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1. Introduction. Let k be a field of characteristic 0 containing the
group µn of nth roots of unity, and let η be a generator of µn. The Hilbert
symbol is a map that associates a central simple algebra (a, b)η of dimension
n2 to every element (a, b) in k∗ × k∗ [9]. It is defined as the k-algebra with
generators x and y satisfying the relations

(1) xn = a, yn = b, and xy = ηyx.

Up to isomorphism, the algebra (a, b)η depends only on the images of a and
b in k∗/k∗n. This raises the question of whether there are any additional
structures on the set of pairs (a, b) defining the same algebra. When k is
a number field with ring of integers Ok, we can study the order 〈a, b〉η =
Ok[x, y], where x and y still satisfy (1) for algebraic integers a and b in k.
This is the natural integral version of the algebra (a, b)η, so that we can think
of it as a refinement of the Hilbert symbol map. Since the classification of
maximal orders in a central simple algebra is better understood than the
general case, it is desirable to replace the ring 〈a, b〉η by a related maximal
order D(a, b) in (a, b)η. This can be done by inverting a finite set R of primes
and defining D(a, b) as an R-order. We need to assume that R contains both
the set P (n) of all places ℘ of k such that ord℘(n) 6= 0, and the set R(a, b)
of all places ℘ such that n divides neither ord℘(a) nor ord℘(b). Then we set
D(a, b) = O[A−1x∪B−1y], where O = OR is the ring of R-integers, and the
ideals A and B are the nth roots of the principal R-ideals aO and bO. These
nth roots exist since ord℘(a) and ord℘(b) are divisible by n for all ℘ /∈ R. It
is known that maximal R-orders in a central simple algebra can be classified
into spinor genera [2] by a distance function that associates, to every pair
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of maximal R-orders D and D′, an ideal class PR(D,D′) in some quotient
of the strict R-ideal class group clk(R) of k. In our case this quotient is

Tn(A) = clk(R)/clk(R)np(A),

where p(A) is the group of principal ideals with a generator that is positive
at all infinite places that are ramified for A = (a, b)η. The directed distance
PR(D,D′) is defined as follows [1]:

For every place ℘ /∈ R, choose an element h℘ ∈ A℘ satisfying
D′℘ = h℘D℘h

−1
℘ . Since D℘ and D′℘ coincide at all but a finite

number of places ([5, p. 218]), we can assume that h℘ = 1
for all but a finite number of places ℘. Then PR(D,D′) is the
class in Tn(A) of the ideal

∏
℘ ℘

v℘ , where the completion at
℘ of ℘v℘ is the principal ideal generated by the reduced norm
N(h℘).

The orders D and D′ are in the same spinor genus if and only if PR(D,D′)
is the trivial class [2]. If n > 2, or if the Eichler condition is satisfied (1), the
orders D and D′ are conjugate (or isomorphic) if and only if they are in the
same spinor genus.

For the case n = 2, the distance map PR(D,D′) can be defined as follows:
If D/(D∩D′) is isomorphic to a sum of cyclic O-modules O/I1⊕· · ·⊕O/Im,
then PR(D,D′) is the class of the product ideal I1 · · · Im in T2(A). This is
the definition used by Chinburg and Friedman [3] to compute the invariant
PR(D,D′). In Proposition 3.4 we prove that both definitions coincide for
n = 2. The latter definition fails to be conjugation invariant for general n.

Let n = 2 as above, whence η = −1. Assume that we have two pairs (a, b)
and (c, d) such that (a, b)η = (c, d)η = A. Assume further that R contains
P (n) ∪ R(a, b) ∪ R(c, d), so that D = D(a, b) and D′ = D(c, d) are two
maximal R-orders in the central simple algebra A. In this setting, Chinburg
and Friedman [3] asked whether the ideal class PR(D,D′) can be computed
in terms of the arithmetic of some finite extension K/k depending only on
a, b, c, and d. They could only perform this computation when a = c. Their
results are as follows:

Let B be a fractional R-ideal in k such that B2 = (b/d)O, as
must exist due to the restrictions on R.

