
ACTA ARITHMETICA

140.2 (2009)

Stern polynomials and double-limit continued fractions

by

Karl Dilcher (Halifax) and Kenneth B. Stolarsky (Urbana, IL)

1. Introduction. One of the most remarkable integer sequences in num-
ber theory and combinatorics is the Stern sequence, sometimes also called
Stern’s diatomic sequence. This sequence {a(n)}n≥0 is given by a(0) = 0,
a(1) = 1, and for n ≥ 1 by

(1.1) a(2n) = a(n), a(2n + 1) = a(n) + a(n− 1).

For numerous properties and references, see, e.g., [24, A002487] or [23].
Recently the authors [13] defined a polynomial analogue as follows. Let

a(0; x) = 0, a(1; x) = 1, and for n ≥ 1 let

a(2n; x) = a(n; x2),(1.2)

a(2n + 1; x) = xa(n; x2) + a(n + 1; x2).(1.3)

We call the polynomial a(n; x) the nth Stern polynomial . Numerous prop-
erties of these polynomials can be found in [13]; here we only repeat the
obvious properties

(1.4) a(n; 0) = 1 (n ≥ 1), a(n; 1) = a(n) (n ≥ 0),

and, for all m ≥ 0,

(1.5) a(2m; x) = 1;

this last identity follows by iterating (1.2). For ease of reference we also list
the first Stern polynomials up to n = 32 in Table 1.

We note that a different polynomial extension of the Stern sequence (1.1),
also called Stern polynomials, was introduced and studied in [16].

An important and interesting property of the Stern sequence is the fact
that in each interval 2n−2 ≤ m ≤ 2n−1 the maximum value of a(m) is
the Fibonacci number Fn. In general this maximum is attained twice, at
well-known and specified indices m; we let αn and βn be these indices in
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Table 1. a(n; x), 1 ≤ n ≤ 32

n a(n; x) n a(n; x)

1 1 17 1 + x + x2 + x4 + x8

2 1 18 1 + x2 + x4 + x8

3 1 + x 19 1 + x + x3 + x4 + x5 + x8 + x9

4 1 20 1 + x4 + x8

5 1 + x + x2 21 1 + x + x2 + x5 + x6 + x8 + x9 + x10

6 1 + x2 22 1 + x2 + x6 + x8 + x10

7 1 + x + x3 23 1 + x + x3 + x7 + x8 + x9 + x11

8 1 24 1 + x8

9 1 + x + x2 + x4 25 1 + x + x2 + x4 + x9 + x10 + x12

10 1 + x2 + x4 26 1 + x2 + x4 + x10 + x12

11 1 + x + x3 + x4 + x5 27 1 + x + x3 + x4 + x5 + x11 + x12 + x13

12 1 + x4 28 1 + x4 + x12

13 1 + x + x2 + x5 + x6 29 1 + x + x2 + x5 + x6 + x13 + x14

14 1 + x2 + x6 30 1 + x2 + x6 + x14

15 1 + x + x3 + x7 31 1 + x + x3 + x7 + x15

16 1 32 1

the interval. The main object of study in this paper is the subsequence of
Stern polynomials with index αn, along with a companion sequence of poly-
nomials with index βn. These polynomials will be introduced and studied
in Section 3. Because of their close relationship to the Fibonacci numbers,
they can be considered either as polynomial analogues or, to some extent,
also as q-analogues of Fibonacci numbers. We therefore chose the letter q as
variable.

Before we define these polynomials in Section 3, we prove a crucial result
on the Stern polynomials which goes beyond [13] and is the basis of much
of what follows in this paper; this will be done in Section 2. In Section 4
we derive several quadratic identities, and in Section 5 we define and inves-
tigate two analytic functions as limits of the above polynomial sequences.
Section 6 then deals with some finite and infinite continued fractions. In
a case of particular interest, the set of convergents has exactly two limit
points. Finally, in Section 7, we prove some transcendence results for the
infinite continued fractions obtained in the previous section.

