 1, the (partial) answers to these
questions may be quite different.

Erdős, Sárközy and Sós [3] proved that r(A,n) is eventually increasing
if and only if A contains all the positive integers from a certain point on.
On the other hand, they obtained only a partial answer for r1 and r2. In
particular, they proved that if

lim
n→∞

n−A(n)
log n

=∞

then r1(A,n) is not eventually increasing. (This result was also obtained
independently by Balasubramanian [1].)
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Also, for r2(A,n) they proved that if

A(n) = o

(
n

log n

)
then r2(A,n) cannot be increasing from a certain point on.

Motivated by these results, Sárközy asked the following question in his
valuable paper [8] on unsolved problems in number theory (see Problem 4
in [8]).

Problem 1. If A,B are given infinite sets of non-negative integers, what
can one say about the monotonicity of the number of solutions of the equa-
tion

a+ b = n, a ∈ A, b ∈ B?

We can naturally rephrase this question by defining the following func-
tion.

Definition 2. The representation function for two sets A,B ⊂ N0 is

r(A,B, n) = |{(a, b) ∈ A×B : a+ b = n}|.
The main goal of the present paper is to give some sufficient conditions on

A,B for the monotonicity of this function. This new representation function
acts surprisingly different from the preceding functions. Our main result is
as follows.

Theorem 3. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets
A,B ⊂ N0 such that r(A,B, n) is increasing in n, and

lim sup
n→∞

A(n)
nc1

= α, lim sup
n→∞

B(n)
nc2

= β.

In the next sections we develop tools to approach Theorem 3 and prove
some related results. Then we will return to the proof of Theorem 3.

2. Co-Sidon sets. Before proving Theorem 3, we introduce a general-
ized notion of Sidon sets and study some of its properties. Recall that a set
A ⊂ N0 is called Sidon if r1(A,n) ≤ 1 for all n ∈ N, i.e., the sums of un-
ordered pairs of elements of A are all distinct. We remark that it is possible
to extend the notion of a Sidon set to a pair of sets in different ways. In this
paper, we consider the following generalization.

Definition 4. Two sets A,B ⊂ N0 are called co-Sidon if r(A,B, n) ≤ 1
for all n ∈ N0, i.e., the sums a+ b are distinct for all (a, b) ∈ A×B.

Note that if A,B are co-Sidon then |A ∩B| ≤ 1.
For sets A and B of integers we denote their sum set by A+B = {a+b :

a ∈ A, b ∈ B}. For simplicity, if the set B is a single element b we denote
their sum set by A+ b = A+B.
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When A,B are finite sets, we prove a simple but sharp result about
|A|, |B|.

Theorem 5. If A,B ⊂ {0, 1, . . . , n} are co-Sidon, then

min{|A|, |B|} ≤ b
√

2nc.
Furthermore, equality can be obtained for infinitely many values of n.

Proof. Since A and B are finite (and co-Sidon) we have |A+B| = |A| |B|.
Without loss of generality assume |A| ≤ |B|. Then |A|2 ≤ |A+B|.

Clearly, for an element c ∈ A+B we have 0 ≤ c ≤ 2n. However, either 0
or 2n is not an element of A+B, otherwise we would have 0, n ∈ A∩B and
there would be two distinct solutions to a + b = n with a ∈ A and b ∈ B.
Thus, |A + B| ≤ 2n, which yields |A| ≤ b

√
2nc, and the upper bound is

established.
To see that the upper bound is best possible for infinitely many n, con-

sider the following construction for A and B. Let m ∈ N be fixed and define

A := {0,m, 2m, . . . , (2m− 1)m},
B := {0, 1, 2, . . . ,m− 1, 2m2, 2m2 + 1, 2m2 + 2, . . . , 2m2 +m− 1}.

Note that |A| = |B| = 2m and A + B = {0, 1, . . . , 4m2 − 1}. Therefore
A and B are co-Sidon. As A,B ⊆ {0, 1, . . . , 2m2 + m − 1}, we can take
n = 2m2 +m− 1. This gives

2m =
√

4m2 ≤
√

4m2 + 2m− 2 =
√

2n <
√

4m2 + 4m+ 1 = 2m+ 1.

