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1. Introduction. The well-known Cauchy–Davenport theorem states
that for any pair of sets A,B in Zp such that A + B 6= Zp, we have
|A + B| ≥ |A| + |B| − 1, and this estimate is sharp: for arithmetic pro-
gressions A, B with common difference, |A + B| = |A| + |B| − 1. Now a
natural question arises: what can we say about the image of a two-variable
(or more generally multivariable) polynomial? One can ask which polyno-
mial f blows up its domain, i.e. for any A,B ⊆ Zp with |A| � |B| the set
f(A,B) := {f(a, b) : a ∈ A, b ∈ B} is ampler (in some uniform meaning)
than |A|. As we remarked earlier, the polynomial f(x, y) = x + y does not
have this property.

Let us say that a polynomial f(x, y) is an expander if |f(A,B)|/|A| tends
to infinity as p tends to infinity (a more precise definition will be given
below).

According to the literature, very little is known about existence and
construction of expanders; the only known explicit construction is due to
J. Bourgain (see [3]) who proved that the polynomial f(x, y) = x2 + xy is
an expander. More precisely, he proved that if pε < |A| � |B| < p1−ε then
|f(A,B)|/|A| > pγ , where γ = γ(ε) is a positive but inexplicit real number.

Our aim is to extend the class of known expanders and to give some
effective estimates for |f(A,B)|/|A|. In particular, in Section 3 we exhibit
an infinite family of expanders. The main tool is some incidence inequality
that will also be used to construct explicit extractors with three variables.
A function f : Z3 → {−1, 1} is said to be a 3-source extractor if under a
certain condition on the size of A,B,C, the sum

∑
(a,b,c)∈A×B×C f(a, b, c)

is small compared to the number of its terms (see Section 5 for a precise
definition and the details).
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Finally, in the last section we show that extractors are connected with
some additive questions.

2. Incidence inequalities for points and hyperplanes. For any
prime number p, we denote by Fp the field with p elements. The main tool
used by Bourgain in [3] for exhibiting expanding maps and extractors is the
following Szemerédi–Trotter type inequality:

Proposition 1 (Bourgain–Katz–Tao Theorem [4]). Let P and L be
respectively a set of points and a set of lines in F2

p such that

|P|, |L| < pβ

for some β, 0 < β < 2. Then

|{(P,L) ∈ P × L : P ∈ L}| � p(3/2−γ)β (as p→∞),

for some γ > 0 depending only on β.

In this statement, γ can be calculated in terms of β from the proof, but it
would imply a cumbersome formula. We will need the following consequence:

Lemma 2. Let P and L be respectively a set of points and a set of lines
in F2

p such that |L| < pβ for some β, 0 < β < 2. Then

(1) |{(P,L) ∈ P × L : P ∈ L}| � |P|3/2−γ′
+ p(3/2−γ′)β (as p→∞),

for some γ′ > 0 depending only on β.

Proof. We denote by N(P,L) the left-hand side of (1).
We may freely assume that in Proposition 1,

(2) γ = γ(β) < (2− β)/4.

If |P| < p2−(2−β)/3, then the result follows plainly from Proposition 1 with

γ′ = min(γ(β), γ(2− (2− β)/3)).

Otherwise, we use the obvious bound N(P,L) ≤ |L|p < p1+β from which
we deduce

N(P,L) < p(2−(2−β)/3)(3/2−γ) ≤ |P|3/2−γ

by (2). Thus (1) holds with γ′ = γ.

In [9], Proposition 1 was generalized to an incidence inequality for points
and hyperplanes in Fdp. It can be stated as follows:

Proposition 3 (L. A. Vinh [9]). Let d ≥ 2. Let P be a set of points in
Fdp and H be a set of hyperplanes in Fdp. Then

|{(P,H) ∈ P ×H : P ∈ H}| ≤ |P| |H|
p

+ (1 + o(1))p(d−1)/2(|P| |H|)1/2.
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From this, L. A. Vinh deduced in [9] that in Proposition 1, γ can be
taken equal to min{β − 1; 2− β}/4 whenever 1 < β < 2.

3. A family of expanding maps of two variables. For any prime
number p, let Fp : Fkp → Fp be an arbitrary function of k variables in Fp.
One says that the family of maps F := (Fp)p, where p runs over the prime
numbers, is an expander (in k variables) if for any α, 0 < α < 1, there
exists ε = ε(α) > 0 such that for any positive real numbers L1 ≤ L2, and a
positive constant c = c(F,L1, L2) > 0 not depending on α, for any prime p
and for any k-tuples (Ai)1≤i≤k of subsets of Fp satisfying L1p

α ≤ |Ai| ≤ L2p
α

(1 ≤ i ≤ k), one has |Cp| ≥ cpα+ε where

Cp = Fp(A1, . . . , Ak) := {Fp(a1, . . . , ak) : (a1, . . . , ak) ∈ A1 × · · · ×Ak}.

