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1. Introduction. For a real number x, {x} is the fractional part of x,
and ‖x‖ is the distance between x and the nearest integer.

Let us fix θ ∈ (0, 1) and n ∈ N. If {mθ} are inserted into the unit circle
(i.e. the circle of unit circumference) for 0 ≤ m < n, the resulting elementary
intervals have at most three lengths, one being the sum of the other two. This
property, known as the Steinhaus conjecture or the three distance theorem was
first proved by Sós [So1], [So2] and then by Surányi [Su] and Świerczkowski
[Sw] (see also [AB] for a recent survey). Later on Geelen and Simpson [GS]
proved the five distance theorem: there are at most five lengths when the
unit circle is partitioned by the points {mθ} and {mθ + α}, for 0 ≤ m < n
(see also [CG] and [L] for a “3d-distance” generalization).

A θ-billiard sequence is a sequence F (j) ∈ [0, 1), j ∈ N, which satisfies
the following conditions (see [F]):

F (j) + F (j + 1) = θ or 1 + θ for j odd,
F (j) + F (j + 1) = 0 or 1 for j even.

We consider a billiard table rectangle with perimeter of length 1 with the left
top vertex labeled v0, and the others, in the clockwise direction, v1, v2 and v3.
The distance from v0 to v1 is θ/2. We describe the position of points on the
perimeter by their distance along the perimeter measured in the clockwise
direction from v0, so that v1 is at position θ/2, v2 at 1/2 and v3 at (θ+1)/2.
If a billiard ball is pushed from position F (1) at the angle of π/4, then it
will rebound against the sides of the rectangle consecutively at points F (2),
F (3), . . . .

Let n ≥ 5 and Φ = {F (j) : 1 ≤ j ≤ n} be a set of different points. An
open connected subset of the perimeter of the billiard rectangle with differ-
ent endpoints in Φ is called a segment. A segment with endpoints F (k),
F (l), 1 ≤ k, l ≤ n, is called even (or odd), and has weight |k − l| (or
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k + l), if k, l are of the same (or different) parity. The length of a seg-
ment is a distance along the perimeter between its endpoints. A segment
of length less than 1/2 is called short. A short segment with endpoints
F (k), F (k + 1), 1 ≤ k < n, is called a corner segment. A segment is
called elementary if there are no points of Φ between its endpoints. Suppose
∅ 6= V ⊆ {F (1), F (n)}. A segment I is associated with V if I is an elementary
segment incident with an element of V or I ∩Φ is a nonempty set contained
in V . Since n ≥ 5, any segment associated with {F (1), F (n)} is uniquely
determined by its endpoints. By (F (k), F (l)) (respectively (F (k), F (l))e or
(F (k), F (l))a) we denote the short segment (respectively the elementary seg-
ment or the segment associated with the set {F (1), F (n)}) incident with
F (k) and F (l). Note that (F (k), F (l)) and (F (l), F (k)) are the same seg-
ment.

@
@
@
@
@
@
@@
�
�
�@

@
@
@

@
@
@

@
@
@��

@
@
@
@
@
@
@
@
@�

�
�
�
�
�
@

@
@

@@

v0 v1

v2v3

F (8) F (1)

Fig. 1. A chain of odd elementary segments with weight 9: (F (1), F (8)), (F (2), F (7)),
(F (3), F (6)), (F (4), F (5))
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Fig. 2. A chain of even elementary segments with weight 4: (F (1), F (5)), (F (2), F (6)),
(F (3), F (7)), (F (4), F (8)), (F (5), F (9))
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In Lemma 2.3 we prove that short and elementary segments come in
equal weight chains with pairs

. . . , (F (i), F (j)), (F (i+ 1), F (j − 1)), (F (i+ 2), F (j − 2)), . . .

if i and j have opposite parity (see Fig. 1), and with pairs

. . . , (F (i), F (j)), (F (i+ 1), F (j + 1)), (F (i+ 2), F (j + 2)), . . .

if i and j have the same parity (see Fig. 2). Such a chain can end with a
corner segment (four possibilities), or with one of the indices i, j equal to 1
(two possibilities), or with one of the indices i, j equal to n (two possibilities),
or with the chain being stopped by F (1) or F (n) falling inside what would
be the next short and elementary segment. This gives at most ten possible
end pairs of the chains, so at most five chains and at most five weights.