2. A result on Stern polynomials. In order to motivate the main
result in this section, we consider patterns in the polynomials a(n; x) that
are somewhat less obvious than those induced by (1.2) or (1.3). For instance,
in a(27; x) (see Table 1) the two-fold occurrence of three consecutive powers
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of x indicates that we can write

a(27; x) = x3(1 + x + x2)(1 + x8) + (1 + x)(2.1)

= x3a(5; x)a(3; x8) + a(3; x).

This is a special case of the following result.

Proposition 2.1. Let j,m, n be integers with 0 ≤ m ≤ n and 0 ≤ j
≤ 2m. Then

(2.2) a(2n − j; x) = x2m−ja(j; x)a(2n−m − 1; x2m
) + a(2m − j; x).

Before proving this result we derive a few consequences. First, with
n = 5, m = 3, and j = 5 we immediately get our example (2.1). Further-
more, if we set x = 1 then with (1.4) we get the following result on the Stern
sequence which we have not been able to find in the literature.

Corollary 2.1. Let j,m, n be integers with 0≤ m≤ n and 0≤ j ≤ 2m.
Then

(2.3) a(2n − j) = a(j)a(2n−m − 1) + a(2m − j).

The next corollary is equivalent to Lemma 2.1 in [13], but is presented
here in a different form:

Corollary 2.2. For integers m ≥ 0 and 0 ≤ j ≤ 2m we have

(2.4) xja(2m+1 − j; x) = (x2m − 1)a(j; x) + a(2m + j; x).

Proof. First we set n = m + 1 in (2.2) and replace 2m − j by j. This
gives

(2.5) a(2m + j; x) = xja(2m − j; x) + a(j; x),

which is just Lemma 2.1 in [13]. Next we set again n = m + 1 in (2.2) and
multiply both sides by xj , to obtain

xja(2m+1 − j; x) = x2m
a(j; x) + xja(2m − j; x).

Now we combine this with (2.5) and immediately obtain (2.4).

If we set x = 1 in (2.4) we obtain the well-known reflection property for
the Stern sequence, namely

a(2m+1 − j) = a(2m + j)

for m ≥ 0 and 0 ≤ j ≤ 2m. The identity (2.4) can therefore be seen as a
polynomial analogue of this reflection property.

Proof of Proposition 2.1. We begin with the case m = 0; then j = 0
or 1, and (2.2) becomes

(2.6) a(2n − j; x) = x1−ja(j; x)a(2n − 1; x) + a(1− j; x).

Both cases (j = 0 or 1) are obvious if we use the fact that a(0; x) = 0 and
a(1; x) = 1 hold identically for all x.
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The main proof is now by induction on n. When n = 0, then m = 0 and
j = 0 or 1, so the start of the induction is a special case of (2.6). For the
induction step we assume that (2.2) holds up to some n− 1. First, if j = 2k
is even, we use (1.2) and the induction hypothesis with 0 ≤ m ≤ n− 1 and
x2 in place of x to obtain

a(2n − 2k; x) = a(2n−1 − k; x2)

= (x2)2
m−ka(k; x2)a(2n−1−m − 1; (x2)2

m
) + a(2m − k; x2)

= x2m+1−2ka(2k; x)a(2n−(m+1) − 1; x2m+1
) + a(2m+1 − 2k; x).

Second, when j = 2k + 1 is odd, we write 2n − j = 2(2n−1 − k − 1) + 1 and
use (1.3) and the induction hypothesis, once again with 0 ≤ m ≤ n− 1 and
x2 in place of x:

a(2n − 2k − 1; x)

= xa(2n−1 − k − 1; x2) + a(2n−1 − k; x2)

= x((x2)2
m−k−1a(k + 1; x2)a(2n−1−m − 1; (x2)2

m
) + a(2m − k − 1; x2))

+ (x2)2
m−ka(k; x2)a(2n−1−m − 1; (x2)2

m
) + a(2m − k; x2)

= x2m+1−(2k+1)[a(k + 1; x2) + xa(k; x2)]a(2n−(m+1) − 1; x2m+1
)

+ [xa(2m − k − 1; x2) + a(2m − k; x2)]

= x2m+1−(2k+1)a(2k + 1; x)a(2n−(m+1) − 1; x2m+1
)

+ a(2m+1 − (2k + 1); x),

where we have used (1.3) twice to simplify the terms in square brackets. If
we replace m + 1 by m in both cases we have the result for 1 ≤ m ≤ n, and
m = 0 is already known. This completes the induction.

