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1. Introduction. Let k be a perfect field of characteristic p > 0 and
E/k an elliptic curve over k. If k̄ denotes the algebraic closure of k, then
E(k̄) is an Abelian group and its p-torsion, denoted by E[p], is either 0
or Z/pZ. (See, for instance, Theorem V.3.1 in [7].) E is then called super-
singular if E[p] = 0, and ordinary otherwise. (As observed by Silverman
in Remark V.3.2.2 of [7], there are other characterizations of supersingular
elliptic curves relevant to various applications.)

It is a known fact that, for a fixed characteristic p > 0, there are (up to
isomorphism) finitely many supersingular elliptic curves. (See, for instance,
Theorem V.4.1(c) of [7].) Let s be the number of supersingular elliptic curves
(for the fixed characteristic p) and j1, . . . , js be the j-invariants of these
curves. The supersingular polynomial is defined as

(1.1) ssp(X) :=
s∏
i=1

(X − ji).

In these notes we deduce an explicit formula for ssp.
Deuring (in [2]) gave a characterization of supersingular elliptic curves

for p > 2 based on the Legendre form: if E is given by

(1.2) E/k : y2 = x(x− 1)(x− λ),

then E is supersingular if, and only if, λ is a root of

(1.3) Lp(X) :=
r∑
i=0

(
r

i

)2

Xi, where r :=
p− 1

2
.

It turns out that this polynomial has distinct roots in k̄, which allows us to
deduce that there are exactly dr/2e−br/3c supersingular elliptic curves (up
to isomorphism) in characteristic p.
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On the other hand, the supersingular polynomial, as previously defined,
seems to yield a more natural criterion for supersingularity, since it depends
on the j-invariant directly, which would be more appropriate in most situ-
ations than the λ for the curve’s Legendre form. Deuring, also in [2], found
formulas for the Hasse invariant (see Section 2) of an elliptic curve in terms
of the j-invariant, from which one can deduce a formula for ssp. In fact, we
will follow a similar approach and the formula deduced here could be derived
from Deuring’s formulas without too much difficulty. Hence, the formula pre-
sented in these notes is not necessarily new, but as far as the author knows,
it has not appeared explicitly in other publications. Also, the formula as
presented here is not broken into cases depending on the congruence class
of p modulo 12, as are the formulas presented by Deuring.

Several papers have dealt with the supersingular polynomial in the past,
notably [5], [1], and [6]. In [1], J. Brillhart and P. Morton give an explicit
formula for the supersingular polynomial, which depends on the Jacobi poly-
nomials P (α,β)

n . In [5], which is partially expository, a few different polyno-
mials in Q[X] are given that reduce to the supersingular polynomial and,
in particular, the Atkin’s polynomials are quite explicit. Also, Morton’s [6]
has a few formulas, and in fact mentions that a formula can also be deduced
from Deuring’s [2]. The formula given here is simpler than most previous
formulas, except the one given by equations (1.2) and (1.6) of [6], which is
equally simple.

We have:

Theorem 1.1. Let p ≥ 5. Then

(1.4) ssp(X) = (−2)r
r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i,

where r := (p− 1)/2, r1 := dr/3e, r2 := br/2c, r′1 := br/3c and r′2 := dr/2e.

In Section 4, we give an application of the approach taken here, giving a
direct and elementary proof of the known and complex differential equation
satisfied by the supersingular polynomial.

2. Deduction of the formula. Let k be a perfect field of characteristic
p ≥ 5 and E/k an elliptic curve over k:

(2.1) E/k : y2 = x3 + ax+ b.

Then the Hasse invariant of E is the coefficient xp−1 in (x3 +ax+ b)(p−1)/2.
The following theorem, which is the only non-elementary result that we need
here, gives a simple criterion for supersingularity, and is the crucial step of
our deduction.
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Theorem 2.1 (Deuring, Hasse). An elliptic curve E given by (2.1) is
supersingular if , and only if , its Hasse invariant is zero.