Hence min{|A|, |B|} = 2m = b
√

2nc. As the choice of m was arbitrary,
there are infinitely many n for which we can reach the upper bound in the
statement of the theorem.

The above result can be compared with the following theorem of Erdős
and Turán [4] on finite Sidon sets.

Theorem 6. There is an absolute positive constant c such that if n ∈ N
and A ⊂ {1, . . . , n} is a Sidon set , then |A| < n1/2 + cn1/4.

On the other hand, the best known constructions give Sidon sets of size
n1/2 for infinitely many n (see e.g. [5, 7] for details). The reduction of this
gap is a well-known hard problem.

We now consider the case where A,B are infinite co-Sidon. Defining
An = A ∩ {0, 1, . . . , n} and Bn = B ∩ {0, 1, . . . , n}, we see that An, Bn are
co-Sidon. So, by Theorem 5, for any n we have

min{A(n), B(n)}/
√
n = min{|An|, |Bn|}/

√
n ≤ b

√
2nc/

√
n ≤
√

2.

A simple example shows that we can come close to achieving this bound.

Construction 7. Let A be the set of integers which can be written
in the form

∑k
i=0 αi22i where αi ∈ {0, 1} and k ∈ N. Let B be the set of
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integers which can be written in the form
∑k

i=0 αi22i+1 where αi ∈ {0, 1}
and k ∈ N. It is clear that A and B are co-Sidon and A + B = N0. It can
easily be verified that

lim inf
n→∞

A(n)√
n

= 1, lim sup
n→∞

A(n)√
n

=
√

3,

lim inf
n→∞

B(n)√
n

=
√

2
2
, lim sup

n→∞

B(n)√
n

=
√

6
2
.

Thus,

lim inf
n→∞

min{A(n), B(n)}√
n

=
√

2
2
.

Comparing this with the following result of Erdős (see [9, 5]), we conclude
that infinite Sidon sets and infinite co-Sidon sets also behave differently. In
general, we have more freedom when working with co-Sidon sets.

Theorem 8. There is an absolute, positive constant c such that for any
infinite Sidon set A ⊂ N we have

lim inf
n→∞

A(n)√
n/log n

< c.

The following theorem of Krückeberg [6] for infinite Sidon sets is also
worth mentioning.

Theorem 9. There is a Sidon set A ⊂ N such that

lim sup
n→∞

A(n)√
n
≥
√

2
2
.

The following definition will be useful for us.

Definition 10. We call sets A,B ⊂ N0 perfect if the sum set A+B is
an interval (possibly unbounded) of consecutive integers.

The next proposition will be helpful in building new perfect co-Sidon
sets from other co-Sidon sets.

Proposition 11. Let A,B ⊂ N0 be finite perfect co-Sidon sets. Let
c = max(A) + max(B) − min(A) − min(B) + 1. Then for any k ∈ N0, the
sets A and C =

⋃k
i=0 (B + ic) are perfect co-Sidon.

Proof. Let r = min(A) + min(B). By assumption, A + B = {r, r + 1,
. . . , c+ r− 1}. For each i, the sets A and B+ ic are co-Sidon. Furthermore,
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the sets

A+ (B + c) = {c+ r, c+ r + 1, . . . , 2c+ r − 1},
A+ (B + 2c) = {2c+ r, 2c+ r + 1, . . . , 3c+ r − 1},

...
A+ (B + kc) = {kc+ r, kc+ r + 1, . . . , (k + 1)c+ r − 1}

are all pairwise disjoint consecutive intervals. Therefore A and
⋃k

i=0 (B+ ic)
are perfect co-Sidon with sum set {r, r + 1, . . . , (k + 1)c+ r − 1}.

Clearly, the proposition also holds for C =
⋃∞

i=0 (B + ic).
Next we characterize all infinite perfect co-Sidon sets A,B ⊂ N0 using

the mixed-radix representation. Note that both the co-Sidon and perfect
properties are invariant under translation of each of the sets (i.e. addition
or subtraction of a constant), so without loss of generality we may assume
0 ∈ A ∩B.