Let ω1 < ω2 be odd weights and ω0 be an even weight of segments as-
sociated with {F (1)}, and let ω3 < ω4 be other odd weights of segments
associated with {F (1), F (n)} (see Corollary 2.2). Suppose a0, . . . , a4 are the
lengths of these segments with weights ω0, . . . , ω4, respectively. The main re-
sult of this paper is Theorem 2.3, which says that the weights of elementary
segments have at most five different values ω0, . . . , ω4. Elementary segments
with equal weights have equal lengths. Moreover, if Ai is the set of all ele-
mentary segments with weight ωi, then

|A2|+ ε|A1| = |A3|+ δ|A4| = 1
2ω0

and
a2 − εa1 = a3 − δa4 = a0

for some ε, δ ∈ {−1, 1}. The set A0 is a union of at most ω0 sequences, each
of them consisting of successively adjacent elementary segments, and the
difference between the lengths of two such sequences is at most 1.

In [F], it has been proved that a sequence F (j) ∈ [0, 1), j ∈ N, is a
θ-billiard sequence if and only if it satisfies the following conditions:

F (2j) = {jθ − F (1)} for j ∈ N,
F (2j + 1) = {−jθ + F (1)} for j ∈ N ∪ {0}.

This implies that the set {F (j) : 1 ≤ j ≤ 2n} is a union of two sets of points
placed consecutively along the unit circle at the constant arc distance θ in
two opposite directions:

(∗) {F (j) : 1≤j≤2n} = {{jθ−β} : 1≤j≤n}∪{{(n−j)θ+γ} : 0 ≤ j < n},
where β = F (1) and γ = F (1)− nθ.

Let us consider the unit directed circle partitioned into n intervals (called
elementary intervals) by the set of 2n different points of two kinds: {mθ}
and {mθ + α}, where 0 ≤ m < n. For an elementary interval with initial
point {kθ} or {kθ + α} and terminal point {lθ} or {lθ + α}, we define its
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weight as l−k. An elementary interval is said to be even if its endpoints are
of the same kind. Other elementary intervals are called odd. We say that two
odd intervals are equivalent if they have the same weight and their initial
points are of the same kind. Using Lemma 2.3 and (∗) one can formulate
Theorem 2.3 in the following way: Any two even intervals have the same
weight and the same length, say ω and a0. The set of all even intervals is
a union of at most 2|ω| sequences, each of them consisting of successively
adjacent elementary intervals, and the difference between the lengths of two
such sequences is at most 1. The set of all odd intervals is a union of at
most four equivalence classes A1, A2, A3, A4, each of them consisting of
elementary intervals with equal length, respectively a1, a2, a3, a4. Moreover,
the following conditions are satisfied:

|A2|+ ε|A1| = |A3|+ δ|A4| = |ω|

and
a2 − εa1 = a3 − δa4 = a0

for some ε, δ ∈ {−1, 1}.

2. Five weight theorem. Suppose 0 < θ < 1 and F (j) is a θ-billiard
sequence. Let n ∈ N, n ≥ 5. We assume that the elements F (1), . . . , F (n)
are different.

For real numbers x, y we write x ≡ y iff x ≡ y (mod 1). Thus we have

‖x‖ = ‖y‖ iff x ≡ y or x ≡ −y.

Remark 2.1. By definition of a θ-billiard sequence we obtain:

F (l)− F (k) ≡
{
F (k + 1)− F (l + 1) for k < l of the same parity,
F (k + 1)− F (l − 1) for k < l of different parity.

Theorem 2.1. Short segments with equal weights have equal lengths.

