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1. Introduction. A basic result in the Geometry of Numbers is Min-
kowski’s Second Convex Body Theorem. Given a closed symmetric convex
body K in Rn and a lattice Λ in Rn, the ith successive minimum λi, 1 ≤
i ≤ n, with respect to K and Λ is the least number λ > 0 for which λK
contains i linearly independent lattice points. Clearly, λ1 ≤ · · · ≤ λn and
Minkowski’s Theorem ([8]) says that

2n

n!
detΛ

Vol(K)
≤ λ1 · · ·λn ≤ 2n

detΛ
Vol(K)

,

where Vol(K) is the volume of K and detΛ the determinant of Λ.
Suppose µ1, . . . , µn are reals with µ1 + · · · + µn = 0, and for Q > 1 let

TQ : Rn → Rn be the linear map with

p := (p1, . . . , pn) 7→ (Qµ1p1, . . . , Q
µnpn).

Then a symmetric convex body K gives rise to the bodies K(Q) := TQ(K)
parametrized by Q. We propose to study the successive minima λ1(Q),
. . . , λn(Q) with respect to K(Q), Λ as functions of Q. Trivially,

0 < λ1(Q) ≤ · · · ≤ λn(Q),

and since Vol(K(Q)) = Vol(K), Minkowski’s Theorem gives

c1(K,Λ) ≤ λ1(Q) · · ·λn(Q) ≤ c2(K,Λ),

where c1(K,Λ), c2(K,Λ) depend only on K, Λ.
Our study is inspired by Diophantine Approximation where, beginning

with Dirichlet’s Theorem, a family of systems of inequalities parametrized
by Q > 1 comes into play. Suppose n > 1,

µ1 = 1, µ2 = · · · = µn = −1/(n− 1),
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and let ξ1, . . . , ξn−1 be real numbers. Then Dirichlet’s Theorem on simulta-
neous approximation asserts that for any Q > 1 the system of inequalities

|x| ≤ Qµ1 ,

|ξ1x− y1| ≤ Qµ2 ,

...
|ξn−1x− yn−1| ≤ Qµn ,

has a nontrivial solution in integer points x = (x, y1, . . . , yn−1). When C
is the unit cube of points p with |pi| ≤ 1, 1 ≤ i ≤ n, and Λ = Λ(ξ) the
lattice of points p = (x, ξ1x− y1, . . . , ξn−1x− yn−1) with x ∈ Zn, Dirichlet’s
Theorem asserts that there is a nonzero lattice point in C(Q), i.e. that the
first minimum λ1(Q) with respect to C(Q) and Λ is at most 1.

Much work in Diophantine Approximation is implicitly about the func-
tion λ1(Q) and we believe that a study of the complete set of functions
λ1(Q), . . . , λn(Q) will lead to new insights.

Suppose now that

µ1 = −1, µ2 = · · · = µn = 1/(n− 1),

and let Λ∗(ξ) be the dual lattice to Λ(ξ), which consists of points p =
(x − ξ1y1 − · · · − ξn−1yn−1, y1, . . . , yn−1) with x ∈ Zn. Dirichlet’s Theorem
on linear forms may be interpreted as saying that for any Q > 1, the body
C(Q) contains a nonzero point of Λ∗(ξ). Thus if νi(Q), 1 ≤ i ≤ n, are the
successive minima with respect to C(Q) and Λ∗(ξ), then ν1(Q) ≤ 1. Again
we will be interested in all the functions ν1(Q), . . . , νn(Q). In the special
situation where ξi = ai, a ∈ R \ {0}, see also [7].

The reciprocal body C∗ of C consists of the points p with |p1|+ · · ·+ |pn|
≤ 1. Therefore C∗ ⊆ C ⊆ nC∗ and the successive minima λ∗i (Q) of C∗(Q)
with respect to Λ∗(ξ) have

(1.1) νi(Q) ≤ λ∗i (Q) ≤ nνi(Q).

In the general context formulated at the beginning, we observe that each
λi(Q) is a continuous function of Q since K(Q) is closed. In the next step,
we wonder whether for given s, 1 ≤ s < n, there are arbitrarily large values
of Q with

λs(Q) = λs+1(Q).

When A = {i1 < · · · < is} ⊆ {1, . . . , n}, set µA =
∑

i∈A µi and let πA :
Rn → Rs be the map with

πA(p) = (pi1 , . . . , pis) ∈ Rs.
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Our result here is as follows:

Theorem 1.1. Suppose for every s-dimensional space S spanned by lat-
tice points (i.e. points of Λ), there is some A of cardinality s with µA < 0
and πA(S) = Rs. Then there are arbitrarily large values of Q with λs(Q) =
λs+1(Q).

It will be seen in Section 2 that when 1, ξ1, . . . , ξn−1 are linearly inde-
pendent over Q, Theorem 1.1 applies for each s, 1 ≤ s < n, in the context
of Dirichlet’s Theorem on simultaneous approximation, as well as on linear
forms.

Thus there are arbitrarily large values of Q with λs(Q) = λs+1(Q) as
well as arbitrarily large values of Q with νs(Q) = νs+1(Q). Also, there are
arbitrarily large Q with λ∗s(Q) = λ∗s+1(Q).

In general, there is a nonzero lattice point p in λ1(Q)K(Q). This point
has

|p| ≥ c3 > 0 and |p| ≤ c4λ1(Q)Qµ,

where µ = max(µ1, . . . , µn), so that

(1.2) λ1(Q) ≥ c5Q−µ > 0,

and hence by Minkowski’s Theorem,

(1.3) λn(Q) ≤ c6Qµ(n−1).

Next we define ψi(Q) for Q > 1 by

λi(Q) = Qψi(Q), i = 1, . . . , n.

The ψi(Q) are again continuous and we have 0 < ψ1(Q) ≤ · · · ≤ ψn(Q), as
well as

(1.4) |ψ1(Q) + · · ·+ ψn(Q)| ≤ c7(K,Λ)/logQ

by Minkowski’s Theorem.
The quantities

ψi = lim sup
Q→∞

ψi(Q) and ψ
i

= lim inf
Q→∞

ψi(Q)

are finite by (1.2), (1.3) and satisfy the inequalities

ψ1 ≤ · · · ≤ ψn and ψ
1
≤ · · · ≤ ψ

n

and also ψi ≥ ψi for i = 1, . . . , n.
By definition, if η > ψs and Q is large we will have ψs(Q) < η. Given

that there are arbitrarily large values of Q with λs(Q) = λs+1(Q), there will
be arbitrarily large values of Q with ψs+1(Q) = ψs(Q) < η and therefore

(1.5) ψ
s+1
≤ ψs.
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Theorem 1.2. For 1 ≤ i ≤ n we have

ψ1 + · · ·+ ψi−1 + ψ
i
+ ψi+1 + · · ·+ ψn ≥ 0,(1.6a)

ψ
1

+ · · ·+ ψ
i−1

+ ψi + ψ
i+1

+ · · ·+ ψ
n
≤ 0.(1.6b)

Suppose now that we are in the context of Dirichlet’s Theorem on si-
multaneous approximation, so that Λ = Λ(ξ) with 1, ξ1, . . . , ξn−1 linearly
independent over Q, and K = C. In this context we have

Theorem 1.3.

nψ
2
≤ (n− 1)ψ2 + ψ

1
,(1.7)

nψn−1 ≥ (n− 1)ψ
n−1

+ ψn.(1.8)

We will connect ψ1, ψ1
and ψn, ψn to classical approximation exponents

as studied by Khinchin [4], [5], Jarńık [3], etc., and most recently by Roy [11]
and Bugeaud and Laurent [1], [2].

Given ξ = (ξ1, . . . , ξn−1) with 1, ξ1, . . . , ξn−1 linearly independent over Q,
the quantities ω (resp. ω̂) are defined as the supremum of the numbers η
such that there are arbitrarily large values of X for which (resp. such that
for every large value of X) the system of inequalities

|x| ≤ X, |ξix− yi| ≤ X−η for i = 1, . . . , n− 1,

has a nontrivial solution x = (x, y1, . . . , yn−1) ∈ Zn.
On the other hand, ω∗ (resp. ω̂∗) is the supremum of the numbers η such

that there are arbitrarily large values of X for which (resp. such that for
every large value of X) the system∣∣∣x− n−1∑

i=1

ξiyi

∣∣∣ ≤ X−η, |yi| ≤ X for i = 1, . . . , n− 1,

has a nontrivial solution in integer n-tuples x. It will not be hard to prove

Theorem 1.4.