(A) If a is a perfect square in k then PR(D,D′) is the class
of B.

(1) The Eichler condition is satisfied if the completion Aρ is not H, the non-trivial
quaternion R-algebra, at some infinite place ρ ([8, p. 81]). This holds in particular when
k is not totally real.
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(B) If a is not a perfect square, then PR(D,D′) is computed
as follows: Let R(F ) be the set of places of F = k(

√
a)

lying over the elements of R. Let OF be the ring of R(F )-
integers in F , and let BF be the fractional R(F )-ideal in
OF generated by the elements of B. Let τ ∈ F be such
that NF/k(τ) = b/d. Then there exists a fractional R(F )-
ideal C in F satisfying Cσ(C)−1 = τ−1BF , where σ is
the non-trivial k-automorphism of F . For any such C, the
distance PR(D,D′) is the class of NF/k(C).

In this work, we generalize (A) and (B) to the case n > 2. Assume, as
in the case n = 2, that the pairs (a, b) and (c, d) satisfy the conditions
(a, b)η = (c, d)η = A and R ⊇ P (n) ∪ R(a, b) ∪ R(c, d), so that D = D(a, b)
and D′ = D(c, d) are maximal. Let B be an ideal satisfying Bn = (b/d). Let
F = k( n

√
a). The field F is independent of the choice of n

√
a since k contains

the n-roots of unity. For the case a = c, we prove the following:

(A′) If F = k, i.e., if a is an nth power in k, then PR(D,D′) is trivial if
n is odd, and is the class of Bn/2 otherwise.

(B′) If [F : k] = n, and we let σ ∈ Gal(F/k) be defined by σ( n
√
a) =

η n
√
a, then PR(D,D′) is the class of NF/k(C), where Cσ(C)−1 =

τ−1BF and NF/k(τ) = b/d, in the notations of (B). Furthermore,
any τ and C satisfying these conditions can be used in this compu-
tation.

In particular, all orders of the form D(1, b) are conjugate if n is odd. If
n is even, and if ℘ is a prime ideal whose order is exactly n in the class
group, then the generator b of ℘n defines an order D(1, b) not isomorphic to
D(1, 1). If x ∈ A is as in (1), the field F is isomorphic to a quotient of the
n-dimensional algebra k[x]. In particular, [F : k] = n if and only if k[x] is a
field. For example, if A is a division algebra then [F : k] = n.

We prove in §4 that (A′) and (B′) are particular cases of Theorem 1
below. For this general statement, we need some additional notations. Set
L = k[x] =

⊕m
i=1 Li, where every Li is a field. Note that every Li is gener-

ated over k by an nth root of a, whence is isomorphic to F = k( n
√
a). No

assumption is made on the degree [F : k] or equivalently, on the number m =
n/[F : k]. If N denotes the reduced norm on A, then for any element l ∈ L
we have N(l) =

∏m
i=1NLi/k(li), where li ∈ Li for all i and l = l1 + · · ·+ lm.

We identify L with the subset L⊗k k of LF = L⊗k F . There exists a unique
isomorphism ψ : LF → Fn such that ψ(x) = ( n

√
a, η n
√
a, . . . , ηn−1 n

√
a). If I

is a fractional R-ideal in L, we denote by NL/k(I) the fractional R-ideal in
k generated by the norms of the elements of I, and by IF the fractional
R(F )-ideal in the F -algebra LF generated by I. Let Γ : Gal(F/k)→ Z/nZ
be the Kummer homomorphism defined by λ( n

√
a) = ηΓ (λ) n

√
a.
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Theorem 1. Let D = D(a, b) and D′ = D(a, d), where (a, b)η = (a, d)η
= A and R ⊇ P (n) ∪R(a, b) ∪R(a, d). Then there exist elements τ1, . . . , τn
in F such that

∏n
i=1 τi = b/d and λ(τi) = τi+Γ (λ) for any λ ∈ Gal(F/k).

For any such elements τ1, . . . , τn, there exist fractional R-ideals C1, . . . , Cn
in F such that CiC−1

i+1 = τiBF and C1× · · · × Cn = ψ(IF ) for some fractional
R-ideal I in L. For any such I the class of NL/k(I) equals PR(D,D′).