Proof. Notice that a short segment (F (k), F (l)) has length ‖F (k)−F (l)‖.
By Remark 2.1 we have

F (l)− F (k) ≡ (−1)n−l(F (n)− F (k + n− l))

for k < l of the same parity, and

F (l)− F (k) ≡ (−1)(l−k−1)/2

(
F

(
l + k + 1

2

)
− F

(
l + k − 1

2

))
for k < l of different parity. Hence, each short and even (respectively odd)
segment I has the same length as the only short segment incident with F (n)
(the only corner segment, respectively) which has the same weight as I.
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Lemma 2.1. If (F (k), F (l)) is a short segment and F (m) ∈ (F (k), F (l)),
1 ≤ m ≤ n, then

F (m+ (−1)m) ∈ (F (k + (−1)k), F (l + (−1)l))

for 1 ≤ m+ (−1)m, k + (−1)k, l + (−1)l ≤ n, and
F (m− (−1)m) ∈ (F (k − (−1)k), F (l − (−1)l))

for 1 ≤ m− (−1)m, k − (−1)k, l − (−1)l ≤ n.
Proof. Since the segment (F (k), F (l)) is short,

(F (k), F (l)) = {x ∈ [0, 1) : ‖F (k)− x‖+ ‖x− F (l)‖ = ‖F (k)− F (l)‖,
x 6= F (k), x 6= F (l)}.

If F (m) ∈ (F (k), F (l)), then by Theorem 2.1 we obtain

‖F (k ± (−1)k)− F (m± (−1)m)‖+ ‖F (m± (−1)m)− F (l ± (−1)l)‖
= ‖F (k)− F (m)‖+ ‖F (m)− F (l)‖

= ‖F (k)− F (l)‖ = ‖F (k ± (−1)k)− F (l ± (−1)l)‖,
which ends the proof.

Lemma 2.2. Let the short segment (F (k), F (l)), k < l, be elementary.
Then the following implications hold :

(1) If k, l are of different parity , then the short segment (F (k + 1),
F (l − 1)) is elementary.

(2) If k, l are of the same parity and l < n (1 < k), then the short
segment (F (k + 1), F (l + 1)) ((F (k − 1), F (l − 1)), respectively) is
elementary or associated with {F (1), F (n)}.

(3) If k, l are of different parity and 1 < k, l < n, then the short segment
(F (k − 1), F (l + 1)) is elementary or associated with {F (1), F (n)}.

Proof. (1) Let F (m) ∈ (F (k + 1), F (l − 1)) for some 1 ≤ m ≤ n. If m,
k + 1 are of the same parity, then by Lemma 2.1 we have

F (m− 1) ∈ (F (k), F (l)) for m > 1.

If m = 1, then by Lemma 2.1,

F (i) ∈ (F (k + i), F (l − i)) for 1 ≤ i ≤ l − k.
Hence F (l − k) ∈ (F (l), F (k)).

If m, k + 1 are of different parity, then by Lemma 2.1 we have

F (m+ 1) ∈ (F (k), F (l)) for m < n.

If m = n then by Lemma 2.1,

F (n+ 1− i) ∈ (F (k + i), F (l − i)) for 1 ≤ i ≤ l − k.
Hence F (n+ 1− l + k) ∈ (F (l), F (k)).
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(2) Let F (m) ∈ (F (k+ 1), F (l+ 1)) for some 1 < m < n. If m, k+ 1 are
of different parity, then by Lemma 2.1,

F (m+ 1) ∈ (F (k), F (l)).

If m, k + 1 are of the same parity, then by Lemma 2.1,

F (m− 1) ∈ (F (k), F (l)).

(3) Let F (m) ∈ (F (k− 1), F (l+ 1)) for some 1 < m < n. If m, k− 1 are
of different parity, then by Lemma 2.1,

F (m− 1) ∈ (F (k), F (l)).

If m, k − 1 are of the same parity, then by Lemma 2.1,

F (m+ 1) ∈ (F (k), F (l)),

which completes the proof.