(ω + 1)(1 + ψ
1
) = (ω̂ + 1)(1 + ψ1) =

n

n− 1
,(1.9)

(ω∗ + 1)
(

1
n− 1

− ψn
)

= (ω̂∗ + 1)
(

1
n− 1

− ψ
n

)
=

n

n− 1
.(1.10)

Consequently, ω, ω̂, ω∗, ω̂∗ determine ψ1, ψ1
, ψn, ψn and vice versa. We

will show that Khinchin’s transference principle between ω and ω∗ is equiv-
alent to

ψ
1

+ (n− 1)ψn ≥ 0 and ψn + (n− 1)ψ
1
≤ 0,

which however is weaker than the linear inequalities of Theorem 1.2.
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In the context of Dirichlet’s Theorem on simultaneous approximation we
now specialize further to the case of dimension two in Jarńık’s and Laurent’s
papers, which corresponds to n = 3 in our notation.

Theorem 1.5. When n = 3, then

(1.11) ψ1 + ψ
3

+ 2ψ1ψ3
= 0.

Theorem 1.6. When n = 3, then also

2ψ
1

+ ψ3 ≤ −ψ3
(3 + 2ψ

1
+ 4ψ3),(1.12)

2ψ3 + ψ
1
≥ −ψ1(3 + 2ψ3 + 4ψ

1
).(1.13)

On account of (1.11) the relations (1.12), (1.13) are equivalent to

2ψ
1

+ ψ3 ≤ ψ1(3 + 2ψ3 − 2ψ
1
),(1.14)

2ψ3 + ψ
1
≥ ψ

3
(3 + 2ψ

1
− 2ψ3).(1.15)

Observe that there is some symmetry: (1.11) is invariant under inter-
changing ψ1, ψ3

, and (1.12), (1.13) are interchanged if we interchange ψ
1
, ψ3

as well as ψ1, ψ3
and reverse inequalities. The same holds for (1.14), (1.15). It

will be shown that (1.11) is equivalent to Jarńık’s relation between ω and ω̂,
and that (1.12), (1.13) are equivalent to Laurent’s refinement of Khinchin’s
transference principle as stated in [6].

However, ψi and ψ
i
, i = 1, 2, 3, do not give sufficient information on the

functions ψ1(Q), ψ2(Q), ψ3(Q). In fact, we will give a rather precise descrip-
tion of them, and consider this description to be the most interesting part
of our investigation. It is this description, which we postpone to Section 6,
that will provide the tools for the proof of Theorems 1.5 and 1.6, carried
out in Sections 7 and 8.

2. Proof of Theorem 1.1. For any Q there is a space V (Q) of dimen-
sion s containing s linearly independent lattice points in λs(Q)K(Q).

Lemma 2.1. Suppose λs(Q) < λs+1(Q) for Q ≥ Q0. Then V (Q) is
unique for Q ≥ Q0, and in fact is constant : V (Q) =: S for Q ≥ Q0.

Proof. If V (Q) and V ′(Q) are two spaces with the above property, their
span V (Q) + V ′(Q) will contain at least s+ 1 independent lattice points in
λs(Q)K(Q), so that λs(Q) = λs+1(Q). Hence by our hypothesis, for Q ≥ Q0

there is a unique space V (Q).
We claim the following continuity property: if some sequence X1, X2, . . .

tends to X, where Xl ≥ Q0 and V (Xl) = S for l = 1, 2, . . . , then V (X) = S.
For when Q runs through an interval J , then K(Q) will be contained in
a bounded region of Rn, and since λs(Q) is continuous, so will be λs(Q)K(Q).
This region will contain only finitely many lattice points. Replacing
P1, P2, . . . by a subsequence if necessary, we may suppose that V (Xl) is



72 W. M. Schmidt and L. Summerer

spanned by fixed independent lattice points p1, . . . ,ps lying in λs(Xl)K(Xl).
Since λs(Q) is continuous andK(Q) is closed and varies continuously withQ,
we see that pj ∈ λs(X)K(X) for j = 1, . . . , s, hence indeed V (X) = S.

Given a space S and an interval J = [Q0, Q1] where Q1 > Q0, let J(S)
consist of the numbers Q ∈ J with V (Q) = S. The sets J(S) cover J
and are disjoint by the uniqueness of V (Q). Moreover, they are closed by
the continuity property established above. Since Q ∈ J is bounded, there
are only finitely many spaces S having S = V (Q) for some Q ∈ J , hence
only finitely many nonempty sets J(S1), . . . , J(Sl). But a finite number of
nonempty mutually disjoint closed sets can cover J only if there is just one
such set. Therefore J(S) = J for some S, hence V (Q) = S for Q ∈ J . Since
Q1 > Q0 above was arbitrary, V (Q) = S for Q ≥ Q0.

Proof of Theorem 1.1. Suppose there was a Q0 and a space S as in
the preceding lemma. Then ΛS := Λ ∩ S is a lattice in S. Also, KS(Q) :=
K(Q) ∩ S is a symmetric convex body in S whose s-dimensional volume
we denote by VolS(Q). Given Q ≥ Q0 so that V (Q) = S, then (by the
uniqueness of V (Q)) S contains independent lattice points p1, . . . ,ps with
pj ∈ λj(Q)K(Q), hence in fact with pj ∈ ΛS ∩ λj(Q)KS(Q) for 1 ≤ j ≤ s.
By Minkowski’s Second Convex Body Theorem applied to ΛS(Q),KS(Q),
we have

λ1(Q) · · ·λs(Q) ≥ c1(Λ, S,K)/VolS(Q).

On the other hand, applying Minkowski’s Theorem to Λ, K(Q) yields

λ1(Q) · · ·λn(Q) ≤ c2(Λ)/Vol(K(Q)) = c2(Λ)/Vol(K) = c3(Λ,K),

hence λ1(Q) · · ·λs(Q) ≤ c4(Λ,K), so that finally

(2.1) VolS(Q) ≥ c5(Λ, S,K) > 0.

If A is as in our hypothesis, we have

VolS(Q) = Vol(KS(Q)) ≤ c6(S)Vol(πA(K(Q))).

But if p ∈ K(Q), then πA(p) = (pi1 , . . . , pis) has |pij | ≤ c7(K)Qµij (1 ≤
j ≤ s), and therefore

(2.2) Vol(πA(K(Q))) ≤ c8(K)QµA .

Now (2.2) and µA < 0 yield VolS(Q) → 0 as Q → ∞, a contradiction to
(2.1).

Corollary 2.2. Suppose 1, ξ1, . . . , ξn−1 are linearly independent over
Q and µ1 + · · ·+ µn = 0 with µi < 0 for 2 ≤ i ≤ n. Let λi(Q), 1 ≤ i ≤ n, be
the successive minima with respect to K(Q) and Λ(ξ). Then for every s < n,
there are arbitrarily large values of Q for which λs(Q) = λs+1(Q).

Proof. First suppose that s = n − 1 and set A0 = {2, . . . , n}, so that
µA0 < 0. By Theorem 1.1 it will suffice to show that any (n−1)-dimensional
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subspace S spanned by lattice points has πA0(S) = Rn−1 = Rs. Since Λ
consists of points p = (x, ξ1x− y1, . . . , ξn−1x− yn−1) with (x, y1, . . . , yn−1)
∈ Zn, the space S will consist of points p where (x, y1, . . . , yn−1) ∈ Zn
satisfies a nontrivial equation

(2.3) cx+ c1y1 + · · ·+ cn−1yn−1 = 0

with integer coefficients. We have to show that πA0(S) is not a proper sub-
space of Rn−1, say given by a nontrivial equation

d1(ξ1x− y1) + · · ·+ dn−1(ξn−1x− yn−1) = 0

with real coefficients. This equation may be rewritten as

(2.4) (d1ξ1 + · · ·+ dn−1ξn−1)x− d1y1 − · · · − dn−1yn−1 = 0.