One of the main results of this paper states that the map PR can be
defined alternatively using Galois extensions instead of adelizations. This is
made precise by Theorem 2.

Theorem 2. Let D = D(a, b), where (a, b)η = A, and let R be a finite
set of places satisfying R ⊇ P (n) ∪R(a, b). Let D′ be an arbitrary maximal
R-order in A. Then there exist a finite extension K/k and an element g∈AK

satisfying the following conditions:

(a) The extensions of D and D′ to OK satisfy D′K = gDKg
−1.

(b) There exists an R-lattice Λ in A such that DKg
−1 = ΛK .

For any such g, there exists a fractional R-ideal I in k whose extension IK
is the principal fractional R(K)-ideal N(g)OK of K, where N is the reduced
norm on AK . The distance PR(D,D′) is the ideal class of I.

It seems to us that Theorem 1 looks more natural as a diagonalized
version of Theorem 2.

2. Non-abelian cohomology and classification. Let G be a finite
group. Let X be a set with a G-action and let B be a group with a G-action.
Let x 7→ σx denote the G-action on X or B ([6, §1.3.2]). Assume B acts
transitively on X in a way that σb(σx) = σ[b(x)] for all σ in G, all b in B, and
all x in X. Then we can identify X, as a G-set, with the quotient set B/A,
where the G-invariant subgroup A is the stabilizer in B of a point x0 ∈ X.
This identification depends on the choice of the base point x0. Recall that
in non-abelian cohomology, the set H1(G, B) is defined as the pointed set of
cohomology classes of maps σ 7→ ασ from G to B such that αλσ = αλ

λασ
for any σ and λ in G. Two such maps α and β are cohomologous if there
exists b ∈ B such that ασ = bβσ

σb−1 for all σ ∈ G. The distinguished
element of the pointed set H1(G, B) is the class of the trivial map. Recall
that the kernel of a map P → P ′ of pointed sets is the inverse image of the
distinguished element in P ′. The subgroup BG of invariant elements of B
acts on the invariant set XG . The orbits of this action can be described as
follows ([6, p. 22]):

Proposition 2.1 (Classification Principle). Let B act transitively on X.
Let A be the stabilizer of the element x0 ∈ XG. Assume that σb(σx) = σ[b(x)]
for all σ in G, all b in B, and all x in X. Then the set of BG-orbits in XG
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can be identified with the kernel of the map H1(G, A)→ H1(G, B) induced by
the inclusion. The cocycle class corresponding to some element b(x0) ∈ XG
is the class of the cocycle α defined by ασ = b−1 σb.

In all that follows, G = Gal(K/k) is the Galois group of a finite Galois
extension K/k of either local or number fields. The set H1(G, A) is denoted
H1(K/k,A), or H1(A) if K and k are clear from the context.

Let Xk be a linear algebraic group, i.e., a subgroup of the general linear
group GL(n, k) defined by algebraic equations over k. For an arbitrary field
extension E/k we denote by XE the subgroup of GL(n,E) defined by the
same set of equations. The group Xk can be canonically identified with a
subset of XE . In particular, if K/k is a Galois extension, the group XK has
a natural G-action and XGK = Xk. Similarly, if V is a k-vector space we
define VE = V ⊗k E and identify V with the subset V ⊗k k. In particular,
we have V GK = V when G is the Galois group of a Galois extension K/k.

An arithmetically defined subgroup (2) of Xk is a subgroup of the form
Xk(ρ, Λ) = {x ∈ Xk | ρ(x)Λ = Λ}, where ρ is a representation of Xk

on a space V and Λ an R-lattice in V , for a finite set R of places of k.
In this work, a number-theoretical extension E of the number field k is
either an algebraic extension of the field k or an algebraic extension of a
completion of k at a finite place. Let R(E) be the set of places of E lying
over R. Every R-lattice Λ of k has a unique minimal R(E)-lattice ΛE ⊆ VE
containing it. Similarly, every representation ρ : Xk → V can be extended
to a representation ρE : XE → VE . If Yk = Xk(ρ, Λ) and if E is a number-
theoretical extension of k, then YE denotes the subgroup of XE defined by
YE = XE(ρE , ΛE). Note that again Y GK = Yk for a Galois extension K/k.

