Correction to
 "Computing Galois groups by means of Newton polygons"

(Acta Arith. 115 (2004), 71-84)
by

Michael Kölle and Peter Schmid (Tübingen)

The last statement of the (main) theorem in the above joint paper, cited as $[\mathrm{KS}]$, is not stated correctly. The error comes from Proposition 4 in [KS], because the residue class field of \widehat{T} merely contains the splitting field of the associated polynomial \bar{f}_{S} (page 80). We use the notations and conventions introduced in [KS]. In particular, we assume that the side $S=S_{m}$ with slope $m=h / e$ of the Newton polygon of the normalized polynomial $f \in$ $K[X]$ with respect to the finite prime \mathfrak{p} of the number field K is regular (\bar{f}_{S} separable over the residue class field $k_{\mathfrak{p}}$) and tame ($\mathfrak{p} \nmid e$). Let then $\omega=\mathrm{o}(\mathrm{Np} \bmod e)$ be the order of the absolute norm $\mathrm{Np}=\left|k_{\mathfrak{p}}\right|$ of \mathfrak{p} in $(\mathbb{Z} / e \mathbb{Z})^{*}$, and let the distinct normalized prime factors of \bar{f}_{S} over $k_{\mathfrak{p}}$ have degrees d_{1}, \ldots, d_{r} (so that $\sum_{i=1}^{r} d_{i}=d=\operatorname{deg}\left(\bar{f}_{S}\right)$).

Recall that by part (iii) of the theorem in $[\mathrm{KS}]$ the inertia group $I_{\mathfrak{P}}^{Z_{f, m}}$ equals $\langle\tau\rangle$ where τ is the product of d disjoint e-cycles on the roots $Z_{f, m}$. Part (iv) should read as follows:
(iv) The constituent $G_{\mathfrak{P}, m}^{Z_{f, m}}=\langle\sigma, \tau\rangle$ has justr orbits of sizes $d_{1} e, \ldots, d_{r} e$ and is a metacyclic group, with $\sigma^{-1} \tau \sigma=\tau^{\mathrm{Np}}$. The order of the (cyclic) group $G_{\mathfrak{P}}^{Z_{f, m}} / I_{\mathfrak{P}}^{Z_{f, m}}$ is divisible by $\mu=\operatorname{lcm}\left(\omega, d_{1}, \ldots, d_{r}\right)$, and it is a divisor of $\mu \cdot e$. This order is equal to μ if $e=1$ and $d=1$, and if $r=1$ and $\operatorname{gcd}(\omega, d)=1$.
The first assertion follows from Proposition 2 in [KS] (essentially due to Ore). By parts (i), (ii) of the theorem \widehat{f}_{m}, having the set $Z_{f, m}$ of zeros, and the factor f_{m} to the side S have the same splitting field $\widehat{L}_{m} \subseteq \bar{K}_{\mathfrak{p}}$, and we may identify $G_{\mathfrak{P}}^{Z_{f, m}}$ with the Galois group $G_{m}=\operatorname{Gal}\left(\widehat{L}_{m} \mid K_{\mathfrak{p}}\right)$ acting on

[^0]the roots of f_{m}. Let \widehat{T} be the maximal subfield of \widehat{L}_{m} unramified over $K_{\mathfrak{p}}$. We identify $I_{\mathfrak{P}}^{Z_{f, m}}$ with $I_{m}=\operatorname{Gal}\left(\widehat{L}_{m} \mid \widehat{T}\right)$ (acting on the roots of f_{m}). By assumption $\widehat{L}_{m} \mid K_{\mathfrak{p}}$ is a tame extension. It is well known that $G_{m} / I_{m} \cong$ $\operatorname{Gal}\left(\widehat{T} \mid K_{\mathfrak{p}}\right)$ is cyclic, generated by the inverse image $I_{m} \sigma$ of the Frobenius automorphism over $k_{\mathfrak{p}}$, and that $\sigma^{-1} \tau \sigma=\tau^{\mathrm{Np}}$.

Observe that $\omega=\left[K_{\mathfrak{p}}(\varepsilon): K_{\mathfrak{p}}\right]$ where ε is a primitive e th root of unity. We assert that $\varepsilon \in \widehat{T}$. Of course $K_{\mathfrak{p}}(\varepsilon) \mid K_{\mathfrak{p}}$ is unramified ($\left.\mathfrak{p} \nmid e\right)$. Recall that $\operatorname{deg}\left(f_{m}\right)=\ell=d e$ equals the length of S and that f_{m} is a polynomial in X^{e}. Indeed, by construction, or in view of Hensel's lemma, there is a unique normalized lift $f_{S} \in K_{\mathfrak{p}}[X]$ of \bar{f}_{S} such that