3. The sequences fn(q) and fn(q). As mentioned in the introduction,
the maximum value of the Stern sequence a(m) in the interval 2n−2 ≤ m
≤ 2n−1, n ≥ 2, is the nth Fibonacci number Fn with the usual determination
F0 = 0, F1 = 1, and

(3.1) Fn+1 = Fn + Fn−1 (n ≥ 1).

It was apparently first shown by Lehmer [17] that this maximum occurs at

m =
1
3

(2n − (−1)n) and m =
1
3

(5 · 2n−2 + (−1)n);

see also [18] or [25]. We will now use these values to define two subsequences
of the Stern polynomials which will be the main objects of study in this
paper. For this purpose we set

(3.2) αn :=
1
3

(2n−(−1)n) (n ≥ 0), βn :=
1
3

(5·2n−2+(−1)n) (n≥ 2).
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The following properties are easy to verify (see also [25]):

αn = 2n−1 − 2n−2 + · · ·+ (−1)n−22 + (−1)n−1 (n ≥ 2),(3.3)
αn+1 = 2αn + (−1)n,(3.4)

αn+1 = 2n − αn, αn−1 = 2n−1 − αn,(3.5)
βn+1 = 2βn − (−1)n,(3.6)

βn+1 = 2n − αn−1, βn+1 = 2n−1 + αn,(3.7)

βn = αn+1 − 2n−2.(3.8)

The sequence {αn} is sometimes called the Jacobsthal sequence; see [25,
p. 186], or [24, A001045] for further properties and numerous references.
The sequence {βn} can be found in [24, A048573]; the first few values of
both are listed in Table 2.

Table 2. αn, βn, 1 ≤ n ≤ 10

n 1 2 3 4 5 6 7 8 9 10

αn 1 1 3 5 11 21 43 85 171 341

βn 2 3 7 13 27 53 107 213 427

We now define the main objects of this section.

Definition 3.1. For each n ≥ 0 we define
(3.9) fn(q) := a(αn; q),
and for each n ≥ 2,
(3.10) fn(q) := a(βn; q),
so that in particular we have f0(q) = 0 and f1(q) = f2(q) = f 2(q) = 1
identically for all q.

The polynomials fn(q) and fn(q) for the first few values of n are listed
in Table 3. The following important properties could be used as alternative
definitions of these polynomials.

Table 3. fn(q) and f n(q), 2 ≤ n ≤ 7

n fn(q) f n(q)

2 1 1

3 1 + q 1 + q

4 1 + q + q2 1 + q + q3

5 1 + q + q3 + q4 + q5 1 + q + q2 + q5 + q6

6 1 + q + q2 + q5 + q6 + q8 + q9 + q10 1 + q + q3 + q4 + q5 + q11 + q12 + q13

7 1 + q + q3 + q4 + q5 + q11 + q12 1 + q + q2 + q5 + q6 + q8 + q9

+ q13 + q16 + q17 + q19 + q20 + q21 + q10 + q21 + q22 + q24 + q25 + q26
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Proposition 3.1. The polynomials fn(q) and fn(q) satisfy

fn+1(q) = qαn−1fn(q) + fn−1(q) (n ≥ 1),(3.11)

fn+1(q) = fn(q) + qαnfn−1(q) (n ≥ 1),(3.12)

fn+1(q) = fn(q) + q2n−2
fn−1(q) (n ≥ 2).(3.13)

Proof. We use (2.2) with m = n− 1 to obtain

(3.14) a(2n − j; q) = q2n−1−ja(j; q) + a(2n−1 − j; q).

If we take j = αn, then the two identities in (3.5) together with the definition
(3.9) immediately give (3.11).

Next we use (3.14) with j = αn−1. Then we have 2n− j = βn+1 by (3.7),
and 2n−1 − j = αn by (3.5). So (3.14) gives

a(βn+1; q) = qαna(αn−1; q) + a(αn; q),

which is the same as (3.12), by (3.10) and (3.9).
For the third identity we use (2.4) with m = n− 2 and j = αn−1. Then

2m+1− j = αn by (3.5), and 2m + j = βn by (3.7). So (2.4) gives, again with
(3.10) and (3.9),

qαn−1fn(q) = (q2n−2 − 1)fn−1(q) + fn(q).