Remark 2.2. An odd (respectively even) elementary segment which is
not short is of the form (F (1), F (2))e or (F (n − 1), F (n))e (respectively of
the form (F (1), F (n))e).

Theorem 2.2. If (F (k), F (1))e, (F (1), F (n))e, 1 < k < n, are elemen-
tary segments incident with F (1), then k is even.

Proof. Suppose a contrario that k is odd. Since k < n, by Remark 2.2
the elementary segment (F (k), F (1))e is short. Hence by Lemma 2.2(2) there
exists 0 < j ≤ n − k such that the short segment (F (k + j), F (1 + j)) is
associated with {F (1), F (n)}. First we prove

(i) F (1), F (n) /∈ (F (k + j), F (1 + j)).

If F (n) ∈ (F (k + j), F (1 + j)), then F (1) ∈ (F (k + j), F (1 + j)), because
(F (1), F (n))e is elementary and F (1) 6= F (k + j), F (1) 6= F (1 + j). If
F (1) ∈ (F (k + j), F (1 + j)), then ‖F (k + j)− F (1 + j)‖ > ‖F (k)− F (1)‖,
because (F (k), F (1)) is elementary. Hence, by Theorem 2.1 we obtain a con-
tradiction ‖F (k + j)− F (1 + j)‖ = ‖F (k)− F (1)‖.

Since (F (k+j), F (1+ j)) is associated with {F (1), F (n)}, by (i) we have
k + j = n and

(ii) the segment (F (n), F (1 + n− k)) is elementary.

It follows that the segments (F (k), F (1)), (F (1), F (n))e, (F (n), F (1+n−k))
are elementary and different. By Theorem 2.1,

F (k)− F (1) ≡ F (n)− F (1 + n− k).

Since k is odd, by Remark 2.1,

F (k)− F (1) ≡ (−1)n−k(F (n)− F (1 + n− k)).
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Thus (−1)n−k = 1 and so

(iii) n is odd.

Since there exists an odd elementary segment which is short, by Lemma 2.2(3)
there exists an odd segment associated with {F (1), F (n)}. Hence, we ob-
tain a contradiction because by (ii) and (iii) all segments associated with
{F (1), F (n)} are even.

Corollary 2.1. If (F (1), F (n))e, (F (n), F (l))e, 1 < l < n, are elemen-
tary segments incident with F (n), then l, n are of different parity.

Proof. Set F ′(j)=F (n− j + 1) for 1≤j≤n. Since (F ′(n−l+1), F ′(1))e,
(F ′(1), F ′(n))e are elementary segments incident with F ′(1), by Theorem 2.2,
n− l + 1 is even.

Lemma 2.3.

(1) Let k, l be of different parity and suppose k+ 1 < l. A short segment
(F (k), F (l)) is elementary or associated with {F (1), F (n)} if and
only if the short segment (F (k + 1), F (l − 1)) is elementary.

(2) Let k, l be of the same parity and suppose k < l < n. A short segment
(F (k), F (l)) is elementary or associated with {F (1)} if and only if
the short segment (F (k + 1), F (l + 1)) is elementary or associated
with {F (n)}.

Proof. (1) Assume that F (m) /∈ (F (k), F (l)) for 1 < m < n. If F (2) ∈
(F (k + 1), F (l−1)) and k+1 is even, then by Lemma 2.1, F (1)∈(F (k), F (l)).
Hence we obtain a contradiction since by Theorem 2.2, k is even. If F (n− 1)
∈ (F (k + 1), F (l − 1)) and n − 1, l − 1 are of the same parity, then by
Lemma 2.1, F (n) ∈ (F (k), F (l)). Hence we obtain a contradiction because by
Corollary 2.1, n, l are of different parity. Thus, by the proof of Lemma 2.2(1)
(as l − k > 1), the segment (F (k + 1), F (l − 1)) is elementary.