We have to show that (2.4) is not a consequence of (2.3), i.e. that the
respective coefficient vectors are not proportional. If this were the case, we
could, after multiplication by a factor, in fact suppose that they were equal,
hence di = −ci for i = 1, . . . , n−1 and c1ξ1+· · ·+cn−1ξn−1 = c, contradicting
the independence of 1, ξ1, . . . , ξn−1.

Now suppose that dimS = s with 1 ≤ s < n− 1. Then S can be embed-
ded in a space S′ spanned by lattice points with dimS′ = n−1. We saw that
πA0(S′) = Rn−1, and it follows that T := πA0(S) has dimension s. There is
some (pi1 , . . . , pis)-coordinate space of Rn−1 such that the projection of T on
this space is surjective. Now we have πA(S) = Rs with A = {i1 < · · · < is}.
Since µA < 0, the corollary follows.

Remarks. (a) Corollary 2.2 applies in particular in the context of Di-
richlet’s Theorem on simultaneous approximation, where µ1 = 1 and µ2 =
· · · = µn = −1/(n− 1).

(b) The assertion of Corollary 2.2 is not true in general when the num-
bers 1, ξ1, . . . , ξn−1 are linearly dependent over Q. For instance take n = 3,
µ1 = 1, µ2 = µ3 = −1/2 and ξ1 = α, ξ2 = α + 1, where α has bounded
partial denominators in its continued fraction expansion. The convergents
pν/qν , ν = 0, 1, . . . , to α will have qν+1 < cqν for some c. Given large Q
there will be some ν with c−2Q3/4 ≤ qν < qν+1 < Q3/4. Then

|qνα− pν | < q−1
ν ≤ c2Q−3/4, |qν(α+ 1)− pν − qν | ≤ c2Q−3/4,

and the same holds with ν + 1 in place of ν. It easily follows that λ1(Q) ≤
λ2(Q) ≤ c2Q−1/4, hence certainly λ2(Q) < λ3(Q) for large Q. Observe that
the points (qν , qνα− pν , qν(α+ 1)− pν − qν) lie in a space S of dimension 2.

(c) For the existence of arbitrarily large values of Q for which λs(Q) =
λs+1(Q) the fact that two consecutive successive minima are dealt with is
crucial: answering a problem raised in [12], Moshchevitin [10] showed that
for any s < n−1 there exist ξj ∈ [0, 1), 1 ≤ j ≤ n−1, such that 1, ξ1, . . . , ξn−1

are linearly independent over Q, λs(Q)→ 0 and λs+2(Q)→∞ as Q→∞.
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Corollary 2.3. Suppose 1, ξ1, . . . , ξn−1 are linearly independent over
Q and µ1 + · · · + µn = 0 with µi > 0 for 2 ≤ i ≤ n. Let λ∗i (Q), 1 ≤ i ≤ n,
be the successive minima with respect to K(Q) and Λ∗(ξ). Then for every
s < n, there are arbitrarily large values of Q for which λ∗s(Q) = λ∗s+1(Q).

Proof. Observe that x− ξ1y1−· · ·−ξn−1yn−1 6= 0 when (x, y1, . . . , yn−1)
lies in Qn \ {0}. So if A1 = {1}, every nonzero space S spanned by lattice
points has πA1(S) 6= 0, in fact πA1(S) = R. Hence when dimS = s < n,
there is some A = {1 < i2 < · · · < is} with πA(S) = Rs. Since µA =
−
∑

i/∈A µi < 0, the conclusion follows via Theorem 1.1.

Remark. Corollary 2.3 applies in particular in the context of Dirichlet’s
Theorem on linear forms, where µ1 = −1 and µ2 = · · · = µn = 1/(n− 1).

3. ψi, ψi and the proof of Theorem 1.2. For A ⊆ {1, . . . , n} set

ψA(Q) :=
∑
i∈A

ψi(Q), ψA := lim sup
Q→∞

ψA(Q), ψ
A

:= lim inf
Q→∞

ψA(Q).

Lemma 3.1. When A, B are complementary nonempty subsets of
{1, . . . , n}, we have

ψA + ψ
B

= 0
and moreover∑

i∈A
ψ
i
≤ ψ

A
≤ |A|max

i∈A
ψ
i
, |A|min

i∈A
ψi ≤ ψA ≤

∑
i∈A

ψi.

Proof. By (1.4) we have ψA(Q) +ψB(Q)→ 0 as Q→∞. So when ε > 0
and Q is large, we have ψA(Q) < ψA+ε and ψB(Q) > −ψA−2ε. Since ε > 0
is arbitrary, this yields ψ

B
≥ −ψA, i.e. ψA + ψ

B
≥ 0. When ε > 0 and Q is

large, we have ψB(Q) > ψ
B
− ε and ψA(Q) < −ψ

B
+ 2ε, hence eventually

ψA + ψ
B
≤ 0. This proves the first assertion.

The estimates ∑
i∈A

ψ
i
≤ ψ

A
, ψA ≤

∑
i∈A

ψi

follow immediately from the definitions.
If A = {i1 < · · · < is}, there are for ε > 0 arbitrarily large values of Q

with ψis(Q) ≤ ψ
is

+ ε, hence∑
i∈A

ψi(Q) ≤ |A|(ψ
is

+ ε) ≤ |A|max
i∈A

ψ
i
+ |A|ε.

On the other hand, for any ε > 0 there are arbitrarily large values of Q with
ψis(Q) ≥ ψis − ε, hence∑

i∈A
ψi(Q) ≥ |A|(ψis − ε) ≥ |A|min

i∈A
ψi − |A|ε

and the lemma follows.
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Proof of Theorem 1.2. Taking A = {i}, B = {1, . . . , n} \ {i} we have

0 = ψ
A

+ ψB ≤ ψi + (ψ1 + · · ·+ ψi−1 + ψi+1 + · · ·+ ψn),

0 = ψA + ψ
B
≥ ψi + (ψ

1
+ · · ·+ ψ

i−1
+ ψ

i+1
+ · · ·+ ψ

n
).

4. The functions L1, . . . , Ln and proof of Theorems 1.3 and 1.4.
We now specialize to the situation of Dirichlet’s Theorem on simultane-
ous approximation. Thus Λ(ξ) consists of points p(x) = (x, ξ1x − y1, . . . ,
ξn−1x − yn−1) where 1, ξ1, . . . , ξn−1 are linearly independent over Q and
x = (x, y1, . . . , yn−1) runs through Zn. Further, C(Q) consists of points
p = (p1, . . . , pn) with |p1| ≤ Q and |pi| ≤ Q−1/(n−1) (i = 2, . . . , n). Therefore
p(x) lies in λC(Q) precisely if

|x| ≤ λQ, |ξjx− yj | ≤ λQ−1/(n−1) for 2 ≤ j ≤ n.
Hence λi(Q) (i = 1, . . . , n) is the least value of λ such that there are i
independent points x for which the above system of inequalities is satis-
fied. If λ1(Q) ≤ c/Q, then the above x has |x| ≤ c, and |ξ1x − y1| ≤
λ1(Q)Q−1/(n−1) ≤ cQ−n/(n−1) has no solution y1 for large Q. Therefore

(4.1) λ1(Q) ≥ f1(Q)/Q,

where f1(Q) tends to ∞ as Q→∞.
Given x ∈ Zn \ {0} we let λx(Q) be the least λ > 0 with p(x) ∈ λC(Q).

Then for any Q > 1 and i ∈ {1, . . . , n} we have λi(Q) = λx(Q) for some x
depending on Q and i. In particular,

λ1(Q) = min
x∈Zn\{0}

λx(Q).

Clearly,

λx(Q) = max{|x|Q−1, max
1≤j≤n−1

{|ξjx− yj |}Q1/(n−1)}.

Since λx(Q) ≥ Q1/(n−1) (otherwise, we will restrict to points x with x 6= 0),
and since λx(Q) = λ−x(Q), we may suppose x > 0.