Finally, if we add (3.11) to this identity, we readily obtain (3.13).

If we set q = 1 and compare the identities (3.11) and (3.12) with (3.1),
we immediately see that

(3.15) fn(1) = fn(1) = Fn.

This, of course, is not surprising, given the way we defined the sequences
fn(q) and fn(q). It can also be shown that (1 + q) | fn(q) + fn(q). In fact,

fn(−1) = −fn(−1) = (−1)nFn−3.

At this point we remark that various q-analogues of Fibonacci numbers
have been known for a long time (see, e.g., [7], [8]) and are still of current
interest (see, e.g., [9]). Usually, these analogues are such that they relate
to the q-binomial coefficients much as the Fibonacci numbers relate to the
binomial coefficients. There is also a vast literature on Fibonacci (and Lucas)
polynomials; they are closely related to the Chebyshev polynomials of both
kinds.

The identities in Proposition 3.1 lead to another linear recurrence rela-
tion that will be needed in the proof of Proposition 5.3.

Corollary 3.1. For all n ≥ 2 we have

(3.16) fn+2(q) = (1 + q2n−2
+ q2n−1

)fn(q)− q2n−2
fn−2(q).
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Proof. We replace n by n + 1 in (3.13) and combine it with (3.12), to
get

(3.17) fn+2(q) = (1 + q2n−1
)fn(q) + qαnfn−1(q).

Next we replace n by n−1 in (3.11) and multiply both sides by q2n−2
. Noting

that the two identities in (3.5) give αn−2 + 2n−2 = αn, we obtain

q2n−2
fn(q) = qαnfn−1(q) + q2n−2

fn−2(q).

This, combined with (3.17), gives (3.16).

It can be seen from Tables 2 and 3 that the degrees of the polynomials
are closely related to the integers αn−1, resp. βn−1. In fact, we have

Proposition 3.2. The coefficients of fn(q) and fn(q) are 0 or 1, and
for k ≥ 1 we have

deg f2k(q) = α2k−1 − 1, deg f2k+1(q) = α2k,(3.18)

deg f 2k(q) = β2k−1 (k ≥ 2), deg f 2k+1(q) = β2k − 1.(3.19)

Proof. In Proposition 2.1 of [13] it was shown that the Stern polynomials
have only 0 or 1 as coefficients; this carries over to the fn(q) and fn(q). It
was also shown there that for n ≥ 0,

(3.20) deg a(2n + 1; q) = n.

Now by (3.4) we have

α2k = 2(α2k−1 − 1) + 1, α2k+1 = 2α2k + 1,

which immediately leads to (3.18). The proof of (3.19) is completely analo-
gous, using (3.20) and this time (3.6).

Alternatively, Proposition 3.2 could be proved by induction, using the
recurrence relations in Proposition 3.1.

In addition to (3.11)–(3.13), the following recurrence relations are also
analogues to (3.1).

Proposition 3.3. For any k ≥ 1 we have

f2k(q) = f2k−1(q2) + qf2k−2(q4),(3.21)

f2k+1(q) = qf2k(q2) + f2k−1(q4),(3.22)

and for k ≥ 2,

f 2k(q) = qf 2k−1(q2) + f 2k−2(q4),(3.23)

f 2k+1(q) = f 2k(q2) + qf 2k−1(q4).(3.24)
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Proof. To obtain (3.21), we use (3.4) and then (1.3) with n = α2k−1−1,
followed by (1.2):

f2k(q) = a(α2k; q) = a(2α2k−1 − 1; q) = a(α2k−1; q2) + qa(α2k−1 − 1; q2)

= a(α2k−1; q2) + qa(2α2k−2; q2) = a(α2k−1; q2) + qa(α2k−2; q4),

and this last expression is clearly the right-hand side of (3.21). The proofs
of (3.22)–(3.24) are analogous.

An important consequence of (3.11) is the fact that for each n the poly-
nomials fn+1(q) and fn−1(q) agree up to and including the αn−1th power
of q. The following result shows that the polynomials fn(q) have a similar
property.