Theorem 12. Let A,B ⊂ N0 be infinite, such that 0 ∈ A ∩ B. Then
A,B are perfect co-Sidon if and only if there exists an infinite sequence of
integers (ki)∞i=1 such that ki ≥ 2 for all i, and (up to an exchange of A
and B)

A =
{ ∞∑

i=1

k1k2 · · · k2i−2a2i−1 : ∀j, 0 ≤ a2j−1 < k2j−1,

finitely many a2i−1 non-zero
}
,

B =
{ ∞∑

i=1

k1k2 · · · k2i−1a2i : ∀j, 0 ≤ a2j < k2j ,

finitely many a2i non-zero
}
.

Proof. A sum of the form
∑∞

i=1 k1k2 · · · ki−1ai, where 0 ≤ aj < kj and
only finitely many ai are non-zero, is precisely the so-called mixed-radix
representation with bases (k1, k2, . . .). Thus the base r representation is the
special case where ki = r for all i. For any sequence (ki)∞i=1 of integers with
ki ≥ 2, every non-negative integer is uniquely representable with bases (ki).

Let (ki)∞i=1 be a sequence of integers such that ki ≥ 2 for all i. Suppose
A and B are of the form determined by the bases ki as above. As every
non-negative integer is uniquely representable with bases (ki), A and B are
co-Sidon. Also observe that

A+B =
{ ∞∑

i=1

k1k2 · · · ki−1ai : ∀j, 0 ≤ aj < kj , finitely many ai non-zero
}
.

Thus A+B = N0 and therefore A and B are perfect.
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Now assume that A,B are perfect co-Sidon. Unless A = B = {0}, we
can assume without loss of generality that 1 ∈ A. To show that A,B are of
the required form, we need to construct a sequence of base elements (ki)i∈N
that represents A and B as in the statement of the theorem.

Our construction of the integers ki is recursive. Let k0 = 1. For t ≥ 1
define ct = kt−1kt−2 · · · k0 and let

kt =
{

max{a : {ct, 2ct, . . . , (a− 1)ct} ⊂ A} if t is odd,
max{b : {ct, 2ct, . . . , (b− 1)ct} ⊂ B} if t is even.

Note that kt < ∞ for all t > 0. Otherwise, one of A or B contains an
infinite arithmetic progression, whose consecutive terms differ by ct. But
as they are co-Sidon, this implies that the other set is finite (in fact of
cardinality at most ct), a contradiction.

Now define two families of sets. Let A0 = B0 = {0} and, for each t ≥ 1,

At =
{ t∑

i=1

k1k2 · · · ki−1ai : ∀j, 0 ≤ aj < kj and a2j = 0
}
,

Bt =
{ t∑

i=1

k1k2 · · · ki−1bi : ∀j, 0 ≤ bj < kj and b2j−1 = 0
}
.

Note that for all j, A2j = A2j−1 and B2j−1 = B2j−2. Let A∗ =
⋃∞

i=0At and
B∗ =

⋃∞
i=0Bt. It only remains to prove that A = A∗ and B = B∗. We will

use the following claim.

Claim 13. For all t ≥ 0,

A ∩ {0, 1, . . . , k1 · · · kt − 1} = At, B ∩ {0, 1, . . . , k1 · · · kt − 1} = Bt.

Proof. Suppose not and let t be minimal such that the claim does not
hold. Thus there must exist an x ∈ N such that either

x ∈ (A ∩ {0, 1, . . . , k1k2 · · · kt − 1})4At

or
x ∈ (B ∩ {0, 1, . . . , k1k2 · · · kt − 1})4Bt

where 4 denotes the symmetric difference of sets. Pick a minimal such x.
Let us assume that t is odd and t ≥ 3; the proof is trivial for t = 0 or
t = 1 and similar when t ≥ 2 is even. As t is odd (and minimal), Bt =
Bt−1 = B ∩ {0, 1, . . . , k1 · · · kt−1 − 1} ⊂ B ∩ {0, 1, . . . , k1 · · · kt − 1}, thus
Bt \ (B ∩ {0, 1, . . . , k1 · · · kt − 1}) is empty.