To find an explicit formula for the Hasse invariant, we provide the fol-
lowing simple lemma:

Lemma 2.2. Let n and t be positive integers with t ≤ 3n, and n1 :=
max{0, d(3n− t)/3e} and n2 := min{n, b(3n− t)/2c}. Then, if a, b 6= 0, the
coefficient of xt in (x3 + ax+ b)n is

(2.2)
(
b

a

)3n−t n2∑
i=n1

(
n

i

)(
i

3i− (3n− t)

)(
a3

b2

)i
.

Proof. One has

(x3 + ax+ b)n =
n∑
i=0

(
n

i

)
x3(n−i)(ax+ b)i

=
n∑
i=0

i∑
l=0

(
n

i

)(
i

l

)
albi−lx3n+l−3i.

Hence, the terms in xt are obtained when 3n+l−3i = t, i.e., l = 3i−(3n−t).
Since l ≥ 0, we must have i ≥ d(3n − t)/3e, and since l ≤ i ≤ n, we must
have i ≤ b(3n− t)/2c.

Thus, if E is as in (2.1), then the Hasse invariant is given by

(2.3)
(
b

a

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
a3

b2

)i
,

where r := (p − 1)/2, r1 := dr/3e, and r2 := br/2c. (We shall keep this
notation throughout these notes.) Note that the use of floor and ceiling
above prevents the need of dealing with different cases for the congruence
class of p modulo 12.

So, if a 6= 0 (i.e., j 6= 0) and b 6= 0 (i.e., j 6= 1728), then E is supersingular
if, and only if, a3/b2 is a root of

(2.4) F (X) :=
r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi−r1 .

The j-invariant of E is given by

j := 1728
4a3

4a3 + 27b2
.

So, if a 6= 0 and b 6= 0, then

a3

b2
= −27

4
· j

j − 1728
.
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Thus, if j 6= 0 and j 6= 1728, E is supersingular if, and only if, j is a root of

F

(
−27

4
· X

X − 1728

)
.

Clearing denominators, we obtain

(2.5) G(X) :=
r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r1(X − 1728)r2−i.

So, E is supersingular, with j 6= 0, 1728, if, and only if, its j-invariant is a
root of G(X).

We now deal with the cases when j = 0 or j = 1728. (It is well known
when those values are supersingular, but we present a proof here, since this
can be easily deduced from the Hasse invariant.) If j = 1728 (i.e., b = 0),
then the Hasse invariant of E, which we shall denote by A, is given by the
coefficient of xp−1 in

(x3 + ax)r =
r∑
i=0

(
r

i

)
aix3r−2i.

So,

A =

{
0 if r ≡ 1 (mod 2),(
r
r/2

)
ar/2 if r ≡ 0 (mod 2).

Therefore, if r ≡ 1 (mod 2), we should multiply G(X) by X − 1728, and
leave it unchanged otherwise. Hence, if we let r′2 := dr/2e, this can be
accomplished by changing (X − 1728)r2−i in G ((2.5)) to (X − 1728)r

′
2−i.

If j = 0 (i.e., a = 0), then the Hasse invariant of E is given by the
coefficient of xp−1 in

(x3 + b)r =
r∑
i=0

(
r

i

)
bix3(r−i).

So,

A =

{
0 if r 6≡ 0 (mod 3),(
r
r/3

)
br/3 if r ≡ 0 (mod 3).

Therefore, if r 6≡ 0 (mod 3), we should multiply G(X) by X, and leave it
unchanged otherwise. Hence, if we let r′1 := br/3c, this can be accomplished
by changing Xi−r1 in G ((2.5)) to Xi−r′1 .

So, the roots of the polynomial

(2.6) H(X) :=
r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i

are exactly the j-invariants of the supersingular polynomial. Since we know
(see Theorem V.4.1(c) of [7]) that there are exactly r′2−r′1 such j-invariants,
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H(X) has no multiple roots and therefore is, up to a constant multiple, the
supersingular polynomial. (An alternative proof of this fact will be given in
Section 4. See also [3].)

3. The leading coefficient. In this section we finish the construction
of the supersingular polynomial by adjusting the leading coefficient of H(X).
This coefficient is given by

(3.1)
r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
.

Also, by (2.3), the coefficient of xp−1 in the polynomial (x3 − 3x + 2)r =
(x− 1)p−1(x+ 2)(p−1)/2 is(

−2
3

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
.