Proposition 3.4. For all n ≥ 3 we have

(3.25) fn+1(q) = fn−1(q) + q2n−3
(qβn−1fn−1(q) + fn−2(q)).

Proof. Substituting (3.13) with n replaced by n− 1 into (3.12), we get

fn+1(q) = fn−1(q) + q2n−3
(qαn−2n−3

fn−1(q) + fn−2(q)).

The result now follows from (3.8).

4. Nonlinear relations. One of the best known identities for the Fi-
bonacci numbers, apart from the basic recurrence (3.1), is (for n ≥ 1)

(4.1) Fn−1Fn+1 − F 2
n = (−1)n.

In this section we derive several analogues of this identity.

Proposition 4.1. For all k ≥ 1 we have

f2k+1(q)f2k−1(q2)− qf2k(q)f2k(q2) = 1,(4.2)

f2k+1(q)f2k+1(q2)− qf2k+2(q)f2k(q2) = 1.(4.3)

Proof. It is easy to check that both identities hold for k = 1. Suppose
now that they hold up to some k− 1. We use (3.11) to rewrite the left-hand
side of (4.2) as

(qα2k−1f2k(q) + f2k−1(q))f2k−1(q2)− qf2k(q)(q2α2k−2f2k−1(q2) + f2k−2(q2))
= f2k−1(q)f2k−1(q2)− qf2k(q)f2k−2(q2) = 1

by (3.4), and by (4.3) with k replaced by k − 1. Similarly we rewrite the
left-hand side of (4.3), this time using (4.2) together with (3.11) and (3.4):

f2k+1(q)(q2α2k−1f2k(q2) + f2k−1(q2))− q(qα2kf2k+1(q) + f2k(q))f2k(q2)
= f2k+1(q)f2k−1(q2)− qf2k(q)f2k(q2) = 1

by (4.2), where we have used (3.4) again. This completes the proof by in-
duction.

We now prove another pair of analogues to (3.1).
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Proposition 4.2. For k ≥ 2 we have

(4.4) f2k+1(q)f 2k−1(q2)− f 2k(q)f2k(q2) = qβ2k−1,

and for k ≥ 1,

(4.5) f 2k+2(q)f2k(q2)− f2k+1(q)f 2k+1(q2) = −qα2k+1−1.

Proof. We begin with (4.5). Using (3.12) we get

f 2k+2(q)f2k(q2)− f2k+1(q)f 2k+1(q2)

= (f2k+1(q) + qα2k+1f2k(q))f2k(q2)

− f2k+1(q)(f2k(q2) + q2α2kf2k−1(q2))

= qα2k+1−1(qf2k(q)f2k(q2)− f2k+1(q)f2k−1(q2)) = −qα2k+1−1,

where we have used (3.4) and (4.2). Next, (3.13) leads to

f2k+1(q)f 2k−1(q2)− f 2k(q)f2k(q2)

= (f 2k(q)+q22k−2
f2k−1(q))f 2k−1(q2)−f 2k(q)(f 2k−1(q2)+q2·22k−3

f2k−2(q2))

= q22k−2
(f2k−1(q)f 2k−1(q2)− f 2k(q)f2k−2(q2))

= −q22k−2
qα2k−1−1 = −qβ2k−1,

where the last two equalities follow from (4.5) and (3.7), respectively. This
proves the identity (4.4).

Remark. The sequence of exponents on the right-hand sides of (4.4)
and (4.5) is interesting in its own right. We set γn = βn− 1 when n is even,
and γn = αn − 1 when n is odd. In Table 4 we list the first few values.

Table 4. γn, 1 ≤ n ≤ 14

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

γn 0 1 2 6 10 26 42 106 170 426 682 1706 2730 6826

The numbers γn are known to have a simple combinatorial interpretation:
For a given n ≥ 1, γn is the number of 132- and 213-avoiding derangements
of the set {1, . . . , n}; see [24, A061547]. This last reference also gives the
explicit formula

γn =
3
8
· 2n +

1
24
· (−2)n − 2

3
,

and the recurrence relation

γ1 = 0, γ2 = 1, γn = 4γn−2 + 2.