We define the locally trivial cohomology set H̃1(YK) by

(2) H̃1(YK) = ker
(
H1(YK)→

∏
℘ finite
℘/∈R

H1
℘(Y )

)
,

where, for every finite place ℘, we denote by H1
℘(Y ) the local cohomology

set H1(KP/k℘, YKP ) for some fixed place P of K lying over ℘.
Let D be a maximal R-order of the central simple algebra A. The group

D∗ of units of the order D is an arithmetically defined subgroup of the group
A∗ of invertible elements of A. Another important arithmetically defined
subgroup of the same group is the group N of elements u ∈ A satisfying
u−1Du = D. Since H1(A∗K) = 1 ([4, Ex. 1, p. 16]), there exists a map

(2) Since we do not require the representation ρ to be faithful, an arithmetically
defined subgroup is not necessarily an arithmetic subgroup in the sense that the term is
widely used in the literature. As the examples in the text show, two arithmetically defined
subgroups of the same group need not be commensurable.
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φ that associates an element of H1(NK) to every A-conjugacy class of G-
invariant maximal orders in AK that are AK-conjugate to DK . Since all
maximal orders are locally conjugate, the subset of orders of the form D′K ,
where D′ is a maximal order in A, corresponds to the subset H̃1(NK). The
map φ is defined on an A-conjugacy class α as follows: If u ∈ AK satisfies
uDKu

−1 ∈ α, then φ(α) is the cocycle class of β defined by βσ = u−1 σu.

3. Cohomological definition of P. From now on fix a set R of places
of k containing the set P (n) of all finite places dividing n. Fix an order
D = D(a, b) of the central simple algebra A such that both ord℘(a) and
ord℘(b) are divisible by n for all ℘ /∈ R. All finite places outside R split A
completely ([9, Prop. 6, p. 260]). Let R(K) and OK be defined as in the
introduction.

Lemma 3.1. Assume that AKP is isomorphic to a matrix algebra for any
place P /∈ R(K). Then the principal ideal N(u)OK is an nth power in IK for
every u ∈ NK . Furthermore, if N(u) is a unit then u ∈ D∗K . In particular ,

we have a short exact sequence D∗K ↪→ NK
τ
� JK , where

(3) PnK ⊆ JK ⊆ InK
and τ(u) = N(u)OK .

Proof. It suffices to work locally and assume that DKP is the order
M(OKP ) of matrices with integral coefficients. If u ∈ NKP , by the theory
of invariant factors, we can write u = vdw where d = diag(δ1, . . . , δn) is a
diagonal matrix, while both v and w are in D∗KP . Without loss of generality
we may assume u = d. Let Ei,j be the matrix that has 1 in position (i, j)
and 0 elsewhere. Then dEi,jd

−1 = δ−1
j δiEi,j . It follows that δ−1

j δi is a unit
for every pair (i, j), so that the principal ideals δ1OKP , . . . , δnOKP coincide.
This proves the first statement. If N(u) is a unit, then every δi, as defined
above, is a unit. It follows that u and u−1 are in DK locally everywhere and
hence globally. This proves the second statement and therefore the existence
of the short exact sequence. The second contention of (3) follows from what
we already proved. For the first contention we observe that N(λ1A) = λn

for λ ∈ K.

Let JQ̄ be defined as the direct limit of the groups JK for all finite exten-
sions K/k. Define IQ̄ and PQ̄ analogously. As any ideal becomes principal
on some finite extension, we have PQ̄ = PnQ̄ = JQ̄ = InQ̄. It follows that the
cohomology map

τ∗ : H1(Q̄/k,NQ̄)→ H1(Q̄/k, JQ̄) = H1(Q̄/k, PQ̄)

factors through H1(Q̄/k, Q̄∗) = {1}. By the cohomological theory of profi-
nite groups [7], it follows that for every Galois extension K and any cocycle
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in H1(NK), its image in H1(JK) becomes trivial under some finite field ex-
tension. Since H̃1(NK) corresponds to a subset of the finite set of conjugacy
classes of maximal orders in A, it is itself finite and the next result follows:

Lemma 3.2. There exists a finite extension L of k such that , for every fi-
nite Galois extension K of k containing L, the map τ∗ : H̃1(NK)→ H̃1(JK)
is trivial.