$$
f_{m}(X)=\pi^{d h} f_{S}\left(\pi^{-h} X^{e}\right)
$$

where π is the fixed element of K with order 1 at \mathfrak{p}. Hence if θ is a root of f_{m} (in \widehat{L}_{m}) so is $\varepsilon^{i} \theta$ for each integer i, giving the assertion. Moreover, $\pi^{-h} \theta^{e}$ is then a root of f_{S}. If $\pi^{-h} \theta^{e}=\pi^{-h} \beta^{e}$ for some other root β of f_{m}, then β / θ is an e th root of unity and so $\beta=\varepsilon^{i} \theta$ for some integer i. For $\tau \in I_{m}$ we have $\left(\theta^{\tau}\right)^{e}=\left(\theta^{e}\right)^{\tau}=\theta^{e}$. We conclude that $\left\{\varepsilon^{i} \theta: 1 \leq i \leq e\right\}$ is the orbit of θ under I_{m}. Since there are just $d=\operatorname{deg}\left(f_{S}\right)$ such orbits, we deduce that each root of f_{S} is of the form $\pi^{-h} \theta^{e}$ for some root θ of f_{m}. It follows that [$\widehat{T}: K_{\mathfrak{p}}$] is divisible by μ.

Let T be the (unique) subfield of \widehat{T} such that $\left[T: K_{\mathfrak{p}}\right]=\mu$. We know that $\varepsilon \in T$ and that, for each root θ of f_{m}, we have $\theta^{e}=\pi^{h} u_{\theta}$ for some unit $u_{\theta} \in U_{T}$ in T, which is a root of f_{S} in T. By separability of $\bar{f}_{S}=f_{S} \bmod \mathfrak{p}$ these u_{θ} belong to d distinct elements in k_{T}^{*}, where k_{T} is the residue class field of T. From $\mathfrak{p} \nmid e$ we infer that $U_{T} / U_{T}^{e} \cong k_{T}^{*} / k_{T}^{* e}$ is cyclic (of order e). Observe that π is a prime in T and that $\operatorname{gcd}(e, h)=1$. Combining Proposition 2 in [KS] with Abhyankar's lemma and (abelian) Kummer theory we see that, for any root θ of f_{m}, the polynomial $X^{e}-\pi^{h} u_{\theta}$ is irreducible over T and that $T(\theta) \mid T$ is a cyclic totally ramified extension of degree e with $T(\theta) \widehat{T}=\widehat{L}_{m}$. In this manner we recover part (iii) of the theorem in $[\mathrm{KS}]$. Now $\widehat{L}_{m} \mid T(\theta)$ is cyclic of degree $[\widehat{T}: T]$, and \widehat{L}_{m} is the compositum of all these $T(\theta)$. We conclude that the degree $[\widehat{T}: T]$ is a divisor of e. Hence $\left|G_{m} / I_{m}\right|=\left[\widehat{T}: K_{\mathfrak{p}}\right]$ divides $\mu \cdot e$.

It is obvious that $T=\widehat{T}$ if $e=1$ or $d=1$. Suppose that $r=1$ and $\operatorname{gcd}(\omega, d)=1$. Then \bar{f}_{S} is (even) irreducible over the residue class field of $K_{\mathfrak{p}}(\varepsilon)$, which has order $(\mathrm{Np})^{\omega} \equiv 1(\bmod e)$. Hence the roots $u_{\theta}=\pi^{-h} \theta^{e}$ of f_{S} are conjugate over $K_{\mathfrak{p}}(\varepsilon)$ and so belong to the same class in U_{T} / U_{T}^{e}. Apply Kummer theory.

Whereas Corollary 1 to the theorem in $[\mathrm{KS}]$ is true as it stands $(e=1)$, Corollary 2 has to be modified. Here we have $d=1(\ell=e)$, so that G_{m} / I_{m}
is cyclic of order $\omega=\mathrm{o}(\mathrm{Np} \bmod e)$. For $e \neq 1 \neq d$ it can happen that $\left|G_{m} / I_{m}\right|>\mu$; an example with $e=2=d$ (and $m=1 / 2$) is provided by $f_{m}=X^{4}-2 \cdot 7^{2}$ over $\mathbb{Q}_{7}(\pi=7)$.

Note. Let us say that two normalized polynomials φ, ψ in $K_{\mathfrak{p}}[X]$ (of the same degree) belong to the same Ore class provided their Newton polygon (with respect to $v_{\mathfrak{p}}$) is the same and consists of one straight line S such that the associated polynomials $\bar{\varphi}_{S}=\bar{\psi}_{S}$ agree. This means that the points on the line S resulting from φ, ψ are the same and that the corresponding coefficients only differ by principal units in $K_{\mathfrak{p}}$. The statements of the theorem, for regular and tame S, only depend on the Ore class of the polynomials.

Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
D-72076 Tübingen, Germany
E-mail: peter.schmid@uni-tuebingen.de

[^0]: 2010 Mathematics Subject Classification: 11R32, 20B25.
 Key words and phrases: Galois groups, Newton polygons.