If the maps Fp, p prime, are induced by some function F : Zk → Z, i.e.
for any prime number p, we have

Fp(πp(x1), . . . , πp(xk)) = πp(F (x1, . . . , xk)),

where πp is the canonical morphism from Z onto Fp, then we simply denote
Fp by F . If such (Fp)p is an expander, then we will say that F induces or is
an expander.

For example, any integral polynomial function F induces functions Fp
also denoted by F . We will mainly concentrate on constructing expanders
of this type.

In [3], Bourgain proved that F (x, y) = x2 + xy induces an expander and
observed that more general maps with two variables can be considered. It
is almost clear (see remark 1 in Section 6) that no map of the kind f(x) +
g(y) + c or f(x)g(y) + c (where c is a constant) can be an expander. From
this, one deduces that maps of the type F (x, y) = f(x) + (uf(x) + v)g(y)
where u, v ∈ Fp and f , g are integral polynomials, are not expanders. This
is clear if u = 0, since in this case F (x, y) = f(x) + vg(y). If u 6= 0, then
F (x, y) = (f(x) + vu−1)(1 +ug(y))− vu−1. In order to exhibit expanders of
the type f(x) + h(x)g(y), we thus have to assume that f and g are affinely
independent, i.e., there is no (u, v) ∈ Z2 such that f(x) = uh(x) + v or
h(x) = uf(x) + v.

We will show the following:

Theorem 4. Let k ≥ 1 be an integer and f , g be polynomials with
integer coefficients, and for any prime number p define the map F from Z2

onto Z by
F (x, y) = f(x) + xkg(y).

Assume that f(x) and xk are affinely independent. Then F induces an ex-
pander.
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For p sufficiently large, the image g(B) of any subset B of Fp has car-
dinality at least |B|/deg g. It follows that we can restrict our attention to
maps of the type F (x, y) = f(x) + xky. We let d := deg f .

Let A and B be subsets of Fp with cardinality |A| � |B| � pα. For
any z ∈ Fp, we denote by r(z) the number of couples (x, y) ∈ A × B such
that z = F (x, y), and by C the set of those z for which r(z) > 0. By the
Cauchy–Schwarz inequality, we get

|A|2|B|2 =
( ∑
z∈Fp

r(z)
)2
≤ |C|

( ∑
z∈Fp

r(z)2
)
.

We now deal with the sum
∑

z∈Fp
r(z)2 which is the number of quadruples

(x1, x2, y1, y2) ∈ A2 ×B2 such that

(3) f(x1) + xk1y1 = f(x2) + xk2y2.

For fixed (x1, x2) ∈ A2 with x1 6= 0 or x2 6= 0, (3) can be viewed as the
equation of a line `x1,x2 whose points (y1, y2) are in F2

p. For (x1, x2) and
(a, b) in A2, the lines `x1,x2 and `a,b coincide if and only if{

(x1b)k = (ax2)k,
bk(f(x2)− f(x1)) = xk2(f(b)− f(a)),

or equivalently

(4)
{

(x1b)k = (ax2)k,
(bk − ak)(f(x2)− f(x1)) = (xk2 − xk1)(f(b)− f(a)).

At this point observe that by our assumption, there are only finitely many
prime numbers p such that f(x) = uxk + v for some (u, v) ∈ F2

p, in which
case the second equation in (4) holds trivially for any x1 and x2. We assume
in the following that p is not such a prime number.

Let (a, b) ∈ A2 be such that a 6= 0 or b 6= 0. Assume for instance that
b 6= 0. By (4) we get x1 = ζax2/b for some kth root of unity ζ modulo p.
Moreover, we obtain

(5) bk
(
f(x2)− f

(
ζ
ax2

b

))
− xk2(f(b)− f(a)) = 0,

which is a polynomial equation in x2. If we write f(x) =
∑

0≤j≤d fjx
j then

bk
(
f(x)− f

(
ζ
ax

b

))
=
∑

1≤j≤d
bk
(

1− ζjaj

bj

)
fjx

j

is a polynomial which could be identically equal to xk(f(b) − f(a)) only if
the following two conditions are satisfied:

f(b)− f(a) = (bk − ak)fk, fj 6= 0 ⇒ bj = ζjaj .
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Since f(x) and xk are assumed to be affinely independent, we necessarily
have fj 6= 0 for some 0 < j 6= k. If bj = ζjaj for ζ being a kth root of unity
in Fp, then b = ηa where η is some (kd!)th root of unity in Fp. Let

X := {(a, b) ∈ A2 : bkd! 6= akd!}.

Since there are kd! many (kd!)th roots of unity in Fp, we have |A2 rX| ≤
kd!|A|, hence |X| ≥ |A|2/2 for p large enough.