Both properties are easy to derive from the definition (3.2).
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5. Two limit functions. At the end of Section 3 we already remarked
that, by (3.11), for each n the polynomials fn+1(q) and fn−1(q) agree up
to and including the αn−1th power of q. Similarly, the identity (3.25) shows
that fn+1(q) and fn−1(q) agree up to and including the 2n−3th power of q.
Finally, by (3.12) and (3.13), similar agreements exist between fn+1(q) and
fn(q), and between fn+1(q) and fn(q), respectively. This means that the
following two functions are well-defined.

Definition 5.1. For complex q with |q| < 1 we define

F (q) := lim
n→∞

f2n(q) = lim
n→∞

f 2n+1(q)(5.1)

= 1+q +q2 +q5 +q6 +q8 +q9 +q10 +q21 +q22 +q24 + · · · ,
G(q) := lim

n→∞
f2n+1(q) = lim

n→∞
f 2n(q)(5.2)

= 1+q +q3 +q4 +q5 +q11 +q12 +q13 +q16 +q17 +q19 + · · · .

It is clear that both these functions are analytic for |q| < 1. Also, from
(3.21) or (3.24), and from (3.22) or (3.23) they inherit the relationships

F (q) = G(q2) + qF (q4),(5.3)

G(q) = qF (q2) + G(q4),(5.4)

respectively. The sequences of integers appearing in the exponents here are
not found in [24] at the time of writing. Nonetheless, they are simple exam-
ples of so-called “self-generating sequences”. In fact, if Φ and Γ are minimal
sets of positive integers such that 1 ∈ Φ ∩ Γ and

Φ ⊇ (4Φ + 1) ∪ 2Γ, Γ ⊇ (2Φ + 1) ∪ 4Γ,

then Φ is the set of exponents of F and Γ is the set of exponents of G.
For properties of sequences defined in a similar manner (though not the
particular ones occurring here) see [5], [14], or [15].

We now show that the linked functional equations (5.3) and (5.4) lead
to functional equations for F alone, and for G alone.

Proposition 5.1. For |q| < 1 we have

F (q) = (1 + q + q2)F (q4)− q4F (q16),(5.5)

qG(q) = (1 + q + q2)G(q4)−G(q16).(5.6)

Proof. Replacing q by q2 in (5.3) and eliminating G(q4) with the help of
(5.4), we obtain

G(q) = (1 + q)F (q2)− q2F (q8).

Then we replace q by q2 in this identity and substitute it into (5.3). This
gives (5.5). The identity (5.6) is obtained with similar manipulations, using
again (5.3) and (5.4).
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The two functions F and G also satisfy nonlinear functional equations:

Proposition 5.2. For |q| < 1 we have

G(q)G(q2)− qF (q)F (q2) = 1,(5.7)

F (q)G(q4)− qG(q)F (q4) = 1.(5.8)

Proof. The identity (5.7) follows directly from (4.2) or (4.3) by taking
limits. If we substitute G(q2) and qF (q2) with the help of (5.3) and (5.4),
respectively, we easily obtain (5.8).

We can actually go further: Multiply both sides of (5.8) by 1 + q + q2

and use (5.5) and (5.6) to eliminate F (q4) and G(q4). Then after some
simplification we get

(5.9) F (q)G(q16)− q5G(q)F (q16) = 1 + q + q2.

It turns out that (5.8) and (5.9) are special cases of the following infinite
class of identities.

Proposition 5.3. For all n ≥ 1 and |q| < 1 we have

(5.10) F (q)G(q22n
)− qα2nG(q)F (q22n

) = f2n(q).

Proof. We proceed by induction on n. For n = 1 and n = 2 the identity
reduces to (5.8) and (5.9), respectively; see also Tables 2 and 3. (Note that
(5.10) is trivially true for n = 0 since f0(q) = 0.) Suppose now that (5.10)
holds up to a certain fixed n ≥ 1. We multiply both sides of (5.10) by

Qn := 1 + q22n−2
+ q22n−1

.