Lemma 3.3. There is a finite extension Σ of k such that , for any Galois
extension F of k containing Σ, the map φ : H̃1(D∗F )→H̃1(NF ) is surjective.

Proof. It follows from §I.5.5 in [7] that the invariant subgroup JGK acts
on H1(D∗K) and

(4) ker[H1(NK)→ H1(JK)] ∼= H1(D∗K)/JGK ,

where the isomorphism is induced by the map φ2 : H1(D∗K) → H1(NK).
Consider the commutative diagram

Jk
ψ1 //

� _

��

H̃1(D∗K)
φ=φ1 //

� _

��

H̃1(NK)� _

��

τ1

%%LLLLLLLLLLL

JGK
ψ2 //

� _

��

H1(D∗K)
φ2 //

l1
��

H1(NK)

l2
��

τ2 // H1(JK)

∏
℘Nk℘

Ψ //
∏
℘ J℘

ψ3 //
∏
℘H

1
℘(D∗)

φ3 //
∏
℘H

1
℘(N )

where for a finite place ℘ not in R, we define J℘ as the group of n-powers of
fractional ideals in KP . We claim that the last row of the diagram is exact.
By the analogue of Lemma 3.1 for the local field extension KP/k℘, we have
a short exact sequence D∗KP ↪→ NKP � J℘, since all local ideals are prin-
cipal. Now the last row of the diagram is the product of the corresponding
long exact sequences in cohomology, since the Galois group of a local field
extension acts trivially on local ideals. The result follows.

The columns containing l1 and l2 are exact by definition. Assume that
K contains the field L defined in the previous lemma, whence the map τ1 is
trivial. Let u ∈ H̃1(NK). A diagram chasing argument shows that u = φ2(a)
for some a ∈ H1(D∗K) and there exists c ∈

∏
℘ J℘ such that l1(a) = ψ3(c).

Since the local component Ψ℘ of Ψ is surjective for all places ℘ that are
unramified for K/k, the element ψ3(c) depends only on finitely many local
coordinates of c, so we may assume that c has finitely many non-trivial
coordinates, i.e., is the image of the nth power In of an invariant fractional
ideal I of K.

Note that all maps in the diagram commute with co-restriction maps,
whence we can replace K by its Hilbert class field. Then there exists an
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element λ ∈ K such that IK = λOK , hence InK ∈ PnK ⊆ JK . Equation (4)
shows that u = φ2(I−1

K ∗aK), where ∗ denotes the action of JGE on H1(D∗K),
but I−1

K ∗ a ∈ H̃1(D∗K).
Recall that the set H̃1(NK) is in correspondence with the set of conju-

gacy classes of maximal R-orders in A that become conjugate to D over K.
In fact, the explicit description of this correspondence given in §2 shows that
it commutes with the co-restriction maps H̃1(NK) → H̃1(NF ) for K ⊆ F .
Since the set of conjugacy classes of orders is finite, there exists a finite
extension Φ of L such that H̃1(NF ) does not depend on F provided F ⊇ Φ
and we choose Σ as the Hilbert class field of Φ.

Proof of Theorem 2. Find a field K where DK and D′K are conjugate.
Since the definition of PR(D,D′) is invariant under field extensions, this
holds for any field K satisfying the following two conditions:

• The extension IK of one ideal I in the class PR(D,D′) is an nth
power.
• The field K is not totally real. In particular, PSL1(AK) has strong

approximation.