We will now simplify the expression for this coefficient.
We need the following simple lemma:

Lemma 3.1. If h(x) := (x− 1)p−1(x+ 2)r (in characteristic p), then

h(n)(0) =

n!
n∑
i=0

(
r

i

)
2r−i if 0 ≤ n ≤ r,

n! 3r if n ≥ r.
Proof. We prove the lemma by induction. For n = 0, the statement is

trivially true. So, assume it is true for n− 1, with n ≤ r. We have

dn

dxn
((x− 1)h(x)) = (x− 1)p

dn

dxn
(x+ 2)r = (x− 1)p

r!
(r − n)!

(x+ 2)r−n.

On the other hand, Leibniz rule gives us

(3.2)
dn

dxn
((x− 1)h(x)) = nh(n−1)(x) + (x− 1)h(n)(x).

Comparing these two equations and evaluating at x = 0, the induction
hypothesis gives us

h(n)(0) =
r!

(r − n)!
2r−n + nh(n−1)(0) =

r!
(r − n)!

2r−n + n!
n−1∑
i=0

(
r

i

)
2r−i

= n!
n∑
i=0

(
r

i

)
2r−i.

Hence, the lemma holds for all n ≤ r.
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Observing that
r∑
i=0

(
r

i

)
2r−i = (1 + 2)r,

we can proceed by assuming that the statement holds for some n − 1 with
n ≥ r + 1. Then, since

dn

dxn
((x− 1)h(x)) = (x− 1)p

dn

dxn
((x+ 2)r) = 0

by (3.2), and using the induction hypothesis, we obtain

h(n)(0) = nh(n−1)(0) = n! 3r,

which concludes the proof.

Thus, the coefficient of xp−1 in h(x) = (x − 3x + 2)r is 3r. (Note that
this also implies that F (−27/4) 6= 0.) So, the leading coefficient of H(X) is(

−3
2

)r
3r =

1
(−2)r

,

which gives us the following formulas for the supersingular polynomial (still
with p ≥ 5):

ssp(X) = (−2)r
r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i

=
r′2−r′1∑
l=r1−r′1

[
(−2)r(−1728)r

′
2−r′1−l

r′1+l∑
i=r1

(
−27

4

)i(r
i

)(
i

3i− r

)(
r′2 − i

r′1 + l − i

)]
X l.

4. Differential equations. Finally, we give differential equations sat-
isfied by the polynomials F , G, and ssp, which can sometimes be useful. In
fact, Igusa proved in [4] that Lp(X) (given by (1.3)) has simple roots by
using the fact that Lp satisfies the following differential equation:

4X(1−X)L′′p + 4(1− 2X)L′p − Lp = 0.

(One should observe that this equation comes up naturally in a proper
context, which we shall not describe here.) In the same spirit, we shall give a
proof, at the end of this section, thatH has simple roots, which was crucial to
proving that it gives the supersingular polynomial up to a constant multiple.
This would avoid quoting the known result on the number of supersingular
elliptic curves for a given characteristic, as we have done in Section 2.

One should note that the differential equations given for G and ssp are
certainly not new, but the proofs given here are elementary and do not
depend on any previous result, as the simplicity of the formulas allows us
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to check them directly. We start with a differential equation for

(4.1) F̃ (X) := Xr1 · F (X) =
r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi.

This has a quite simple differential equation, from which we deduce all
others. Note that by (2.3), we have

A =
(
b

a

)r
F̃

(
a3

b2

)
.

Proposition 4.1. We have

(4.2) 4X2(4X + 27)F̃ ′′ + 4X(8X + 27)F̃ ′ + 3(X − 1)F̃ = 0.

Proof. Expanding the left-hand side of (4.2) using (4.1), we find that
the term in Xi+1 has coefficient(
r

i

)(
i

3i−r

)
(16i(i−1)+32i+3)+

(
r

i+1

)(
i+1

3i+3−r

)
(108(i+1)i+108i−2).