Using (5.5) and (5.6), with q replaced by q22n−2
, we then get

Qnf2n(q) = F (q)[q22n−2
G(q22n−2

) + G(q22n+2
)]

− qα2nG(q)[F (q22n−2
) + q22n

F (q22n+2
)]

= q22n−2
[F (q)G(q22n−2

)− qα2n−22n−2
G(q)F (q22n−2

)]

+ F (q)G(q22n+2
)− qα2n+22n

G(q)F (q22n+2
).

Now by the two identities in (3.5) we have α2n−22n−2 = α2n−2, and therefore
by the induction hypothesis (5.10) the last expression in square brackets is
simply f2n−2(q). Then we use the fact that by Corollary 3.1 we have

Qnf2n(q)− q22n−2
f2n−2(q) = f2n+2(q),

which means that we have obtained (5.10) with n + 1 for n; it only remains
to remark that α2n + 22n = α2n+2, again by (3.5). This completes the proof
by induction.

Functional equations similar to (5.5) and (5.6) were studied in [20] in
connection with a “paper-folding” sequence. The main theorem in [20] does
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not apply directly to (5.5) and (5.6), but using a result of Nishioka [21],
Adamczewski [1] was able to prove

Proposition 5.4 (Adamczewski). The functions F and G take tran-
scendental values at every algebraic number q, 0 < |q| < 1.

Independently, M. Coons [10] recently proved that F and G are transcen-
dental functions, along with results (including transcendence at algebraic
numbers) related to functions that occur in [13].

6. Continued fractions. There is a well-known and close relation-
ship between Fibonacci numbers and finite simple continued fractions de-
noted by

(6.1) 〈a0, a1, . . . , an〉 = a0 +
1

a1 +
1

. . . an−1 +
1
an

=
hn

kn
,

where the terms aj (also called partial quotients) are usually positive inte-
gers. The convergents hn/kn are related to the aj by the recurrence rela-
tions

hj = ajhj−1 + hj−2,(6.2)
kj = ajkj−1 + kj−2,(6.3)

with h−2 = 0, h−1 = 1 and k−2 = 1, k−1 = 0; see, e.g., [22, Ch. 7] for further
details. The simplest of the finite simple continued fractions are

(6.4)
Fn+1

Fn
= 〈1, 1, . . . , 1〉 (n terms),

with the corresponding infinite continued fraction

(6.5)
√

5 + 1
2

= 〈1, 1, 1, . . .〉 = lim
n→∞

hn

kn
.

In this section we shall derive analogues to (6.4) and (6.5) involving the
polynomials fn(q) and the functions F (q), G(q). We begin with the follow-
ing finite continued fraction.

Proposition 6.1. For n ≥ 0 and q 6= 0 we have

(6.6) 〈q2n
, q2n−1

, . . . , q4, q2, q〉 = q(−1)n fn+2(q3)
fn+1(q3)

.

Proof. We use (3.11) with q replaced by q3 and n replaced by n+1, and
we note that 3αn = 2n − (−1)n by (3.2). Then we have

q(−1)n+2 fn+2(q3)
fn+1(q3)

= q2n
+

(
q(−1)n+1 fn+1(q3)

fn(q3)

)−1

.
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Iterating this and using the fact that the last term will be

q(−1)2 f2(q3)
f1(q3)

= q

(see Table 3), we immediately get (6.6).

The following interesting result will be useful for what follows. It can be
found, e.g., in [2].

Lemma 6.1 (The mirror formula). Let a0, a1, . . . be positive integers. Let

(6.7)
pn

qn
= 〈a0, a1, . . . , an〉.

Then

(6.8)
qn

qn−1
= 〈an, an−1, . . . , a1〉.

We use this formula to obtain an evaluation for the following finite con-
tinued fraction.

Proposition 6.2. For n ≥ 0 and q 6= 0 we have

(6.9) 〈q, q2, q4, . . . , q2n〉 = q(3(−1)n−1)/2 fn+2(q3)
fn+1(q6)

.

Proof. We first suppose that n is even, and we use (6.6) with n replaced
by n + 1. In the notation of (6.7) we then have

pn

qn
= 〈q2n+1

, q2n
, . . . , q4, q2, q〉 =

fn+3(q3)
qfn+2(q3)

.