Let c ∈ H̃1(NK) be the cocycle class corresponding to the order D′ and
let b ∈ c. By the previous lemma, we may assume that bσ ∈ D∗ for all
σ ∈ G and the cocycle b is locally trivial. There exists g ∈ AK such that
bσ = g−1 σg. Since the cocycle N(b) has values in O∗K and is locally trivial,
the ideal N(g)OK is the extension IK of a fractional ideal I of k. Let A∗AK
be the adelic group of A∗K ([6, p. 249]). Let D∗AK = {j ∈ A∗AK | jP ∈ D∗KP
for all KP /∈ R(K)}. As the cocycle b is locally trivial, we can write g−1 σg =
j−1 σj for some fixed j in D∗AK . It follows that h = gj−1 ∈ AAk . Since
N(j) is a unit everywhere, the ideal I equals N(h)O =

∏
℘/∈R ℘

ord℘[N(h℘)].
However, the class of the ideal N(h)O is, by definition, equal to PR(D,D′).
The lattice Λ in (b) is the lattice Dh−1 defined locally by the relations
(Dh−1)℘ = D℘h

−1
℘ . Conversely, if g satisfies condition (b), the cocycle g−1 σg

is in H̃1(D∗K), and therefore any element g satisfying (a) and (b) can be used
in this computation.

Proposition 3.4. When n = 2, the distance PR(D,D′) is the ideal
class of I1 · · · Im in T2(A), where D/(D∩D′) is isomorphic to the Cartesian
product O/I1 × · · · × O/Im as O-modules.

Proof. It suffices to work locally. Let ℘ /∈ R. Let h℘ satisfy D′k℘ =
h℘Dk℘h

−1
℘ . We have an isomorphism φ : Ak℘ → M(k℘) such that φ(Dk℘) =

M2(O℘). By the theory of invariant factors, φ(h℘) = uzv where u, v ∈
M2(O℘) and z is a diagonal matrix. Replacing φ by t 7→ u−1φ(t)u and h℘ by
h℘φ

−1(v−1u−1) if needed, we can assume that φ(h℘) is diagonal. Multiplying
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by an element in the center we can further assume that φ(h℘) = diag(r, 1).
Then φ(Dk℘ ∩D′k℘) is the set of integral matrices

( α β
γ δ

)
such that r divides

β and the result follows.

4. The diagonal case. Now we consider the case a = c. To simplify
notations, we say that D(a, b) is generated by (x, y) if x and y satisfy (1)
and D(a, b) = O[A−1x ∪ B−1y] where An = aO and Bn = bO as in the
introduction. Locally, this means the following: For a place ℘ /∈ R, the local
component ([5, §81E]) at ℘ of D(a, b) is defined as

(5) D(a, b)℘ = O℘[π−ord℘(a)/n
℘ x, π

−ord℘(b)/n
℘ y],

where π℘ is a uniformizing parameter of the completion O℘ of O at ℘. By the
Skolem–Noether theorem we can assume that D(a, b) is generated by (x, y)
andD(a, d) is generated by (x, y′) for some y′ ∈ A. LetK0 = k( n

√
a, n
√
b, n
√
d).

Let K be a field extension of K0. We define the matrices

Φ1 = diag(1, η, . . . , ηn−1) =
n∑
i=1

ηi−1Ei,i, Φ2 =
n∑
i=1

Ei,i+1,

where Ei,j is the matrix with a 1 in position (i, j) and 0’s elsewhere. We can
find an isomorphism φ : AK → Mn(K) such that φ(x) = n

√
aΦ1 and φ(y) =

n
√
bΦ2. Then y′y−1 is in the centralizer of x, so we can write φ(y′y−1) =

diag(τ1, . . . , τn). By taking reduced norms we get τ1 · · · τn = d/b. As x, y,
and y′y−1 are in A, they are invariant under the action of the Galois group. It
follows that λEi,i = Ei+Γ (λ),i+Γ (λ), where Γ is the Kummer homomorphism
defined in the introduction. In particular,

(6) λτi = τi+Γ (λ)

for any automorphism λ. This implies in particular that τi ∈ F = k( n
√
a).

Notice that for any τ1, . . . , τn satisfying (6), the pre-image y′ of the matrix
n
√
b diag(τ1, . . . , τn)Φ2 is in A and (x, y′) can be assumed to generate D(a, d).