We can then factor out r!/((r− i)!(3i+3−r)!(r−2i)!) from this expression,
leaving

(16i2 + 16i+ 3)(3i+ 3− r)(3i+ 2− r)(3i+ 1− r)
+ (108i2 + 216i+ 105)(r − i)(r − 2i)(r − 2i− 1).

Since we are in characteristic p and r = (p−1)/2, a simple calculation shows
that the expression above is zero.

We now proceed to deduce the other equations. Their proofs are simple
and tedious, so we shall only give a brief description of the necessary steps.

Proposition 4.2. The polynomial F (X) (defined by (2.4)) satisfies the
following differential equation:

(4.3) X(4X + 27)F ′′ + (8(r1 + 1)X + 27(2r1 + 1))F ′ +
(

4r1 +
31
36

)
F = 0.

Proof. We just use (4.1) to replace F̃ (and its derivatives) by F (and
its derivatives) in (4.2). After that, we can divide the resulting expression
by Xr1 .

Then, observing that in characteristic p we always have r21 = 1/36, one
obtains (4.3).

Proposition 4.3. The polynomial G(X) (defined by (2.5)) satisfies the
following differential equation:

(4.4) X(X − 1728)G′′ + ((−2r2 + 2r1 + 1)X − 1728(2r1 + 1))G′

+ (r2 − r1)2G = 0.
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Proof. The idea is the same as before. We just use

G(X) = (X − 1728)r2−r1F
(
−27

4
X

X − 1728

)
to replace F (and its derivatives) by G (and its derivatives) in (4.3). We
multiply by 432(X − 1728)r2−r1 to clear denominators.

Observing that

(2r1 + 1)(r2 − r1) +
31
144

+ r1 = (r2 − r1)2,

which can be easily done, for instance by checking the possible congruences
of p modulo 12 (which gives specific values for r1 and r2 in characteristic p),
one can then divide the resulting expression by X− 1728, obtaining (4.4).

We observe that (4.4) is the same as (1.6) in [1].
Finally, we find a differential equation for the supersingular polynomial

itself.

Proposition 4.4. Let B(X) := Xr1−r′1(X − 1728)r
′
2−r2 and C0(X),

C1(X), and C2(X) be the coefficients of G, G′, and G′′ in (4.4) respectively.
Also, let

D2(X) := C2B,

D1(X) := C1B − 2C2B
′,

D0(X) := C0B − C1B
′ + 2((B′)2 − (r1 − r′1)(r′2 − r2)B)C2/B.

Then

(4.5) D2 ss′′p +D1ss′p +D0 ssp = 0.

Proof. As before, just use ssp(X) = B(X)G(X) to obtain (4.5) from
(4.4). (Note that the term C2/B in D0 is in fact a polynomial.)

Although (4.5) does not depend on the possible congruences of p modulo
12, making it somewhat more direct, we can give clearer equations if we
break it into cases.

Corollary 4.5. Let p ≥ 5 be prime. If p ≡ 1 (mod 12), then

X(X − 1728) ss′′p +
1
6

(7X − 6912) ss′p +
1

144
ssp = 0.

If p ≡ 5 (mod 12), then

X2(X − 1728) ss′′p −
1
6
X(X − 6912) ss′p +

1
144

(49X − 165888) ssp = 0.

If p ≡ 7 (mod 12), then

X(X−1728)2 ss′′p +
1
6

(X−1728)(X−6912) ss′p+
1

144
(25X+81216) ssp = 0.
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If p ≡ 11 (mod 12), then

X2(X − 1728)2 ss′′p −
1
6

(X − 1728)(7X − 6912) ss′p

+
1

144
(169X2 − 333504X + 286654464) ssp = 0.

We now use the differential equation (4.4) to prove that H(X) has only
simple roots. Indeed, if H(x0) = H ′(x0) = 0, with x0 6= 0, 1728, we also have
H ′′(x0) = 0. Then successive differentiation would give that x0 is a zero of
H(X) of infinite order, which is a contradiction. But also note that neither
X = 0 nor X = 1728 can be a root of H(X), as one can clearly see from
the definition (remembering that r1 ≤ r2 ≤ r = (p − 1)/2 < p), and hence
H(X) has no multiple roots at all.
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