If (a, b) ∈ X, then (5) has at most max(k, d) solutions x2, thus (4)
has at most kmax(k, d) solutions (x1, x2). We conclude that the number of
distinct lines `a,b where (a, b) runs over A2 is c(k, f)|A|2 where c(k, f) can
be chosen equal to (2kmax(k, d))−1, for p large enough. The set of all those
pairwise distinct lines `a,b is denoted by L; its cardinality satisfies |A|2 � |L|
≤ |A|2, as observed before. Let P = B2. Then putting N := |A|2 � |B|2, by
Proposition 1 we have

{(p, `) ∈ P × L : p ∈ `} � N3/2−δ

for some δ > 0. Hence the number of solutions of (4) is O(N3/2−δ) =
O(|A|2|B|1−2δ). Finally, |C| � |B|1+2δ, which is the desired conclusion.

4. Further results on expanders. When α > 1/2, instead of Bour-
gain–Katz–Tao’s incidence inequality, we can use Proposition 3. By the re-
mark following Proposition 3, we can replace δ by min{2α − 1; 2 − 2α} at
the very end of our proof of Theorem 4. This gives

Proposition 5. Let F be as in Theorem 4 and α > 1/2. For any pair
(A,B) of subsets of Fp such that |A| � |B| � pα, we have

|F (A,B)| � |A|1+min{2α−1;2−2α}/2.

The notion of expander which we discussed in the previous section is
connected with the possibility of obtaining for a two-variable function F ,
inducing a sequence (Fp)p, a nontrivial uniform lower bound for

κα(F ) = inf
0<L1<L2

lim inf
p→∞

min
{

ln |Fp(A,B)|
ln |A|

: A,B ⊂ Fp and

L1p
α ≤ |A|, |B| ≤ L2p

α

}
.

For F introduced in Theorem 4, we thus have

1 + min{2α− 1; 2− 2α}/2 ≤ κα(F ) ≤ min{2; 1/α},

where the upper bound follows from the plain bounds |F (A,B)| ≤ |A| |B|
and |F (A,B)| ≤ p. To our knowledge, no explicit example of a function F
such that κα(F ) = min{2; 1/α} has been provided in the literature, even for
a given real number α with 0 < α < 1. This question is certainly much more
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difficult than the initial question of providing an expander. This suggests
the following definition:

Definition. Let I ⊂ (0, 1) be a nonempty interval. A family F = (Fp)p
of two-variable functions is called

• a strong expander according to I if for any α ∈ I, we have

κα(F ) = min{2; 1/α},

• a complete expander according to I if for any α ∈ I, and any positive
real numbers L1 ≤ L2, there exists a constant c = c(F,L1, L2) such
that for any prime number p and any pair (A,B) of subsets of Fp
satisfying L1p

α ≤ |A|, |B| ≤ L2p
α, we have

|Fp(A,B)| ≥ cpmin{1;2α}.

Complete expanders according to I are obviously strong expanders ac-
cording to I. As indicated in [3], random mappings are strong expanders
with a large probability, but no explicit example is known. Furthermore,
functions F introduced in Theorem 4 could possibly be strong expanders,
but we have not been able to prove or disprove this fact. Nevertheless, we can
show that some of them are not complete expanders, including Bourgain’s
function F (x, y) = x2 + xy = x(x+ y). Indeed, let A and B be the interval
[1, pα/2] in Zp. Then A ∪ (A + B) ⊂ [1, pα]. If we assume α ≤ 1/2, the fol-
lowing result, which is a direct consequence of a result by Erdős (see [5, 6]),
implies that F (A,B) = A · (A+B) has cardinality at most o(p2α).

Lemma 6 (Erdős Lemma). There exists a positive real number δ such
that the number of different integers ab where 1 ≤ a, b ≤ n is O(n2/(lnn)δ).

A sharper result due to G. Tenenbaum [8] implies that δ can be taken
equal to 1− (1 + ln ln 2)/ln 2 in this statement.

In the same vein, we can extend Bourgain’s result to more general func-
tions:

Proposition 7. Let k ≥ 2 be an integer , u ∈ Z and F (x, y) = x2k +
uxk + xky = xk(xk + y + u). Then for any α with 0 < α ≤ 1/2, F is not a
complete expander according to {α}.

Proof. Let L be a positive integer such that L <
√
p/2. The set of kth

powers in F∗p is a subgroup of F∗p with index l = gcd(k, p − 1) ≤ k. Thus
there exists a ∈ F∗p such that [1, L] contains at least L/l residue classes of
the form axk, x ∈ F∗p. We let A = {x ∈ F∗p : axk ∈ [1, L]}, which has
cardinality at least L since each kth power has l kth roots modulo p. We
let B = {y ∈ Fp : a(y + u) ∈ [1, L]}. We clearly have |B| = L. Moreover
the elements of F (A,B) are of the form xk(xk + y + u) with x ∈ A and
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y ∈ B, thus of the form a′2x′y′ where x′, y′ ∈ [1, 2L] and aa′ = 1 in Fp. By
the Erdős Lemma, we infer |F (A,B)| = O(L2/(lnL)δ) = o(L2).