It will be convenient to replace Q as well as λi(Q), λx(Q) by their loga-
rithms. Accordingly we set

q := logQ,(4.2)
χi(q) := ψi(eq),(4.3)
Li(q) := log λi(eq) = qχi(q),(4.4)
Lx(q) := log λx(eq),(4.5)

and with these notations we obtain

Lx(q) = max
{

log |x| − q, max
1≤j≤n−1

{log |ξjx− yj |}+
q

n− 1

}
.
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Thus Lx(q) has its minimum at some q = q(x), and is linear with slope −1
for q ≤ q(x) and slope 1/(n − 1) for q ≥ q(x). When Q lies in a bounded
range, there will be only finitely many x having λi(Q) = λx(Q) for some i.
Therefore the functions Li will be continuous, piecewise linear, with slopes
among −1 and 1/(n− 1).

When ε > 0 and q is large, then ψ
i
− ε < χi(q) < ψi + ε, and therefore

qψ
i
− o(q) ≤ Li(q) ≤ qψi + o(q).

Set x1 = (1, y2, . . . , yn) with |ξj − yj | < 1/2 (1 ≤ j < n). It is easily seen
that in some interval 1 < Q < Q0, the function λ1(Q) equals λx1(Q), and is
decreasing. Since L1 is piecewise linear with only finitely many pieces within
any bounded interval, there will be numbers 0 < q1 < q2 < · · · tending to
infinity such that L1 has its local minima precisely at qk, k = 1, 2, . . . .
There will be points xk with L1(qk) = Lxk

(qk), and in fact there will be
a neighborhood of qk with L1(q) = Lxk

(q). More precisely, if q0,1 = 0 and
qk,k+1 for k > 0 is the q-coordinate of the point of intersection of the graphs
of Lxk

and Lxk+1
, then for k > 0,

L1(q) = Lxk
(q) for qk−1,k ≤ q ≤ qk,k+1,

which also holds for k = 1 if we define L1(0) = 0.
L1 will decrease with slope −1 in [qk−1,k, qk] and increase with slope

1/(n − 1) in [qk, qk,k+1]. Thus L1 will have its local maxima at qk,k+1, k =
1, 2, . . . . Moreover,

L1(qk,k+1) = Lxk
(qk,k+1) = Lxk+1

(qk,k+1),

and since xk, xk+1 are easily seen to be linearly independent we have

L2(qk,k+1) = L1(qk,k+1).

So if L1 has a local maximum at q (hence q = qk,k+1 for some k), then
L1(q) = L2(q).

Lxk−1
Lxk

Lxk+1

L1

qk−1 qk−1,k qk qk,k+1 qk+1

q
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Remark. It is well known, and follows from our arguments in Section 2,
that for n ≥ 3 there are arbitrarily large k with xk,xk+1,xk+2 linearly
independent. On the other hand, according to Moshchevitin [9], when n > 3,
then there are numbers 1, ξ1, . . . , ξn−1 linearly independent over Q such that
xk,xk+1, . . . ,xk+n−1 for every large k span a space of dimension at most 3.

The function L∗1 will have its local minima at numbers q∗1 < q∗2 < · · · ,
and L∗1(q∗l ) = L∗x∗l

(q∗l ) for certain points x∗1,x
∗
2, . . . . For suitably defined

q∗l,l+1 with q∗l < q∗l,l+1 < q∗l+1 we will have

L∗1(q) = L∗x∗l
(q) for q∗l−1,l ≤ q ≤ q∗l,l+1

with L∗1 having slope 1 in [q∗l−1,l, q
∗
l ] and slope −1/(n − 1) in [q∗l , q

∗
l,l+1].

Moreover, L∗2(q∗l,l+1) = L∗1(q∗l,l+1). So when L∗1 has a local maximum at q,
then L∗1(q) = L∗2(q).

Mahler’s inequality λ∗i (Q)λn+1−i(Q) � 1, where the implied constants
depend on n only, gives

(4.6) |L∗i (q) + Ln+1−i(q)| < c (i = 1, . . . , n)

where the constant c depends on n only. Further, Li(q) = qψi(eq), so (1.4)
yields

(4.7) |L1(q) + · · ·+ Ln(q)| < c

if c = c(n) was chosen large enough, and we also have

(4.8) |L∗1(q) + · · ·+ L∗n(q)| < c.

It is not hard to see that λ∗1(Q) > f∗1 (Q)/Q1/(n−1) with f∗1 (Q) tending to
infinity with Q, in analogy to (4.1), and therefore by Mahler’s inequality
λn(Q) � λ∗1(Q)−1 < Q1/(n−1)/f∗1 (Q). But this, together with (4.1), tells us
that

(4.9) L1(q) > −q + g1(Q) and Ln(q) <
q

n− 1
− gn(Q)

with g1(Q), gn(Q) both tending to infinity.
We had

ψi(Q) = log λi(Q)/logQ and χi(q) = ψi(eq) = Li(q)/q,

so that

(4.10)
ψi = lim supψi(Q) = lim supχi(q),
ψ
i

= lim inf ψi(Q) = lim inf χi(q).

We now set

ψ∗i (Q) = log λ∗i (Q)/logQ and χ∗i (q) = ψ∗i (e
q) = L∗i (q)/q,
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so that

ψ
∗
i = lim supψ∗i (Q) = lim supχ∗i (q),

ψ∗
i

= lim inf ψ∗i (Q) = lim inf χ∗i (q).

Inequality (4.6) yields |ψ∗i (q) + ψn+1−i(q)| < c/logQ, so that

(4.11) ψ
∗
i + ψ

n+1−i = 0 and ψ∗
i

+ ψn+1−i = 0 (i = 1, . . . , n).

Lemma 4.1. If i 6= j and Li has slope −1 in some interval , then for q, q′

in that interval ,

Lj(q)− Lj(q′) =
q − q′

n− 1
+O(1).

Here and throughout , the implied constants in � , O(. . .),� depend only
on n.

Proof. Say q > q′. Each Ll has slopes −1, 1/(n− 1) so that

(4.12) Ll(q)− Ll(q′) ≤
q − q′

n− 1
(1 ≤ l ≤ n).

By (4.7) and (4.12),

Lj(q)− Lj(q′) ≥ −
∑
l 6=j

(Ll(q)− Ll(q′)) +O(1)

= −(Li(q)− Li(q′))−
∑
l 6=i,j

(Ll(q)− Ll(q′)) +O(1)

≥ q − q′ − (n− 2)
q − q′

n− 1
+O(1) =

q − q′

n− 1
+O(1).

The lemma follows from this and from (4.12) with l = j.

Proof of Theorem 1.3. For k ≥ 2 we have

L1(qk−1,k) = L2(qk−1,k) ≤ 0, L1(qk) = L1(qk−1,k)− (qk − qk−1)

and by Lemma 4.1,

L2(qk) = L2(qk−1,k) +
qk − qk−1,k

n− 1
+O(1).

Therefore

(4.13) nL2(qk−1,k) = (n− 1)L2(qk) + L1(qk) +O(1).

Since both sides are ≤ 0, and qk−1,k ≤ qk,
nψ2(qk−1,k) ≤ (n− 1)ψ2(qk) + ψ1(qk) +O(1/qk−1,k),

hence we may infer that

nψ
2
≤ n lim inf ψ2(qk−1,k) ≤ (n− 1) lim supψ2(qk) + lim inf ψ1(qk)

= (n− 1)ψ2 + ψ
1
,

which is (1.7).
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The proof of (1.8) is dual to that of (1.7): by (4.11) we need to show that

nψ∗
2
≤ (n− 1)ψ∗2 + ψ

∗
1.

Lemma 4.1 is replaced by the fact that if i 6= j and L∗i has slope 1, then

L∗j (q)− L∗j (q′) =
q′ − q
n− 1

+O(1).

Instead of (4.13) we have

nL∗2(qk,k+1) = (n− 1)L∗2(qk) + L∗1(qk) +O(1);

now we proceed as in the first part of the proof.

Proof of Theorem 1.4. If θ > ψ
1
, then

(4.14)
|x| ≤ Q1+θ,

|ξix− yi| ≤ Q−1/(n−1)+θ for i = 1, . . . , n− 1

has a nonzero integer solution for certain arbitrarily large values of Q. Set-
ting

X = Q1+θ and η = −1 +
n

(n− 1)(1 + θ)
the system (4.14) becomes

(4.15) |x| ≤ X, |ξix− yi| ≤ X−η for i = 1, . . . , n− 1.

Therefore ω ≥ η, and since θ is arbitrarily close to ψ
1
, we obtain

ω ≥ −1 +
n

(n− 1)(1 + ψ
1
)
,

hence
(1 + ω)(1 + ψ

1
) ≥ n

n− 1
.