Now write

x =
t∑

i=1

k1k2 · · · ki−1ai
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in the mixed-radix representation with bases (ki)∞i=1. Set

z =
bt/2c∑
i=0

k1 · · · k2ia2i+1, w =
bt/2c∑
i=1

k1 · · · k2i−1a2i.

By definition, z ∈ At, w ∈ Bt = Bt−1 and x = z + w. By the minimality
of t, Bt−1 ⊂ B, thus w ∈ B. We now distinguish the remaining three cases.

(i) Suppose x ∈ (A∩ {0, 1, . . . , k1 · · · kt − 1}) \At. Since x /∈ At, we have
x 6= z, thus z ∈ A by minimality of x. Now x, z ∈ A and 0, w ∈ B. But
x+ 0 = z + w, contradicting the fact that A and B are co-Sidon.

(ii) Suppose x ∈ At \ (A ∩ {0, 1, . . . , k1 · · · kt − 1}). As A + B = N0, we
can write x = a + b with a ∈ A, b ∈ B. Note that x ≤ k1k2 · · · kt − 1 and
this implies x /∈ A. In particular, x 6= a. We claim that x = b. If not, then
0 < a, b < x and the minimality of x implies that a ∈ At and b ∈ Bt. But
a+ b = x ∈ At, which contradicts the definition of At and Bt. Thus we may
suppose x = b, i.e., x ∈ At ∩B.

For 0 ≤ i ≤ bt/2c − 1, define

α2i+1 =
{
k2i+1 − a2i+1 if a2i+1 > 0,
0 if a2i+1 = 0,

β2i+2 =
{

0 if α2i+1 = 0,
1 if α2i+1 > 0.

Let

u = (αt−10αt−4 . . . α3 − α1)(ki) =
bt/2c−1∑

i=0

k1 · · · k2iα2i+1 ∈ At−2,

v = (βt−10βt−30 . . . β20)(ki) =
bt/2c∑
i=1

k1 · · · k2i−1β2i.

By definition of kt, at
∏t−1

i=0 ki ∈ A, and by minimality of t, we have u ∈ A
and v ∈ B. Clearly, u 6= at

∏t−1
i=0 ki. But u+x = at

∏t−1
i=0 ki +v, contradicting

the fact that A and B are co-Sidon.
(iii) Suppose x ∈ (B ∩ {0, 1, . . . , k1 · · · kt − 1}) \ Bt. Clearly, x /∈ A,

otherwise 0, x ∈ A∩B, which contradicts A,B being co-Sidon. Also, x /∈ At,
otherwise x ∈ At ∩ B and we can continue as at the end of case (ii). Thus
x 6= z, and this implies z ∈ A by the minimality of x. Also, w ∈ Bt implies
x 6= w. Now 0 + x = z + w, with 0, z ∈ A and x,w ∈ B, contradicting the
fact that A and B are co-Sidon.

To complete the proof of the theorem, we must show that kt ≥ 2 for all
t > 0. Suppose that kt0 = 1. That is, ct0 = k1k2 · · · kt0−1 is in neither A
nor B. But then, as A and B are perfect co-Sidon, there exist a ∈ A and
b ∈ B such that a + b = ct0 . By assumption, a, b < ct0 . But clearly (a, b) /∈
At0 ×Bt0 as At0 +Bt0 ⊂ {0, 1, . . . , ct0 − 1}, contradicting Claim 13.
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Theorem 12 allows us to make a useful observation about the structure
of perfect co-Sidon sets.