By using a deep bound by Weil on exponential sums with polynomials,
we may slightly extend this result:

Proposition 8. Let f(x) and g(y) be nonconstant integral polynomi-
als and F (x, y) = f(x)(f(x) + g(y)). Then F is not a complete expander
according to {1/2}.

We shall need the following result:

Lemma 9. Let u ∈ Fp, L be a positive integer less than p/2, and f(x)
be any integral polynomial of degree k ≥ 1 (as element of Fp[x]). Then
the number N(I) of residues x ∈ Fp such that f(x) lies in the interval
I = (u− L, u+ L) of Fp is at least L− (k − 1)

√
p.

Proof. We will use the formalism of Fourier analysis. Recall the following
notation and properties:

Let φ, ψ : Fp → C and x ∈ Fp.

• φ ∗ ψ(x) :=
∑

y∈Fp
φ(y)ψ(x+ y);

• φ̂(x) :=
∑

y∈Fp
φ(y)e(yx/p), where e(t) := exp(2iπt);

• φ̂ ∗ ψ(x) = φ̂(x) ψ̂(x);
•
∑

y∈Fp
|φ̂(y)|2 = p

∑
y∈Fp
|φ(y)|2 (Parseval’s identity).

Let J be the indicator function of the interval [0, L) of Fp and let

T :=
∑
h∈Fp

Ĵ ∗ J(h)Sf (−h, p)e(hu/p),

where the exponential sum

Sf (h, p) :=
∑
x∈Fp

e(hf(x)/p)

is known to satisfy the bound |Sf (h, p)| ≤ (k − 1)
√
p whenever h 6= 0 in Fp

and p is an odd prime number (see for instance [2]).
On the one hand, we have

T = pĴ ∗ J(0) +
∑

h∈Fpr{0}

Ĵ ∗ J(h)Sf (−h, p)e(hu/p)

≥ pL2 − k√p
∑

h∈Fpr{0}

|Ĵ ∗ J(h)| ≥ pL2 − kLp3/2,

by the bound for Gaussian sums and Parseval’s identity. Hence

(6) T ≥ pL(L− k√p).
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On the other hand,

T =
∑
h∈Fp

∑
y∈Fp

∑
z∈Fp

J(z)J(y + z)e(h(y + u)/p)
∑
x∈Fp

e(−hf(x)/p)

=
∑
x∈Fp

∑
y∈Fp

∑
z∈Fp

J(z)J(y + z)
∑
h∈Fp

e(h(y + u− f(x))/p)

= p
∑
x∈Fp

dL(f(x)− u),

where dL(z) denotes the number of representations of z in Fp in the form
j − j′, 0 ≤ j, j′ < L. Since obviously dL(z) ≤ L for each z ∈ Fp, we get

T ≤ pLN(I).

Combining this bound and (6), we deduce the lemma.

Proof of Proposition 8. We choose p large enough so that both f(x) and
g(y) are nonconstant polynomials modulo p. Let L = k

√
p, and define A

(resp.B) to be the set of residue classes x (resp. y) such that f(x) (resp. g(y))
lies in the interval (0, 2L). By the previous lemma, one has |A|, |B| ≥ √p.
Moreover, for any (x, y) ∈ A×B, we have f(x) and f(x)+g(y) in the interval
(0, 4L). By the Erdős Lemma, the number of residues modulo p which can
be written as F (x, y) with (x, y) ∈ A× B is at most O(L2/(lnL)δ) = o(p),
as p tends to infinity.

5. A family of 3-source extractors with exponential distribution.
Let us define the entropy of a k-source f = (fp)p, where fp : Fkp → {−1, 1},
to be the infimum, denoted α0, of α > 0 such that for any subsets Aj ,
j = 1, . . . , k, of Fp with cardinality at least pα we have

∑
aj∈Aj

j=1,...,k

fp(a1, . . . , ak) = o
( k∏
j=1

|Aj |
)

as p→∞.

When α0 < 1, f is called a k-source extractor (with entropy α0).
The problem of finding k-source extractors can be reduced as follows.

We are looking for functions Fp : Fkp → Fp such that for any k-tuples
(A1, . . . , Ak) of subsets of Fp with cardinality � pα and for any r ∈ F×p ,

(7)
∣∣∣ ∑
aj∈Aj

j=1,...,k

er(Fp(x1, . . . , xk))
∣∣∣ = O

(
p−γ

k∏
j=1

|Aj |
)

as p→∞,

for some γ = γ(α), where er(u) := exp(ru/p). If (7) holds, Bourgain [3] has
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shown that

(8)
∑
aj∈Aj

j=1,...,k

fp(a1, . . . , ak) = O
(
p−γ

′
k∏
j=1

|Aj |
)

as p→∞,

for some γ′ > 0, where fp := sgn sin(2πFp/p). This gives a k-source extractor
f = (fp)p. An extractor f such that (8) holds is said to have an exponential
distribution.