When η < ω, (4.15) has a solution for certain arbitrarily large numbers X.
Setting

Q = X1/(1+η) and θ = −1 +
n

(n− 1)(1 + η)
,

the system (4.15) becomes (4.14) and hence ψ
1
≤ θ. As η can be taken

arbitrarily close to ω, we obtain

ψ
1
≤ −1 +

n

(n− 1)(1 + ω)
⇔ (1 + ω)(1 + ψ

1
) ≤ n

n− 1
.

Therefore the first expression in (1.9) equals n/(n− 1), and the proof for
the second one is similar.

We had ψ∗i (Q) = log λ∗i (Q)/logQ, hence λ∗i (Q) = Qψ
∗
i (Q), and we now

define πi(Q) by νi(Q) = Qπi(Q). By (1.1), |πi(Q) − ψ∗i (Q)| < n/logQ, so
that

πi := lim supπi(Q) = ψ
∗
i and πi := lim inf πi(Q) = ψ∗

i
.



80 W. M. Schmidt and L. Summerer

Therefore, by (4.11), ψn = −ψ∗
1

= −π1 and ψ
n

= −ψ∗1 = −π1, so that in
order to establish (1.10) we need to prove

(ω∗ + 1)
(

1
n− 1

+ π1

)
= (ω̂∗ + 1)

(
1

n− 1
+ π1

)
=

n

n− 1
.

This is proved similarly to (1.9).

Laurent in [6] gives best possible upper and lower bounds for ω, ω̂, ω∗, ω̂∗.
Since

1
n− 1

≤ ω ≤ ∞ and
1

n− 1
≤ ω̂ ≤ 1

are best possible, (1.9) gives the best possible bounds

−1 ≤ ψ
1
≤ 0 and − n− 2

2(n− 1)
≤ ψ1 ≤ 0.

Further, n− 1 ≤ ω∗ ≤ ∞ and n− 1 ≤ ω̂∗ ≤ ∞, so that by (1.10),

0 ≤ ψn ≤
1

n− 1
and 0 ≤ ψ

n
≤ 1
n− 1

.

Again these estimates are best possible.

Remarks. (a) Jarńık’s identity ω̂ = ω̂∗−1/ω̂∗ is equivalent to equation
(1.11) of Theorem 1.5, for this identity is in turn equivalent to

ω̂ =
ω̂∗ − 1
ω̂∗

⇔ ω̂ + 1 = 2− 1
ω̂∗
⇔ 3

2ψ1 + 2
= 2 +

2ψ
3
− 1

2ψ
3

+ 2

⇔ 1
ψ1 + 1

=
2ψ

3
+ 1

ψ
3

+ 1
⇔ ψ1 + ψ

3
+ 2ψ1ψ3

= 0.

(b) Khinchin’s transference principle ([5]) says that

ω ≥ ω∗

(n− 2)ω∗ + n− 1
and ω∗ ≥ (n− 1)ω + n− 2.

The first of these inequalities yields

ω + 1 ≥ ω∗ + (n− 2)ω∗ + n− 1
(n− 2)ω∗ + n− 1

=
n− 1

n− 2 + 1/(ω∗ + 1)
,

hence by Theorem 1.4,

n/(n− 1)
1 + ψ

1

≥ n− 1
n− 2 + (1/(n− 1)− ψn)(n− 1)/n

=
n− 1

n− 1− ψn
,

so that n− 1− ψn ≥ (n− 1)(1 + ψ
1
), hence (n− 1)ψ

1
+ ψn ≤ 0.

The second relation in Khinchin’s transference principle leads to ψ
1

+
(n − 1)ψn ≥ 0. Conversely, these relations imply Khinchin’s transference
principle. Observe that they are consequences of Theorem 1.2.
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(c) Laurent’s refinement of Khinchin’s relations between the approxima-
tion exponents in [6] states that

ω∗(ω̂∗ − 1)
ω∗ + ω̂∗

≤ ω ≤ ω∗ − ω̂∗ + 1
ω̂∗

,

which is equivalent to the pair of inequalities (1.12), (1.13) of Theorem 1.6.
For expressing the classical approximation constants in terms of ψ

1
, ψ

3
,

ψ3 using the equations from Theorem 1.4, a lengthy but straightforward
computation translates Laurent’s inequalities into

3ψ
3
− 2ψ3 − 2ψ

3
ψ3

1− 2ψ
3

≤ ψ
1
≤
−3ψ

3
− ψ3 − 4ψ

3
ψ3

2 + 2ψ
3

,

which turns out to be precisely equivalent to (1.14), (1.15) and hence to
(1.12), (1.13).

5. The functions L̃1, L̃2, L̃3. We now turn to the case n = 3 in the
context of Dirichlet’s Theorem on simultaneous approximation. It would be
nice if we had L1(q) +L2(q) +L3(q) = 0 in place of the case n = 3 of (4.7).
We therefore introduce the new triple of functions (L̃1, L̃2, L̃3) with

L̃1 := L1, L̃2 := L∗1 − L1, L̃3 := −L∗1,
whose properties will now be investigated.

Lemma 5.1. If c is the constant of (4.6)–(4.8), then:

(i) L̃1 + L̃2 + L̃3 = 0.
(ii) |L̃i(q)− Li(q)| < 2c for i = 1, 2, 3.
(iii) L̃2(q) > L̃1(q)− 4c and L̃3(q) > L̃2(q)− 4c.
(iv) L̃1, L̃3 have slopes alternating between −1, 1/2, whereas L̃2 has

slopes among −1, 1/2, 2.
(v) An interval where L̃2 has slope 2 has length less than 3c.
(vi) In an interval where L̃3(q) − L̃2(q) > 4c the function L̃3 has no

local minimum, and in an interval where L̃2(q) − L̃1(q) > 4c the
function L̃1 has no local maximum.

(vii) If {i, j, k} = {1, 2, 3} and L̃i has slope 1/2 in some interval , then
1
2(L̃j + L̃k) will have slope −1/4 in this interval. L̃j , L̃k will al-
ternate having respective slopes 1/2,−1 and −1, 1/2, hence their
graphs will zigzag around a line with slope −1/4.

(viii) Suppose i 6= j in {1, 2, 3}. If L̃i has slope −1 in some interval ,
then ∣∣∣∣L̃j(q)− L̃j(q′)− 1

2
(q − q′)

∣∣∣∣ < 4c

for q, q′ in that interval.
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Proof. (i) is obvious from the definition of L̃i (i = 1, 2, 3).
For (ii) observe that L̃1 −L1 = 0, L̃3 −L3 = −(L∗1 +L3) and L̃2 −L2 =

L∗1 − L1 − L2 = (L∗1 + L3)− (L1 + L2 + L3). Now apply (4.7) and (4.6).
Next, (iii) follows from (ii) and the fact that

L̃2 − L̃1 = L̃2 − L1 = (L2 − L1) + (L̃2 − L2) ≥ L̃2 − L2,

L̃3 − L̃2 = (L3 − L2) + (L̃3 − L3)+(L2 − L̃2) ≥ (L̃3 − L3)+(L2 − L̃2).

Concerning (iv) note that L̃1 = L1 has slopes −1, 1/2, L∗1 has slopes
1,−1/2, so that L̃3 has slopes −1, 1/2. The assertion now follows from (i)
above.

(v) When L̃2 has slope 2 in [q′, q], then

q − q′ = 1
2

(L̃2(q)− L̃2(q′)) <
1
2

(L2(q)− L2(q′)) + 2c ≤ 1
4

(q − q′) + 2c,

hence q − q′ < 8
3c < 3c.

(vi) Suppose L̃3 − L̃2 > 4c in some interval. Observe that

L̃3 − L̃2 − (L∗2 − L∗1) = −L̃2 − L∗2 = −(L2 + L∗2) + (L2 − L̃2).

Combining this with (4.6) and (ii) implies L∗2 − L∗1 6= 0, i.e. L∗2 6= L∗1.
Therefore L∗1 has no local maximum, and L̃3 = −L∗1 no local minimum in
the interval. When L̃2 − L̃1 > 4c, then L2(q) − L1(q) > L̃2 − L̃1 − 2c > 0,
hence L2(q) 6= L1(q), so L̃1 = L1 has no local maximum.