The opposite implication follows from Lemma 2.2(3).
(2) Assume that F (m) /∈ (F (k), F (l)) for 1 < m ≤ n. If F (2) ∈ (F (k+1),

F (l+ 1)) and k+ 1 is even, then by Lemma 2.1, F (1) ∈ (F (k), F (l)). Hence
we obtain a contradiction because by Theorem 2.2, k is even. Thus, by the
proof of Lemma 2.2(2), we have

F (m) /∈ (F (k + 1), F (l + 1)) for 1 < m < n.

Hence, if k + 1 is odd, then by Theorem 2.2, F (1) /∈ (F (k + 1), F (l + 1)). If
k+ 1 is even and F (1) ∈ (F (k+ 1), F (l+ 1)), then by Lemma 2.1 we obtain
a contradiction F (2) ∈ (F (k), F (l)).

The proof of the opposite implication is analogous.
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Corollary 2.2. There exist exactly two odd segments and one even
segment associated with {F (1)}, and exactly four odd segments associated
with {F (1), F (n)}. The weights of these four odd segments are different.

Proof. The first part of Corollary 2.2 follows from Theorem 2.2 and
Corollary 2.1. By Lemma 2.3(1) short and odd segments which are associ-
ated with {F (1), F (n)} have different weights. Suppose I is an odd segment
associated with {F (1), F (n)} which is not short. Since n ≥ 5, by Remark
2.2 there are four possibilities for the segment I:

I = (F (1), F (2))a, I = (F (n− 1), F (n))a,
I = (F (2), F (3))a, F (1) ∈ I and F (4) /∈ I,

I = (F (n− 2), F (n− 1))a, F (n) ∈ I and F (n− 3) /∈ I.
Hence the weights of I and of any other odd segment associated with {F (1),
F (n)} are different.

Theorem 2.3. Let ω1 < ω2 be odd weights and ω0 be an even weight of
segments associated with {F (1)}, and let ω3 < ω4 be other odd weights of
segments associated with {F (1), F (n)}. Let a0, . . . , a4 be the lengths of those
segments with weights ω0, . . . , ω4, respectively.

(1) The weights of elementary segments have at most five different values
ω0, . . . , ω4. Moreover ,

ω2 − ω1 = ω4 − ω3 = ω0.

If there exists an elementary segment (F (1), F (n))e, then any other
elementary segment is odd.

(2) Elementary segments with equal weights have equal lengths.
(3) If Ai is the set of all elementary segments with weight ωi, 0 ≤ i ≤ 4,

then
|A2|+ ε|A1| = |A3|+ δ|A4| = 1

2ω0

and
a2 − εa1 = a3 − δa4 = a0

for some ε, δ ∈ {−1, 1}.
(4) The set A0 is a union of at most ω0 sequences, each of them consist-

ing of successively adjacent elementary segments, and the difference
between the lengths of two such sequences is at most 1.

Proof. (1) By Corollary 2.2 the weights ω0, . . . , ω4 are different and well
defined. By Lemma 2.3 and Remark 2.2 the weights of elementary segments
have at most five different values ω0, . . . , ω4. Suppose that there exists an
elementary segment (F (1), F (n))e. If there exists an even elementary seg-
ment, not equal to (F (1), F (n))e, then by Remark 2.2 it is short, and by
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Lemma 2.3(2) there exists an even elementary segment (F (k), F (1))e for
some k < n. However, this is impossible by Theorem 2.2.

(2) By Theorem 2.1 short and elementary segments with equal weights
have equal lengths. Suppose I is an elementary segment which is not short.
If I is even, then by Remark 2.2 it is of the form (F (1), F (n))e. Hence by
(1) any other elementary segment is odd. If I is odd, then by Remark 2.2
the weights of I and of any other elementary segment are different.

(3) Suppose (F (k), F (1))e, (F (1), F (l))e, k < l, are elementary segments
incident with F (1), and (F (r), F (n))e, (F (n), F (t))e, r < t, are elementary
segments incident with F (n). Let us consider the following cases:

(i) k, l are of different parity,
(ii) k, l are of the same parity,
(iii) r, t are of different parity,
(iv) r > 1 and r, t are of the same parity,
(v) r = 1 and t is odd.