Corollary 14. If A and B are infinite perfect co-Sidon sets then for
all m ∈ N there are infinitely many n ∈ N such that

{n, n+ 1, . . . , 2n+m} ∩A = ∅.
Proof. As the statement remains true when we translate A or B, it suf-

fices to prove it for A and B with 0 ∈ A ∩ B. There exists an infinite
sequence of integers (ki) with ki ≥ 2 for all i such that A and B are repre-
sented by the bases ki as in Theorem 12. Fix m ∈ N and let t be such that
2
∏t−1

i=0 ki − 3 ≥ m and (kt − 1)
∏t−1

i=0 ki ∈ A. Then by Theorem 12 the next
element in A is exactly

∏t+1
i=0 ki. Let n = (kt − 1)

∏t−1
i=0 ki + 1. Now

t+1∏
i=0

ki = kt+1{(kt − 1) + 1}
t−1∏
i=0

ki ≥ 2
{
n− 1 +

t−1∏
i=0

ki

}
≥ 2n− 2 +m+ 3 = 2n+m+ 1.

Thus {n, n+ 1, . . . , 2n+m} ∩ A = ∅. Since A is infinite, it follows that for
every m there are infinitely many such n.

It is natural to ask whether all co-Sidon sets A,B are subsets of per-
fect co-Sidon sets A∗, B∗. The answer turns out to be no, as the following
proposition shows.

Proposition 15. The sets A = {2k : k ∈ N, k ≥ 9} and B = {3l :
l ∈ N, l ≥ 9} are co-Sidon and there are no perfect co-Sidon sets A∗, B∗

such that A ⊆ A∗ and B ⊆ B∗.
Proof. The Diophantine equation 2k + 3l = 2m + 3n with k < m and

l > n has only five solutions (see [10]); all have exponents less than 9. This
implies that A and B are co-Sidon.

Note that, for all n ≥ 29, A contains numbers between n and 2n. That
is, for all n, A ∩ {n, n + 1, . . . , 2n} 6= ∅. However, if A∗ and B∗ are perfect
co-Sidon sets such that A ⊂ A∗ and B ⊂ B∗, then according to Corollary 14
there is an n with A∗ ∩ {n, n+ 1, . . . , 2n+m} = ∅.

3. Representation function. We seek to provide sufficient conditions
on A and B so that the representation function r(A,B, n) = |{(a, b) ∈
A×B : a+ b = n}| is (eventually) increasing. For C ⊂ N0 let us denote its
complement by C = N0 \ C.

It is easy to see that if either A or A is finite and either B or B is
finite then r(A,B, n) is eventually monotone. Indeed, if A and B are finite,
then for all n > max(A) + max(B) we see that b ∈ B implies n − b ∈ A
and thus r(A,B, n) = |B|. Also, if A and B are finite, then for all n >
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max(A) + max(B) we have r(A,B, n) = n+ 1− |A| − |B|. Finally, if A and
B are both finite then it is obvious that r(A,B, n) is eventually monotone.
So the study is non-trivial only in the case when A and A are both infinite.

Proposition 16. Let A,B ⊂ N0 be infinite perfect co-Sidon sets such
that A + B = N0. Then, for any A′ ⊂ A and B′ ⊂ B, the representation
function r(A+B′, B +A′, n) is increasing.

Proof. Note that

r(A+B′, B +A′, n) = r
( ⋃

b∈B′

A+ b,
⋃

a∈A′

B + a, n
)

=
∑

a∈A′, b∈B′

r(A+ b, B + a, n).

The second equality holds because the unions are disjoint.
From A+B = N0 it follows that (A+ b) + (B+a) = N0 +a+ b and thus

each summand is

r(A+ b, B + a, n) =
{

0 if n < a+ b,

1 if n ≥ a+ b.

Therefore, the representation function r(A+B′, B +A′, n) is increasing.

It follows from Theorem 12 that sets A and B which are infinite perfect
co-Sidon exist. Since the subsets in Proposition 16 are arbitrary, we can
construct many sets A and B such that r(A,B, n) is increasing. The next
theorem allows us to choose sets A and B whose representation function is
increasing and whose counting functions A(n) and B(n) grow at a controlled
rate.

Theorem 17. Let A,B ⊂ N0 be infinite perfect co-Sidon such that
A+B = N0. Let f : N0 → R be such that A(n) ≤ f(n) and for every
M > 0 there exists n0 such that for n > n0 we have f(n) < n+ 1−MA(n).
Then there exists a B′ ⊆ B such that

(A+B′)(n) ≤ f(n) for all n ∈ N0

and
(A+B′)(n) ≥ f(n)−A(n) for infinitely many n ∈ N0.