Similarly, using (6.6) with q replaced by q2, we get
pn−1

qn−1
= 〈q2n+1

, q2n
, . . . , q4, q2〉

= 〈(q2)2
n
, (q2)2

n−1
, . . . , (q2)2, (q2)1〉 =

q2fn+2(q6)
fn+1(q6)

.

Hence by the mirror formula the continued fraction in (6.9) is just qn/qn−1,
which is the right-hand side of (6.9) for n even. The case when n is odd is
completely analogous.

When q is a positive integer, then by the theory of simple continued
fractions the limit

(6.10) cq := lim
n→∞

〈q, q2, q4, . . . , q2n〉 = 〈q, q2, q4, . . .〉

exists and lies always between two successive convergents. This makes it easy
to compute the values to any accuracy, using, for instance, the identity (3.11)
(which is equivalent to (6.2) and (6.3)). Convergence will obviously be very
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fast when q ≥ 2, and already n = 2 in (6.9) gives a very good approximation
for q ≥ 2, so that

cq ' q
1 + q−3 + q−6

1 + q−6
,

with an error that is easily quantifiable.
While c1 = (1 +

√
5)/2 is obviously algebraic, we shall see in the next

section that cq is transcendental for any integer q ≥ 2.
When |q| < 1, the situation is drastically different. The theory of simple

continued fractions no longer applies, and in particular the infinite analogue
of the left-hand side of (6.9), i.e., the limit as n → ∞, may no longer
exist. In fact, by the Stern–Stolz theorem (see, e.g., [19, p. 94]) the limit
cannot exist for |q| < 1. However, we can use the functions F and G defined
in (5.1) and (5.2) to obtain the following limit result, which is an obvious
consequence of (6.9).

Proposition 6.3. Whenever 0 < |q| < 1, we have

lim
n→∞
n even

〈q, q2, q4, . . . , q2n〉 =
qF (q3)
G(q6)

,(6.11)

lim
n→∞
n odd

〈q, q2, q4, . . . , q2n〉 =
G(q3)

q2F (q6)
.(6.12)

Thus, while the limit as such does not exist, there are two partial limits.

Remarks.

1. A general discussion of divergent continued fractions with multiple
limits can be found in [6].

2. Different classes of interesting doubly exponential continued fractions
were introduced and studied in [4] and [12].

As a consequence of Proposition 6.3 we obtain the following result.

Proposition 6.4. For any |q| < 1, we have F (q) 6= 0 and G(q) 6= 0.

Proof. Part of the theorem of Stern and Stolz is the statement that both
the limits in (6.11) and (6.12) are finite. Hence, if we had G(q6) = 0 for some
q with |q| < 1, then also F (q3) = 0. But then, by (5.3) and (5.4), we have
F (q12) = 0 and G(q24) = 0, respectively. Iterating this, we find that

F (q3·4k
) = G(q6·4k

) = 0

for all k ≥ 0. This contradicts the fact that the analytic and hence continuous
functions F and G take the value 1 at q = 0.

Similarly, if F (q6) = 0 then by (6.12) we also have G(q3) = 0, and (5.4)
and (5.3) imply G(q12) = F (q24) = 0. Just as before, we iterate this and
obtain a contradiction. This completes the proof.
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7. Further remarks

1. While the continued fraction c1 = 〈1, 1, 1, . . . 〉 is clearly algebraic, we
are going to prove

Proposition 7.1. For any integer q ≥ 2 the infinite continued fraction

(7.1) cq = 〈q, q2, q4, . . . , q2n
, . . .〉

is transcendental.

Proof. We could use Roth’s theorem, but it will be easier to apply a later
theorem of Davenport and Roth [11]. It states that, given an algebraic num-
ber α whose continued fraction expansion has pn/qn as its nth convergent,
we have

(7.2) log log qn < c(α)
n√
log n

,

where c(α) is independent of n. Now it follows from (7.1) and the theory of
continued fractions that qn ≥ q2n

, and obviously (7.2) cannot be satisfied;
hence cq is transcendental for q ≥ 2.

For a recent improvement of the theorem of Davenport and Roth, see [3].

2. For the case |q| < 1, Adamczewski [1] proved the following result.

Proposition 7.2 (Adamczewski). Let q be an algebraic number with
0 < |q| < 1. Then both the limits in (6.11) and (6.12) are transcendental.
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