(i) By Theorem 2.2 k is even and l is odd. Hence

ω2 − ω1 = (l + k)− (k + 1) = ω0, a2 − a1 = a0.

If (F (k), F (l))a is short, then by Lemma 2.3(1),

A1 =
{

(F (1 + i), F (k − i)) : 0 ≤ i ≤ k

2
− 1

}
,

A2 =
{

(F (k + i), F (l − i)) : 0 < i ≤ l − k − 1
2

}
.

Hence
|A2|+ |A1| =

l − k − 1
2

+
k

2
=
ω0

2
.

If (F (k), F (l))a is not short, then by Remark 2.2 and Lemma 2.3(1),

l = k + 1, |A2| = 0 and |A1| =
k

2
.

(ii) By Theorem 2.2 k and l are even. Hence

ω2 − ω1 = (l + 1)− (k + 1) = ω0, a2 + a1 = a0.

Since l > 2, by Remark 2.2 (F (1), F (l))e is short. If (F (k), F (1))e is short,
then by Lemma 2.3(1),

|A2| − |A1| =
l

2
− k

2
=
ω0

2
.

If (F (k), F (1))e is not short, then by Remark 2.2 and Lemma 2.3(1),

k = 2 and |A1| = 1.

(iii) By Corollary 2.1, t, n are of different parity and r, n are of the same
parity. If r = 1, then n = l and n− r = l− 1 = ω0. If r 6= 1, then by Remark
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2.2 the even segment (F (r), F (n))e is short and by (1), n− r = ω0. Hence

ω4 − ω3 = (n+ t)− (t+ r) = ω0, a3 − a4 = a0.

If (F (r), F (t))a is short, then by Lemma 2.3(1),

|A3|+ |A4| =
t− r − 1

2
+
n− t+ 1

2
=
ω0

2
.

If (F (r), F (t))a is not short, then by Remark 2.2 and Lemma 2.3(1),

t = r + 1, |A3| = 0 and |A4| =
n− t+ 1

2
.

(iv) By Corollary 2.1, t, n are of different parity and r, n are of different
parity. Since r > 1, by Remark 2.2 the even segment (F (r), F (t))a is short.
Hence by Lemma 2.3(2),

ω4 − ω3 = (n+ t)− (n+ r) = ω0, a3 + a4 = a0.

Since (F (r), F (n))e and (F (n), F (t))e are short, by Lemma 2.3(1),

|A3| − |A4| =
n− r + 1

2
− n− t+ 1

2
=
ω0

2
.

(v) By Theorem 2.2 and Corollary 2.1, k, n = l are even and k < t. Hence

ω4 − ω3 = (n+ t)− (t+ k) = ω0, a3 − a4 = a0.

If (F (k), F (t))a is short, then by Lemma 2.3(1),

|A3|+ |A4| =
t− k − 1

2
+
n− t+ 1

2
=
ω0

2
.

If (F (k), F (t))a is not short, then by Remark 2.2 and Lemma 2.3(1),

t = k + 1, |A3| = 0 and |A4| =
n− t+ 1

2
.

(4) If there exists an elementary segment (F (1), F (n))e, then (4) follows
from (1). Let I = (F (k), F (l))a and J = (F (k + s), F (l + s))a, k < l < n,
s > 0, be even segments associated with {F (1)} and {F (n)}, respectively.
By Remark 2.2 the segments I and J are short. Hence by Lemma 2.3(2),

A0 \ {I, J} = {(F (k + i), F (l + i)) : 0 < i < s}.
By Theorem 2.2 and Corollary 2.1: if (F (x), F (y)), (F (y), F (z)), x < z, are
even elementary segments, then x < y < z. Hence we obtain (4).

Acknowledgments. The author is very grateful to an anonymous ref-
eree for the very detailed remarks which helped to improve the paper.
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