In [3, Proposition 3.6], Bourgain proved that F (x, y) = xy + x2y2, by
letting F = Fp for any p, provides a 2-source extractor with exponential
distribution and with entropy 1/2 − δ for some δ > 0. We will show that
this result can be extended to give 3-source extractors with such entropy.
It has to be mentioned that the explicit 3-source extractors with arbitrary
positive entropy, given in [1], do not have exponential distribution. Here our
goal is to exhibit 3-source extractors with exponential distribution.

Theorem 10. Let F (x, y, z) = a(z)xy+ b(z)x2g(y) +h(y, z) ∈ Z[x, y, z]
where a(z), b(z) are any nonzero polynomial functions, g(y) is any polyno-
mial function of degree at least two, and h(y, z) is an arbitrary polynomial
function. Let L1 ≤ L2 be positive real numbers, α ∈ (0, 1) and A,B,C be
subsets of Fp with L1p

α ≤ |A|, |B|, |C| ≤ L2p
α. For r ∈ Fp, set

Sr =
∑

(x,y,z)∈A×B×C

er(F (x, y, z)).

Then there exists γ = γ(α) > 0 such that

max
r∈Fpr{0}

|Sr| � p((22−γ/2)α+1)/8,

where the implied constant depends only on F , L1 and L2.

Proof. The proof starts as in [3, Proposition 3.6]. For any r ∈ Fp r {0},
let

Sr =
∑

(x,y,z)∈A×B×C

er(F (x, y, z)).

The first transformations use the Cauchy–Schwarz inequality repeatedly
to increase the number of variables and to relate Sr to the number of solu-
tions of diophantine systems. We simply denote Sr by S. We denote by C0

the subset of C formed by the elements z ∈ C such that a(z)b(z) = 0. We
let C ′ := C r C0. Then S = S0 + S′ where in S0 (resp. S′) the summation
over z is restricted to z ∈ C0 (resp. z ∈ C ′). Since the number of roots of
the equation a(z)b(z) = 0 is finite, we have |S0| � |A| |B| � p2α. Moreover,
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we get

|S′| ≤
∑
y,z

∣∣∣∑
x

er
(
a(z)xy + b(z)x2g(y)

)∣∣∣
≤
(∑
y,z

1
)1/2( ∑

y,z
x1,x2

er
(
a(z)(x1 − x2)y + b(z)(x2

1 − x2
2)g(y)

))1/2
,

where the summation over z is restricted to z ∈ C ′. Hence

|S′|2 � p2α
∑
y,z

∣∣∣ ∑
x1,x2

er
(
a(z)(x1 − x2)y + b(z)(x2

1 − x2
2)g(y)

)∣∣∣
� p2α

(∑
y,z

1
)1/2( ∑

x1,x2
x3,x4
y,z

er
(
a(z)(x1 − x2 + x3 − x4)y

+ b(z)(x2
1 − x2

2 + x2
3 − x2

4)g(y)
))1/2

,

so that

|S′|4 � p6α
∑
x1,x2
x3,x4
y,z

er
(
a(z)(x1 − x2 + x3 − x4)y + b(z)(x2

1 − x2
2 + x2

3 − x2
4)g(y)

)
.

By a new application of the Cauchy–Schwarz inequality, we get

|S′|8 � p12α
( ∑
x1,x2
x3,x4
z

∣∣∣∑
y

er
(
a(z)(x1 − x2 + x3 − x4)y

+ b(z)(x2
1 − x2

2 + x2
3 − x2

4)g(y)
)∣∣∣)2

� p17α
∑
z

∑
x1,x2
x3,x4
y1,y2

er
(
a(z)(x1 − x2 + x3 − x4)(y1 − y2)

+ b(z)(x2
1 − x2

2 + x2
3 − x2

4)(g(y1)− g(y2))
)

= p17α
∑
z

∑
ξ,η∈F2

p

µ(ξ)ν(η)er(a(z)ξ1η1 + b(z)ξ2η2)

where µ(ξ) is the number of quadruples (x1, x2, x3, x4) ∈ A4 such that

(9)
{
ξ1 = x1 − x2 + x3 − x4,

ξ2 = x2
1 − x2

2 + x2
3 − x2

4,

and ν(η) is the number of couples (y1, y2) ∈ B2 such that{
η1 = y1 − y2,

η2 = g(y1)− g(y2).

Then clearly
∑

η∈F2
p
ν(η)2 can be expressed as the number of quadruples

(y1, y2, y
′
1, y
′
2) ∈ B4 such that

(10)
{
y1 − y2 = y′1 − y′2,
g(y1)− g(y2) = g(y′1)− g(y′2).
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If y′1 = y′2 in this system then y1 = y2. Thus (10) has exactly |B|2 solutions
of the type (y1, y2, y

′
1, y
′
1). If y′1 and y′2 are fixed with t = y′1 − y′2 6= 0, then

we can write y1 = y2 + t and clearly g(y2 + t)− g(y2) = g(y′1)− g(y′2) has at
most deg g − 1 solutions y2 (since deg g ≥ 2). We thus have

(11)
∑
η∈F2

p

ν(η)2 � p2α.