(vii) is fairly obvious.
(viii) is essentially the case n = 3 of Lemma 4.1.

6. Top and bottom intervals. It may happen that, for all large q,

L̃3(q)− L̃1(q) ≤ C,
where C is a constant to be specified below. Then ψ

i
= ψi = 0 for i = 1, 2, 3

and (1.11)–(1.13) trivially hold.
The other extreme is when

(6.1) L̃3(q)− L̃1(q) > C

for all large q. We will treat this case in detail. It is also possible that all
large q lie in a sequence of intervals which alternate between q’s in the two
extremal cases. In this case ψ1 = ψ

3
= 0, and this also implies (1.11), (1.12)

and (1.13). In large intervals where L̃3(q) − L̃1(q) > C, the situation is
essentially the same as if the equality holds for all large q, so we will not
elaborate on this case.

We will now suppose (6.1) holds; we set γ = 4c, where c is the absolute
constant of the last section. There are arbitrarily large values of p with
L3(p) = L2(p) and hence L̃3(p)−L̃2(p) < γ, so (6.1) implies L̃2(p)−L̃1(p) >
C − γ > γ, provided C > 2γ. Also, there are arbitrarily large numbers p∗
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with L̃2(p∗)−L̃1(p∗) < γ, hence L̃3(p∗)−L̃2(p∗) > γ. So by the Intermediate
Value Theorem there are arbitrarily large values of p with

L̃3(p)− L̃2(p) = γ,

as well as arbitrarily large numbers p∗ with

L̃2(p∗)− L̃1(p∗) = γ.

If p, p∗ are such numbers, then L̃3(p∗)− L̃2(p∗) > C − γ and

L̃3(p∗)− L̃2(p∗)− (L̃3(p)− L̃2(p)) ≤ 3|p− p∗|,
so that L̃3(p)− L̃2(p) > C−γ−3|p−p∗|, which together with L̃3(p)− L̃2(p)
= γ yields 3|p− p∗| > C − 2γ, hence

(6.2) |p− p∗| > C/3− 2γ/3 > γ

if C > 5γ.
For every p with L̃3(p)− L̃2(p) = γ, hence L̃2(p)− L̃1(p) > γ, there is a

smallest a and a largest b with a ≤ p ≤ b such that

L̃3(a)− L̃2(a) = L̃3(b)− L̃2(b) = γ

and L̃2(q) − L̃1(q) > γ for a ≤ q ≤ b. Such an interval [a, b] will be called
a top interval. It is not required that L̃3(q) − L̃2(q) ≤ γ in this interval.
Also, it may happen that a = p = b, so that the interval consists of a single
number.

For every p∗ with L̃2(p∗)−L̃1(p∗) = γ there is a smallest a∗ and a largest
b∗ with a∗ ≤ p∗ ≤ b∗ such that

L̃2(a∗)− L̃1(a∗) = L̃2(b∗)− L̃1(b∗) = γ

and L̃3(q)− L̃2(q) > γ for a∗ ≤ q ≤ b∗. Such an interval [a∗, b∗] will be called
a bottom interval. By (6.2), a top interval has distance greater than γ from
a bottom interval.

For intervals I = [r, s] and I ′ = [r′, s′] we write I < I ′ if s < r′. We may
thus arrange all the top and bottom intervals into a sequence

I1 < I2 < I3 < · · · .
There cannot be two adjacent top intervals in this sequence: for if [a, b] <
[a′, b′] were two such intervals, then L̃2(q)− L̃1(q) > γ for a ≤ q ≤ b′, and b
would no longer be the largest number as required in the definition of top
intervals. Similarly, there cannot be two adjacent bottom intervals. Hence
after a change of notation, our sequence becomes

I1 < I∗1 < I2 < I∗2 < · · · ,
where, say, each Ij is a top interval and each I∗j a bottom interval. If Ij =
[aj , bj ] and I∗j = [a∗j , b

∗
j ] then

· · · < a∗j−1 ≤ b∗j−1 < aj ≤ bj < a∗j ≤ b∗j < aj+1 ≤ bj+1 < · · · .
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In [b∗j−1, a
∗
j ] we have L̃2(q)−L̃1(q) > γ and hence, by Lemma 5.1(vi), the

function L̃1 has no local maximum. There will be some p∗j in [b∗j−1, a
∗
j ] such

that L̃1 is decreasing for b∗j−1 ≤ q ≤ p∗j and increasing for p∗j ≤ q ≤ a∗j . The
cases p∗j = b∗j−1 and p∗j = a∗j are not ruled out. Also, there will be a pj in
[bj , aj+1] such that L̃3 is increasing for bj ≤ q ≤ pj and decreasing for
pj ≤ q ≤ aj+1.

Let now j be fixed and assume j is large, so that q ∈ Ij is large. We
claim that we cannot have both p∗j , pj larger than bj . For if this were so, set
p = min{p∗j , pj} and observe that L̃3 is increasing in [bj , p] ⊂ [bj , pj ] with
slope 1/2 and L̃1 is decreasing in [bj , p] ⊂ [b∗j−1, pj ] with slope −1, so that
L̃2 is increasing with slope 1/2. Hence

L̃3(q)− L̃2(q) = L̃3(bj)− L̃2(bj) = γ

in [bj , p], and there is no q in this interval with L̃2(q) − L̃1(q) ≤ γ. This
contradicts the maximality property of the right endpoint bj of Ij = [aj , bj ].
A similar reasoning shows that we cannot have both p∗j , pj smaller than a∗j .
This yields the following possibilities. If p∗j ≤ bj , then pj ≥ a∗j , and con-
versely, pj ≥ a∗j implies p∗j ≤ bj . In short,

(6.3) p∗j ≤ bj and pj ≥ a∗j .

The second conceivable possibility is when p∗j > bj and pj < a∗j , but then,
by the above remarks and the fact that p∗j ≤ a∗j , pj ≥ bj , we have

(6.4) pj = bj and p∗j = a∗j .

In fact, this cannot occur if C is chosen sufficiently large. For if pj = bj
and p∗j = a∗j , both L̃1, L̃3 have slope −1 in [bj , a∗j ] so that a∗j − bj < 3c by
Lemma 5.1(v). Further, L̃1, L̃2 are close to each other at q = a∗j and L̃2, L̃3

are close at q = bj , so that L̃3 − L̃1 is small in [bj , a∗j ], i.e. L̃3 − L̃1 � c,
which for large C contradicts (6.1).

Let us now assume p∗j ≤ bj and pj ≥ a∗j , so that we have b∗j ≤ p∗j ≤ bj

< a∗j . Then L̃1 and L̃3 are both increasing in [bj , a∗j ] with slope 1/2, hence
L̃2 is decreasing with slope −1. In fact, we may suppose that p∗j < aj , hence

b∗j−1 ≤ p∗j < aj ≤ bj < a∗j .

For otherwise p∗j ≥ aj and L̃1 has slope −1 in [b∗j−1, p
∗
j ], hence in [b∗j−1, aj ].

By Lemma 5.1(viii),

|L̃3(b∗j−1)− L3(q)− (L̃2(b∗j−1)− L̃2(q))| < 8c

for q in this interval, and since L̃3(aj) − L̃2(aj) = γ, we deduce that
|L̃3(b∗j−1) − L̃2(b∗j−1)| < 8c + γ = 12c. Moreover, L̃2(b∗j−1) − L̃1(b∗j−1) = γ,
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so that
L̃3(b∗j−1)− L̃1(b∗j−1) < 12c+ γ = 16c.

But this contradicts (6.1) provided C is chosen large enough, i.e. C > 16c.
Similarly, by a dual argument, we will also have

bj < a∗j ≤ b∗j < pj ≤ aj+1.

The following figure illustrates a possible behavior of L̃1, L̃2, L̃3 for p∗j ≤
q ≤ aj+1.

L̃3

L̃2

L̃1 I∗j

Ij

p∗j pj−1 aj bj

a∗j b∗j pj

aj+1
p∗j+1

In [aj , bj ] the function L̃1 has slope 1/2, so that by Lemma 5.1(vii), L̃2, L̃3

will zigzag around a line with slope −1/4 indicated by dots in the figure.
The graphs of the functions are different near p∗j , pj−1 depending on whether
p∗j < pj−1 (as shown in the figure) or p∗j ≥ pj−1 (which in the figure holds for
j+ 1 in place of j, i.e. p∗j+1 ≥ pj). Note that p∗j ≥ pj−1 yields p∗j − pj−1 < 3c
by Lemma 5.1(v).