It follows that τ1, . . . , τn are arbitrary elements in F satisfying (6). Any
element g ∈ AK satisfying g−1xg = x and g−1yg = y′ must be of the form
g = diag(s1, . . . , sn), where sis−1

i+1 = τi
n
√
b/d.

Lemma 4.1. For some finite extension K of K0, there exist s1, . . . , sn∈K
satisfying the following :

• sis−1
i+1 = τi

n
√
b/d for all i.

• The lattice OKs1E1,1 + · · · + OKsnEn,n in φ(K[x]) equals φ(IK) for
some fractional ideal I in k[x].

Proof. Take an element g ∈ A∗K satisfying the conclusions of Theorem 2.
By the Skolem–Noether Theorem, we can modify g by an element of A∗k if
needed, so that g−1xg = x and g−1yg = n

√
b/d y′. The cocycle b defined by
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bσ = g−1 σg has values in MK = NK ∩ K[x]. Since the localizations Dk℘

and D′k℘ are conjugate by an element of the algebra k℘[x] for every ℘ /∈ R,

the class of the cocycle b is in H̃1(MK). We may reason as in the proof
of Lemma 3.3, for the short exact sequence Ω∗K ↪→ MK � J ′K instead of
D∗K ↪→ NK � JK , where Ω = k[x] ∩D and J ′K is the image of MK in JK .
Note that we still have PnK ⊆ J ′K . It follows that, for K large enough, we
can find u ∈ MK such that b′σ = (gu)−1 σ(gu) defines a cocycle class in
H̃1(Ω∗K). This implies, as before, that guΩK = hΩK for some h ∈ Ak[x]∗.
Note that, since A−1x ⊆ Ω and n is an R-unit, the ring Ω is the maximal
R-order of the k-algebra k[x]. Furthermore, ΩK is the maximal R(K)-order
of K[x]. Let I be the fractional ideal defined locally by I℘ = h℘Ωk℘ . Then,
if φ(gu) = diag(s1, . . . , sn), the elements s1, . . . , sn are as required.

Proof of Theorem 1. Let s1, . . . , sn be as in the previous lemma. By
Theorem 2 we know that PR(D,D′) is the ideal class of E , where EK =
N(g)OK = s1 · · · snOK . If I is as in the last lemma, ψ(IF ) = C1 × · · · × Cn,
for some fractional ideals Ci in F , whence (Ci)K = siOK . It follows that
CiC−1

i+1 = τiBF . This proves the existence of C1, . . . , Cn. Assume next that
C′1, . . . , C′n also satisfy C′i(C′)

−1
i+1 = τiBF and C′1 × · · · × C′n = I ′F for some

fractional ideal I ′ in k[x]. The first condition proves that C′i = CiF ′ for some
fractional ideal F ′ in F , and F ′1 = ψ[(I ′/I)F ], where 1 is the unity in the
ring Fn. This implies that F ′ is invariant under the action of the Galois
group Gal(F/k). Since the extension F/k is unramified outside R(a, b) ⊆ R,
it follows that F ′ = FF for some fractional ideal F of k. We conclude that
NL/k(I ′) = FnNL/k(I), hence the class of NL/k(I) does not depend on the
choice of C1, . . . , Cn.

Proof of (A′). If a is an nth power in k, the homomorphism Γ is trivial
and F = k. One can set τi = 1 for i < n, τn = d/b, and Ci = B1−i, so that
if ψ(I) = C1 × · · · × Cn, then NL/k(I) = C1 · · · Cn = Bn(1−n)/2.

Proof of (B′). If L is a field, then Γ is a surjection. Let σ ∈ Gal(F/k)
satisfy Γ (σ) = 1. Since (a, b)η = (a, d)η there exists τ ∈ L ∼= F such that
NL/k(τ) = d/b. Set τi = σi−1(τ). Since NF/k(τBF ) = (1), there exists a
fractional ideal C of F such that σ(C)−1C = τBF . We set Ci = σi−1(C).
Furthermore, we consider C as a fractional ideal of L, and under that iden-
tification C1 × · · · × Cn = ψ(CF ). The result follows.
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