For any ξ = (ξ1, ξ2) ∈ F2
p, we denote by µ1(ξ) (resp. µ2(ξ)) the number

of solutions (x1, x2, x3, x4) ∈ A4 of (9) such that x1 = x2 (resp. x1 6= x2).
Then ∑

ξ∈F2
p

µ1(ξ)2 = |A|2N,

where N is the number of quadruples (x3, x4, z3, z4) ∈ A4 such that{
x3 − x4 = z3 − z4,
x2

3 − x2
4 = z2

3 − z2
4 .

By distinguishing solutions with x3 = x4 and solutions with x3 6= x4, we
plainly obtain N ≤ 2|A|2. Hence

(12)
∑
ξ∈F2

p

µ1(ξ)2 � p4α.

For any fixed t ∈ A, we denote by µ(ξ, t) the number of solutions of (9)
of the form (x1, x2, t, x4) ∈ A4 with x1 6= x2. Eliminating x4 by expressing
it in terms of ξ1 using the first equation, we see that µ(ξ, t) is the number
of couples (x1, x2) ∈ A2 with x1 6= x2 such that ξ lies on the curve

(13) ξ′2 := ξ2 + ξ21 = 2(x1 − x2 + t)ξ1 − (x1 − x2 + t)2 + x2
1 − x2

2 + t2.

Using the new variable ξ′2 instead of ξ2, we find that each couple (x1, x2) ∈ A2

with x1 6= x2 defines a line `x1,w2 in the plane F2
p with equation

(14) ξ′2 = 2(x1 − x2 + t)ξ1 − (x1 − x2 + t)2 + x2
1 − x2

2 + t2.

It is clear that two couples (x1, x2) ∈ A2 and (x′1, x
′
2) ∈ A2 with x1 6= x2

define the same line if and only if x1−x2 = x′1−x′2 and x2
1−x2

2 = x′21 −x′22 ,
that is, (x1, x2) = (x′1, x

′
2). It follows that all the lines `x1,x2 with x1 6= x2 are

pairwise distinct and the number of these lines is equal to |A|2− |A| � p2α.
We let L = {`x1,x2 : (x1, x2) ∈ A2, x1 6= x2}. By applying Lemma 2, we get,
for some γ = γ(α) > 0,

|{[(ξ1, ξ′2); `] ∈ Ck × L : (ξ1, ξ′2) ∈ `}| � |Ck|3/2−γ + p(3−2γ)α,

where Ck is the set of couples (ξ1, ξ′2) ∈ F2
p such that the number of different

couples (x1, x2) ∈ A2 with x1 6= x2 satisfying (14) with ξ1− x1 + x2− t ∈ A
is at least k. Since there is a one-to-one correspondence between the couples
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(ξ1, ξ′2) ∈ Ck and the couples (ξ1, ξ2) ∈ F2
p such that µ(ξ, t) ≥ k, we plainly

have |Ck| ≤ p3α/k. Furthermore, for fixed (ξ1, ξ′2) in F2
p, each choice of x1 ∈ A

gives at most two different x2 ∈ A such that (14) holds. Hence Ck is empty
if k > 2|A|. We let ck = |Ck|. We obtain

ckk � c
3/2−γ
k + p(3−2γ)α,

giving either
ckk � p(3−2γ)α or k � c

1/2−γ
k .

Since ck � p3α/k, the last bound is available only if

k ≤ k(α, γ) := cp(3−6γ)α/(3−2γ) for some constant c > 0.

We have ∑
ξ∈F2

p

µ(ξ, t)2 =
∑

1≤k≤2|A|

k2(ck − ck+1) =
∑

1≤k≤2|A|

(2k − 1)ck,

by partial summation. It follows that∑
ξ∈F2

p

µ(ξ, t)2 =
∑

1≤k≤k(α,γ)

(2k − 1)ck +
∑

k(α,γ)<k≤2|A|

(2k − 1)ck

≤ 2
∑

1≤k≤k(α,γ)

p3α +
∑

k(α,γ)<k≤2|A|

p(3−2γ)α

� p12(1−γ)α/(3−2γ) + p(4−2γ)α � p(4−γ)α.

By the Cauchy–Schwarz inequality, we get∑
ξ∈F2

p

µ2(ξ)2 =
∑
ξ∈F2

p

(∑
t∈A

µ(ξ, t)
)2
≤ |A|

∑
t∈A

∑
ξ∈F2

p

µ(ξ, t)2

≤ |A|2 sup
t∈A

∑
ξ∈F2

p

µ(ξ, t)2 � p(6−γ)α,

which by (12) gives

(15)
∑
ξ∈F2

p

µ(ξ)2 ≤ 2
∑
ξ∈F2

p

µ1(ξ)2 + 2
∑
ξ∈F2

p

µ2(ξ)2 � p(6−γ)α.