Proof. Let A and B be as in the statement and write B = {b0 < b1 < · · · }.
By assumption, b0 = 0. Let us construct B′ ⊆ B greedily as follows: set
B′0 = {0} and for i > 0 let

B′i+1 =
{
B′i ∪ {bi+1} if (A+ (B′i ∪ {bi+1}))(n) ≤ fA(n) for all n ∈ N0,

B′i otherwise.

Then let B′ =
⋃∞

i=0B
′
i. We claim that this B′ satisfies the conditions of the
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theorem. By the construction,

(A+B′)(n) ≤ f(n) for all n ∈ N0.

To prove that the other inequality holds for infinitely many values of n, we
first need to show that B\B′ is infinite. Suppose that B\B′ is finite, and let
M = |B \B′|. Since A+B \B′ =

⋃
b∈B\B′(A+ b) we have (A+B \B′)(n) ≤

MA(n) for every n. Now, clearly,⋃
b∈B′

(A+ b) = N0 \
⋃

b∈B\B′

(A+ b).

It follows that (A + B′)(n) = n + 1 − (A + (B \ B′))(n) ≥ n + 1 −MA(n)
for all n. But, for large enough n, we have n+ 1−MA(n) > f(n). Then for
large enough n we would have (A + B′)(n) > f(n), which contradicts the
construction of B′. Hence B \B′ is infinite.

Therefore, for infinitely many i, we have bi+1 /∈ B′. For such an i we
have B′i+1 = B′i. Therefore, by definition of B′i+1, there exists ni+1 such
that (A+B′i ∪ {bi+1})(ni+1) > f(ni+1). Note that ni+1 ≥ bi+1, because for
all n < bi+1,

(A+B′i ∪ {bi+1})(n) = (A+B′i)(n) ≤ fA(n).

Therefore there are infinitely many n such that

(A+B′)(n) ≥ (A+B′i)(n) ≥ f(n)−A(n).

Our main theorem follows as a corollary of Theorem 17. We restate it
here for easy reference:

Theorem 3. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets
A,B ⊂ N0 such that r(A,B, n) is increasing in n, and

lim sup
n→∞

A(n)
nc1

= α, lim sup
n→∞

B(n)
nc2

= β.

Proof. Suppose we are given constants 0 ≤ α < 1 and 1/2 < c1 ≤ 1. Let
A0, B0 be perfect co-Sidon sets such that A0(n) = Θ(n1/2), B0(n) = Θ(n1/2)
(e.g. Construction 7). Let f(n) = αnc1 +d where d is a constant large enough
such that f(n) ≥ A0(n) for all n. Clearly, for all m > 0 there exists an n0

such that for n > n0, f(n) < n + 1 − mA0(n). By Theorem 17, there is
a B′ ⊂ B0 such that (A0 + B′)(n) ≤ f(n) for all n and (A0 + B′)(n) ≥
f(n)−A0(n) for infinitely many n. Set A = A0 +B′. Then

α = lim
n→∞

f(n)
nc1

≥ lim sup
n→∞

A(n)
nc1

≥ lim
n→∞

f(n)−A0(n)
nc1

= α.

We can construct B in the same manner. By Proposition 16, the represen-
tation function r(A,B, n) is increasing.
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By modifying the previous two proofs, we can restate Theorem 3 with
either (or both) of the upper limits replaced with lower limits. The details
are left to the interested reader. Theorem 3 gives a strong answer about the
densities of sets A and B with monotone representation function r(A,B, n).

When c1 = c2 = 1 and α, β ∈ Q we can restate Theorem 3 by replacing
the upper limits with standard limits.

Theorem 18. For all rational 0 ≤ α, β ≤ 1, there exist sets A,B ⊂ N0

such that A has density α, B has density β and r(A,B, n) is increasing in n.