Remarks. (a) In the notation of Section 4, suppose the local minima of
L1 = L̃1 in [p∗j , p

∗
j+1] are assumed at p∗j = qk < qk+1 < · · · < ql = p∗j+1. Then

the points xk,xk+1, . . . ,xl span a 2-dimensional space. For otherwise l ≥
k+ 2, and there is an r, k < r < l, with xk,xr,xl linearly independent. If q̄
is the q-coordinate of the point of intersection of the graphs of Lxk

, Lxl
, then

it is clear from our figure that both qr, q̄ lie in the interior of I∗j = [a∗j , b
∗
j ]; in

particular, a∗j < b∗j . Moreover, Lxk
(qk) = L1(qk) = L̃1(qk), and both Lxk

and
L̃1 have slope 1/2 in qk ≤ q ≤ a∗j , so that Lxk

(a∗j ) = L̃1(a∗j ) < L̃3(a∗j ) − γ.
Both Lxk

and L̃3 have slope 1/2 in a∗j ≤ q ≤ q̄, so that Lxk
(q̄) < L̃3(q̄)− γ

< L3(q̄). But by the independence of xk,xr,xl, and since Lxk
(q̄) = Lxl

(q̄)
≥ Lxr(q̄), we have L3(q̄) ≤ Lxk

(q̄), a contradiction.
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(b) When aj = bj or a∗j = b∗j , which we believe to be a relatively common
event, the figure is much simplified. (In fact, keeping the notations from (a)
we have a∗j = b∗j if xk,xk+1,xk+2 are linearly independent.)

(c) We believe that our description of the functions L̃1(q), L̃2(q), L̃3(q),
hence implicitly of λ1(Q), λ2(Q), λ3(Q), is close to “best possible”. That is,
given functions as described in the figure, there are numbers ξ1, ξ2 for which
the resulting L̃1, L̃2, L̃3 are close to the given functions.

7. Proof of Theorem 1.5. We introduce the functions χ̃i(q) := L̃i(q)/q
for i = 1, 2, 3. Then

χ̃i(q)− ψi(eq) =
L̃i(q)
q
− Li(q)

q
� 1

q

so that we have

(7.1) ψi = lim sup χ̃i(q) and ψ
i

= lim inf χ̃i(q)

by (4.10). Moreover, by the case n = 3 of (4.9) we have the estimates

(7.2) χ̃i(q) ≥ −1 +
g1(eq)
q

and χ̃i(q) ≤
1
2
− g3(eq)

q
,

hence for large q,

(7.3) −1 < χ̃i(q) < 1/2 for i = 1, 2, 3.

Lemma 7.1.

L̃1(a∗j ) + L̃3(bj) = O(1), χ̃1(a∗j ) + χ̃3(bj) = −2χ̃1(a∗j )χ̃3(bj) +O(1/bj),

where the implied constants depend only on c, hence are absolute.

Proof. We will drop the subscript j. We have L̃2(a∗) − L̃1(a∗) = O(1),
hence 2L̃1(a∗) + L̃3(a∗) = O(1). Similarly, 2L̃3(b) + L̃1(b) = O(1). Both
L̃1, L̃3 have slope 1/2 in [b, a∗], so that

L̃3(a∗)− L̃3(b) =
1
2

(a∗ − b) = L̃1(a∗)− L̃1(b),

which yields
L̃1(b) + L̃3(a∗) = L̃3(b) + L̃1(a∗).

Therefore

L̃1(a∗) + L̃3(b) =
1
3

(2L̃1(a∗) + L̃3(a∗) + 2L̃3(b) + L̃1(b)) = O(1).

Also,

L̃3(a∗) = −L̃1(a∗)− L̃2(a∗) = −2L̃1(a∗) +O(1) = 2L̃3(b) +O(1),

so that
a∗ − b = 2(L̃3(a∗)− L̃3(b)) = 2L̃3(b) +O(1).
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Therefore

χ̃1(a∗) + χ̃3(b) =
1
a∗b

(bL̃1(a∗) + a∗L̃3(b))

=
1
a∗b

(bL̃1(a∗)− a∗L̃1(a∗)) +O(1/b)

=
1
a∗b

((b− a∗)L̃1(a∗)) +O(1/b)

= − 2
a∗b

L̃1(a∗)L̃3(b) +O(1/b)

= −2χ̃1(a∗)χ̃3(b) +O(1/b).

Lemma 7.2.

(i) If some L̃i is increasing (resp. decreasing) in an interval with large
endpoints, then also χ̃i is increasing (resp. decreasing) in that in-
terval.

(ii) For q ∈ I∗j = [a∗j , b
∗
j ] with large j we have χ̃1(q) ≤ χ̃1(a∗j )+O(1/a∗j ).

(iii) For q ∈ Ij = [aj , bj ] with large j we have χ̃3(q) ≥ χ̃3(bj)−O(1/bj).

Proof. (i) Suppose q > q′ are in the interval. If L̃i is increasing, then
L̃i(q)− L̃i(q′) ≥ 1

2(q − q′), yielding

χ̃i(q) ≥ χ̃i(q′)q′/q +
1
2

(1− q′/q) = χ̃i(q′) +
(

1
2
− χ̃i(q′)

)
(1− q′/q) > χ̃i(q′)

by (7.3). If L̃i is decreasing, then L̃i(q)− L̃i(q′) = −(q − q′), so that

χ̃i(q) = χ̃i(q′)q′/q − (1− q′/q) = χ̃i(q′)− (1 + χ̃i(q′))(1− q′/q) < χ̃i(q′)

by (7.3).
(ii) We have

L̃1(a∗j ) ≥
1
2

(L̃1(a∗j ) + L̃2(a∗j ))−O(1) = −1
2
L̃3(a∗j )−O(1),

so that for large j,

χ̃1(a∗j ) ≥ −
1
2
χ̃3(a∗j )−O(1/a∗j )

and hence (7.2) yields

(7.4) χ̃1(a∗j ) > −
1
4

+
1
2
g3(ea

∗
j )/a∗j −O(1/a∗j ) > −

1
4
.

Moreover

L̃1(q) ≤ 1
2

(L̃1(q) + L̃2(q)) +O(1)

=
1
2

(L̃1(a∗j ) + L̃2(a∗j ))−
1
4

(q − a∗j ) +O(1)

= L̃1(a∗j )−
1
4

(q − a∗j ) +O(1),
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hence by (7.4),

χ̃1(q) ≤ χ̃1(a∗j )a
∗
j/q −

1
4

(1− a∗j/q) +O(1/q)

= χ̃1(a∗j )−
(

1
4

+ χ̃1(a∗j )
)

(1− a∗j/q) +O(1/q) ≤ χ̃1(a∗j ) +O(1/a∗j ).

(iii) is proved in a dual way.

Set Ij := [pj−1, pj ], I∗j := [p∗j , p
∗
j+1] and put

ρj := max
q∈I∗j

χ̃1(q), σj := min
q∈Ij

χ̃3(q).

Lemma 7.3.

(i) χ̃1(a∗j ) ≤ ρj < χ̃1(a∗j ) +O(1/a∗j ),

(ii) χ̃3(bj) ≥ σj > χ̃3(bj)−O(1/bj).

Proof. Since L̃1 is increasing in [pj−1, a
∗
j ] and decreasing in [b∗j , pj ], we

see from Lemma 7.2(i) that ρj = χ̃1(q) with q ∈ [a∗j , b
∗
j ] = I∗j . But by

Lemma 7.2(ii), in fact ρj < χ̃1(a∗j ) + O(1/a∗j ). Now (i) follows, and (ii) is
proved in a dual fashion.

Proof of Theorem 1.5. By combining Lemmas 7.1 and 7.3 we obtain

ρj + σj + 2ρjσj = O(1/min{bj , a∗j}) = O(1/bj).