This yields a sharper bound for
∑
µ(ξ)2 than could be expected in general,

namely O(p6α).
Returning to the estimation of S′, we obtain

|S′|8� p17α
∑
z∈C′

∑
ξ∈F2

p

µ(ξ)
∣∣∣ ∑
η∈F2

p

ν(η)er(a(z)ξ1η1 + b(z)ξ2η2)
∣∣∣

� p17α
∑
z∈C′

(∑
ξ∈F2

p

µ(ξ)2
)1/2(∑

ξ∈F2
p

∣∣∣ ∑
η∈F2

p

ν(η)er(a(z)ξ1η1 + b(z)ξ2η2)
∣∣∣2)1/2

,
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which is

� p17α
∑
z∈C′

( ∑
ξ∈F2

p

µ(ξ)2
)1/2

×
( ∑
η,η′∈F2

p

ν(η)ν(η′)
∑
ξ∈F2

p

er
(
a(z)ξ1(η1 − η′1) + b(z)ξ2(η2 − η′2)

))1/2

by the Cauchy–Schwarz inequality. For z ∈ C ′, the sum over ξ is p2 if η = η′

and 0 otherwise. It follows that

|S′|8 � p17α+1|C ′|
( ∑
ξ∈F2

p

µ(ξ)2
)1/2( ∑

η∈F2
p

ν(η)2
)1/2

.

By (11) and (15), this yields

|S′|8 � p(22−γ/2)α+1,

hence

(16) |S| ≤ |S0|+ |S′| � p((22−γ/2)α+1)/8.

We mention that in the statement of Theorem 10, γ(α) is a continuous
function of α. As a corollary, we have

Corollary 11. Let F be as in the theorem. Then the extractor defined
by sgn sin(2πF/p) has exponential distribution and entropy at most 1/2− δ,
for some δ > 0.

Proof. From Theorem 10, we obtain

max
r∈Fpr{0}

|Sr| � p3α−ε(α),

where

(17) ε(α) =
α

8

(
2 +

γ(α)
2
− 1
α

)
.

Since γ(1/2) > 0, we have ε(1/2) > 0, thus by continuity, there exists δ > 0
such that ε(α) > 0 for α > 1/2− δ.

The rest of the proof follows that in [3], namely we have∑
(x,y,z)∈A×B×C

sgn sin(2πF (x, y, z)/p) =
p−1∑
r=1

crSr +O(p3α−1),

where the coefficients cr satisfy

sgn sin(2πt/p) =
p−1∑
r=1

cr exp(2iπt/p) +O(1/p),
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and
p−1∑
r=1

|cr| = O(ln p).

This gives ∑
(x,y,z)∈A×B×C

sgn sin(2πF (x, y, z)/p) = O((ln p)p3−ε),

and the corollary follows.

6. Concluding remarks. 1. As indicated in Section 3, no function of
the type F (x, y) = f(x) + g(y) or any translate of it is an expander. Indeed,
let I be an interval with length � Cpα (0 < α < 1, C > 0). By the averaging
argument there are a and b in Fp such that

|{a+ I} ∩ {f(x) : x ∈ Fp}| > C ′pα,

|{b+ I} ∩ {g(y) : y ∈ Fp}| > C ′pα,

where C ′ depends only on C and the degree of f and g. Now let A be the
inverse image of {a+ I}∩ {f(x) : x ∈ Fp} and let B be the inverse image of
{b+ I} ∩ {g(y) : y ∈ Fp}. Then the set F (A,B) of all elements of the form
F (x, y) for (x, y) ∈ A × B is contained in a + b + 2I, hence the cardinality
of F (A,B) is at most a constant times the cardinality of A and B.

A similar argument shows that no map of the kind f(x)g(y) + c is an
expander.

2. As cited after Corollary 11, the functions fp(x, y) = sgn sinFp(x, y)
give a 2-source extractor with entropy less than 1/2 if we let Fp(x, y) =
xy + x2y2 or Fp(x, y) = xy + gx+yp , where gp is any generator in F×p . From
the proof one can easily infer that the functions

(18) xy + x2h(y), xh(y) + x2y, xy + x2gyp , xgyp + x2y

(where h is any nonconstant polynomial) also induce 2-source extractors
with entropy less than 1/2 (see also remark 4 below).

3. It is worth mentioning that for points and lines in F2
p, the bound given

by the effective version of the Szemerédi–Trotter theorem of [9] is weaker
than the trivial one in the case where the number N of lines and points is
less than p. For this reason, it seems that the former bound cannot provide
an effective entropy less than 1/2 for a k-source extractor, in contrast to the
Bourgain–Katz–Tao result which holds for pε < N < p2−ε.