Proof. We construct A and B using mixed-radix representation to de-
scribe its elements. Write α = p1/q1 and β = p2/q2 where pi, qi ∈ N. Set
k1 = q1, k2 = q2 and ki = 2 for all i > 2. Let A0 be the set of all integers
that can be written in the form

k∑
i=0

k1k2 · · · k2ia2i+1

where for each i, 0 ≤ a2i+1 < k2i+1. Similarly, let B0 be the set of all integers
that can be written in the form

k∑
i=1

k1k2 · · · k2i−1b2i

where for each i, 0 ≤ b2i < k2i. Note that A0 and B0 are perfect co-Sidon.
Let A′ be the subset of A0 consisting of all those integers whose k1-

digit (in the mixed-radix representation) lies in the set {0, 1, . . . , p1 − 1}.
As p1 ≤ q1 we must have p1 − 1 ≤ k1 − 1. Thus A′ is well-defined. Then
B = A′ +B0 is the set of all numbers whose k1-digit lies in {0, . . . , p1 − 1},
that is, B consists of the numbers congruent to 0, 1, . . . , p1 − 1 (mod q1).
The density of this set is clearly p1/q1.

Similarly, let B′ be the subset of B0 consisting of all those integers whose
k2-digit (in the mixed-radix representation) lies in the set {0, 1, . . . , p2− 1}.
Again as p2 ≤ q2 we have p2−1 ≤ k2−1 so B′ is also well-defined. A similar
argument holds when we are considering A = A0 + B′. Here, A is the set
of numbers whose k2-digit is in {0, 1, . . . , p2 − 1}. Thus A consists exactly
of the numbers less than or equal to (p2 − 1)q1 (mod q1q2). This follows
as the base of the first digit is q1. Again, it is clear that A has density
(p2q1)/(q1q2) = p2/q2.

By Proposition 16, r(A,B, n) is increasing.

Finally, we determine for which sets A,B the representation function
r(A,B, n) is eventually strictly increasing. The corresponding question for
a single set has been considered by Chen and Tang [2], who discuss when
the functions r, r1, r2 are strictly increasing. When considering two sets and
the function r, the problem turns out to be easy.
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Proposition 19. Let A,B ⊂ N0. Then the representation function
r(A,B, n) is eventually strictly increasing if and only if A and B are finite.

Proof. First, let us assume that r(A,B, n) is eventually strictly increas-
ing. We will use the trivial identity

n+ 1 = r(N0,N0, n) = r(A,B, n) + r(A,B, n) + r(A,B, n) + r(A,B, n),

which is equivalent to

n+ 1− r(A,B, n) = r(A,B, n) + r(A,B, n) + r(A,B, n).

In the last identity the left hand side is bounded, since we have assumed that
r(A,B, n) is eventually strictly increasing. Thus the right hand side is also
bounded. Hence r(A,B, n), r(A,B, n) and r(A,B, n) are all bounded. From
this it follows that r(A,N0, n) = r(A,B, n) + r(A,B, n) and r(N0, B, n) =
r(A,B, n) + r(A,B, n) are bounded. Thus A and B must be finite.

Now we assume that A and B are finite. For any n > max(A) + max(B)
we know that a ∈ A implies n− a 6∈ B and vice versa, so we can write

r(A,B, n) = n+ 1− |A| − |B| < n+ 2− |A| − |B| = r(A,B, n+ 1).

Thus for n > max(A) + max(B) the representation function is strictly in-
creasing.

4. Open problems. A far-reaching goal would be to completely charac-
terize co-Sidon sets. Which co-Sidon sets are subsets of some perfect co-Sidon
sets? Are two random sets likely to be co-Sidon?

Can we completely characterize sets A,B whose representation function
is increasing? Are there constructions that do not come from perfect co-
Sidon sets?
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(1987), 45–53.

[2] Y. Chen and M. Tang, On the monotonicity properties of additive representation
functions, II, preprint.
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[6] F. Krückeberg, B2-Folgen und verwandte Zahlenfolgen, J. Reine Angew. Math. 206

(1961), 53–60.
[7] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993),

259–282.
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