For large j the inequalities −1/3 < ρj ≤ 0 hold by (7.4) and Lemma 7.3(i),
so that 1 + 2ρj > 1/3 and hence

σj = − ρj
1 + 2ρj

+O(1/bj).

All large reals lie in the union of the intervals I2, I3, . . . as well as of the
intervals I∗1 , I∗2 , . . . , and as the function ρ 7→ ρ/(1 + 2ρ) for ρ > −1/2 is
increasing, we conclude

ψ
3

= lim inf σj = lim inf
(
− ρj

1 + 2ρj

)
= − lim sup ρj

1 + 2 lim sup ρj
= − ψ1

1 + 2ψ1

,

and this is precisely (1.11).

8. Proof of Theorem 1.6. Let Kj be the interval [bj−1, bj ] and K∗j be
the interval [a∗j , a

∗
j+1]. Further, let mj , m∗j be numbers in Kj , K∗j respectively

with
ψ3(mj) = max

q∈Kj

ψ3(q) and ψ1(m∗j ) = min
q∈K∗j

ψ1(q).

Lemma 8.1.

2χ̃1(mj) + χ̃3(mj) ≤ −χ̃3(bj)(3 + 2χ̃1(mj) + 4χ̃3(mj)) +O(1/mj),(8.1)
2χ̃3(m∗j ) + χ̃1(m∗j ) ≥ −χ̃1(a∗j )(3 + 2χ̃3(m∗j ) + 4χ̃1(m∗j ))+O(1/m∗j ).(8.2)
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Proof. Since χ̃3 increases in [bj−1, pj−1] by Lemma 7.2, we have mj ∈
[pj−1, bj ]. Now L1 increases with slope 1/2 in [p∗j , pj−1]. Either p∗j < pj−1,
or p∗j ≥ pj−1 and p∗j − pj−1 = O(1). In either case, since mj ∈ [pj−1, bj ], we
have

L̃1(mj) = L̃1(bj)−
1
2

(bj −mj) +O(1).

Since mj ≤ bj and L̃3(bj) has slopes among −1, 1/2,

L̃3(mj) ≤ L̃3(bj) + (bj −mj).

Therefore

2L̃1(mj) + L̃3(mj) ≤ 2L̃1(bj) + L̃3(bj) +O(1) = −2L̃2(bj)− L̃3(bj) +O(1)

= −3L̃3(bj) +O(1).

Dividing by mj we obtain

(8.3) 2χ̃1(mj) + χ̃3(mj) ≤ −3χ̃3(bj)bj/mj +O(1/mj).

On the other hand,

2L̃1(mj) + 4L̃3(mj) ≤ 2L̃1(bj) + 4L̃3(bj) + 3(bj −mj) +O(1)

= −2L̃2(bj) + 2L̃3(bj) + 3(bj −mj) +O(1)
= 3(bj −mj) +O(1).

After division by mj and addition of 3 we get

(8.4) 3 + 2χ̃1(mj) + 4χ̃3(mj) ≤ 3bj/mj +O(1/mj).

This, in conjunction with (8.3), gives (8.1).
(8.2) is proved in a dual fashion: there is some symmetry of the graphs

of L̃1, L̃2, L̃3 about the point
(

1
2(bj + a∗j ), 0

)
. This is not a strict geomet-

ric symmetry, but our arguments remain valid if pj−1, aj , bj , a
∗
j , b
∗
j , p
∗
j+1

are respectively replaced by p∗j+1, b
∗
j , a
∗
j , bj , aj , pj−1, if L̃1, L̃2, L̃3 are respec-

tively replaced by L̃3, L̃2, L̃1, and inequalities are reversed. Thus for instance
χ̃3(bj) = L̃3(bj)/bj is replaced by χ̃1(a∗j ) = L̃1(a∗j )/a

∗
j .

We now have m∗j ∈ [a∗j , p
∗
j+1], and (8.3), (8.4) are respectively replaced

by

2χ̃3(m∗j ) + χ̃1(m∗j ) ≥ −3χ̃1(a∗j )a
∗
j/m

∗
j +O(1/m∗j ),

3 + 2χ̃3(m∗j ) + 4χ̃1(m∗j ) ≥ 3a∗j/m
∗
j +O(1/m∗j ).

Thus (8.2) follows.

Proof of Theorem 1.6. For given ε > 0 we have χ̃3(bj) > ψ
3
− ε, and

(8.1) yields

2χ̃1(mj) + χ̃3(mj) ≤ −(ψ
3
− ε)(3 + 2χ̃1(mj) + 4χ̃3(mj)) +O(1/mj),

hence
χ̃3(mj)(1 + 4ψ

3
) < −3ψ

3
− (2 + 2ψ

3
)χ̃1(mj) +O(ε)
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when j is large. Moreover, χ̃1(mj) > ψ
1
− ε, so that

χ̃3(mj)(1 + 4ψ
3
) < −3ψ

3
− (2 + 2ψ

3
)ψ

1
+O(ε).

Since by definition of mj ,

ψ3 = lim sup
j→∞

χ̃3(mj),

we obtain
ψ3(1 + 4ψ

3
) ≤ −3ψ

3
− (2 + 2ψ

3
)ψ

1
,

hence (1.12). The relation (1.13) is established in a dual way.

9. Some consequences

Corollary 9.1. Again in the context of Dirichlet’s Theorem on simul-
taneous approximation with n = 3,

(9.1) ψ3 ≥ ψ3
(3 + 2ψ

1
) and ψ

1
≤ ψ1(3 + 2ψ3).

Proof. (1.12) and (1.15) can be rewritten as

3ψ
3

+ 2ψ
1

+ ψ3 ≤ ψ3
(−2ψ

1
− 4ψ3), 3ψ

3
− ψ

1
− 2ψ3 ≤ ψ3

(−2ψ
1

+ 2ψ3).

Adding the first of these inequalities to twice the second, we obtain

9ψ
3
− 3ψ3 ≤ −6ψ

1
ψ

3
,

which gives the first relation of (9.1). We noted that (1.12), . . . , (1.15) remain
valid if ψ

1
, ψ3 as well as ψ1, ψ3

are interchanged and inequalities are reversed.
This also holds for the consequences of (1.12), . . . , (1.15), and hence the first
relation of (9.1) implies the second.

Corollary 9.2. If ψ
1

= ψ1 or ψ
2

= ψ2, then

(9.2) ψ
i

= ψi for i = 1, 2, 3.

When ψ
3

= ψ3, then either (9.2) holds or

ψ
1

= −1, ψ1 = ψ
2

= −1/4, ψ2 = ψ
3

= ψ3 = 1/2.

Proof. Assume ψ
1

= ψ1. Then we have ψ
1

= ψ1 ≤ ψ1(3 + 2ψ3) and
hence either ψ1 = ψ

1
= 0 or 1 = 3 + 2ψ3 ≥ 3, which is impossible. Now by

(1.5) we have ψ
1
≤ ψ

2
≤ ψ1, hence ψ

2
= 0, and ψ

1
+ ψ

2
+ ψ3 ≤ 0 yields

ψ2 = ψ
3

= ψ3 = 0 so that (9.2) follows.
If ψ

2
= ψ2, we have 3ψ

2
= 3ψ2 ≤ 2ψ2 + ψ

1
, which implies ψ2 ≤ ψ1

and
this is only possible if ψ2 = ψ

1
= 0. As before, this yields ψ3 = 0 as well,

and again (9.2) follows.
Now let ψ

3
= ψ3. Then we have ψ3 = ψ

3
≥ ψ

3
(3 + 2ψ

1
) and hence

either ψ3 = ψ
3

= 0 or 1 = 3 + 2ψ
1
≥ 3, which is only possible if ψ

1
= −1.

In the first case ψ
3
≤ ψ2 ≤ ψ3 (we used (1.5) again) implies ψ2 = 0, and
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ψ
1
+ψ2+ψ3 ≥ 0 yields ψ

2
= ψ1 = ψ

1
= 0 and hence (9.2). In the second case

ψ
1

= −1 and in view of ψ
1
+ψ2+ψ3 ≥ 0 we must have ψ2 = ψ

3
= ψ3 = 1/2.

Then ψ1 +ψ
3
+2ψ1ψ3

= 0 yields ψ1 = −1/4, and ψ
2
≤ ψ1 gives ψ

2
= −1/4,

which concludes the proof.
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