4. Extractors are related to additive questions in Fp. In [7] Sárközy inves-
tigated the following problem: let A,B,C,D ⊆ Fp be nonempty sets. Then
the equation

a+ b = cd
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is solvable in a ∈ A, b ∈ B, c ∈ C, d ∈ D provided |A| |B| |C| |D| > p3. This
simple equation has many interesting consequences. One can ask the more
general question about the solvability of

(19) a+ b = F (c, d)

where F (x, y) is a two-variable polynomial with integer coefficients. Clearly
the question is really interesting when we assume that |C|, |D| < √p.

Let us say that F (x, y) is an essential polynomial if (under the condition
|C|, |D| < √p) |A| |B| > p2 implies the solvability of (19). So by Sárközy’s
result, F (x, y) = xy is an essential polynomial. From the proofs of Proposi-
tions 3.6 and 3.7 of [3], it can be deduced that there exist δ, ε > 0 such that
for any r ∈ Fp r {0} and any C,D ⊂ Fp with |C|, |D| > p1/2−δ,

(20)
∣∣∣ ∑
c∈C, d∈D

er(Fp(c, d))
∣∣∣ = O(|C| |D|p−ε),

where F = (Fp)p is any one of the following families of functions:

• Fp(x, y) = x1+uy + x2−uh(y) for any p, where we fix u ∈ {0, 1} and
any nonconstant polynomial h(y) ∈ Z[y].
• Fp(x, y) = x1+uy + x2−ugyp for any p where gp generates F×p and u ∈
{0, 1} is fixed.

This yields the following result:

Proposition 12. Let (Fp)p be one of the two families of functions de-
fined above. There exist real numbers 0 < δ, δ′ < 1 such that for any p and
for any sets A,B,C,D ⊆ Fp satisfying the conditions

|C| > p1/2−δ, |D| > p1/2−δ, |A| |B| > p2−δ′ ,

there exist a ∈ A, b ∈ B, c ∈ C, d ∈ D solving the equation

(21) a+ b = Fp(c, d).

Sketch of the proof. Let N be the number of solutions of (21). Then
following Sárközy’s argument and using the bound (20), we obtain∣∣∣∣N − |A| |B| |C| |D|p

∣∣∣∣� |A|1/2|B|1/2|C| |D|p−ε,
which gives the result for p large enough with δ′ = ε. For p ≤ p0, it suffices
to reduce δ′ in order to have also p2−δ′

0 ≥ p2
0 − 1, and the result becomes

trivial since |A| |B| > p2−δ′ implies either A = Fp or B = Fp.
5. Note that the range of our function F (x, y, z) = a(z)xy+b(z)x2g(y)+

h(y, z) studied in Section 5 is well-spaced, i.e. the set F (A,B,C) of elements
of Fp of the form F (x, y, z), where (x, y, z) ∈ A × B × C, intersects every
not too long interval, provided the cardinalities of the sets are � pα with
α > 1/2− δ.
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The bound we obtain for the exponential sum S in the proof of Theo-
rem 10 yields the following result:

Corollary 13. Let ε(α) be given by (17) and δ as in Corollary 11.
Let L1 ≤ L2 be arbitrary positive real numbers, F (x, y, z) ∈ Z[x, y, z] as in
Theorem 10 and A,B,C be subsets of Fp with L1p

α ≤ |A|, |B|, |C| ≤ L2p
α

where α > 1/2− δ. Then F (A,B,C) intersects every interval [u+ 1, u+L]
in Fp provided L � p1−ε(α) where the implied constant depends only on F ,
L1 and L2.

For completeness we include the proof.

Proof. Let S(w) be the number of triples (a, b, c) ∈ F (A,B,C) such
that w = F (a, b, c). Let I = [1, L/2] and denote by I(w) its indicator. Then
F (A,B,C) ∩ [u+ 1, u+ L] is not empty if and only if the real sum

T =
∑
w

S(w − u)I ∗ I(−w)

is not zero. Denote the Fourier transform of the indicators of S resp. I by
Sr resp. Ir. By the Fourier inversion formula we have

T =
1
p

∑
r

SrI2
r er(−u) ≥ S0I

2
0

p
− 1
p

∑
r 6=0

|Sr| |Ir|2

=
1
p
|A| |B| |C|I2

0 −
1
p

∑
r 6=0

|Sr| |Ir|2.

By the triangle inequality, the nontrivial upper bound for |Sr| when r 6= 0,
and by the Parseval formula, (16) and (17) we get∣∣∣∣T − 1

p
|A| |B| |C|I2

0

∣∣∣∣ ≤ 1
p

∑
r 6=0

|Sr| |I2
r | ≤

1
p

max
r 6=0
|Sr|

∑
r

|I2
r | � p3α−ε(α)I0.

Hence the set F (A,B,C) ∩ [u+ 1, u+ L] is not empty if
1
p
|A| |B| |C|I0 � p3α−ε(α),

or equivalently if L� p1−ε(α), as asserted.
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Pázmány st. 1/c
H-1117 Budapest, Hungary
E-mail: hegyvari@elte.hu

LAMUSE
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23, rue Michelon
F-42023 Saint-Étienne, France
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