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1. Introduction and main results. Let f(x) = xd+a1x
d−1+· · ·+ad,

a1, . . . , ad ∈ Z, d ≥ 2, be an irreducible polynomial. Let Nf (n) be the
number of solutions x of f(x) ≡ 0 (mod n) satisfying 0 ≤ x < n. It is an
important problem to study the function Nf (n).

In 1952, Erdős [2] proved the asymptotic formulae∑
p≤x

Nf (p) =
x

log x
+O

(
x

(log x)2

)
,

∑
p≤x

Nf (p)
p

= log log x+ c(f) + o(1),

and the lower estimate ∑
n≤x

Nf (n)� x,

where p runs over primes, and n runs over integers.
In 2001, Fomenko showed (see formula (4) in [3]) that∑

n≤x
Nf (n) = C(f)x+O

(
x

(log x)1/2−ε

)
,

where

C(f) = e−γ+c(f)P > 0.(1.1)

Here γ is the Euler constant and

P =
∏
p

e−Nf (p)/p

(
1 +

Nf (p)
p

+
Nf (p2)
p2

+ · · ·
)
.
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Let L be the splitting field of f over Q with Galois group G = Gal(L/Q).
If G is Abelian, the field L is called Abelian. In this case we also call f(x)
an Abelian polynomial. Otherwise we call f(x) a non-Abelian polynomial.

In [3] Fomenko proved that for any Abelian polynomial f(x),∑
n≤x

Nf (n) = C(f)x+O(x exp(−B(log x)β))

for a certain positive constant B and any fixed β < 3/5. In addition,
Fomenko mentioned in Remark 1 of [3] that for any Abelian polynomial
f(x), under the Riemann Hypothesis on Dirichlet L-functions,∑

n≤x
Nf (n) = C(f)x+O(x1/2+ε).(1.2)

Recently Kim [8] introduced the Langlands functoriality to this problem
and proved the following two results.

(i) For any non-Abelian polynomial f(x) of degree d, unconditionally
we have ∑

n≤x
Nf (n) = C(f)x+O(x1−2/(d+4)+ε).

(ii) For any Abelian polynomial f(x) of degree d, we have∑
n≤x

Nf (n) = C(f)x+O(x1−3/(d+6)+ε).

Based on Kim’s method, we shall show the following results.

Theorem 1.1. For any Abelian polynomial f(x) of degree d, we have

∑
n≤x

Nf (n) =


C(f)x+O(x1/2+ε) for d = 2, 3,
C(f)x+O(x1−3/(d+2)+ε) for 4 ≤ d ≤ 11,
C(f)x+O(x1−3/d+ε) for d ≥ 12,

where C(f) is defined in (3.4).

Theorem 1.2. For any non-Abelian polynomial f(x) of degree d, un-
conditionally we have∑

n≤x
Nf (n) = C(f)x+O(x1−3/(d+6)+ε),

where C(f) is defined in (4.2).

2. Preliminaries. Let D denote the discriminant of the polynomial
f(x). By Lemma 3 in Erdős [2], Nf (n) is a multiplicative function, and its
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value at the power of a prime p satisfies

Nf (pα) ≤
{
d if p - D,
dD2 if p |D,

where d is the degree of the polynomial f . Then we have

Nf (n)� dω(n) � τ(n)
log d
log 2 ,(2.1)

where ω(n) is the number of distinct prime divisors of n, and τ(n) is the
divisor function. Therefore in the half-plane Re s > 1, we can define the
L-function associated to Nf (n),

L(s) =
∞∑
n=1

Nf (n)
ns

,(2.2)

where the series is absolutely convergent in this region. Since Nf (n) is mul-
tiplicative, for Re s > 1 we can write

L(s) =
∏
p

(
1 +

Nf (p)
ps

+
Nf (p2)
p2s

+ · · ·
)
,(2.3)

where the product is over all primes.
Recall that L is the splitting field of f over Q. Let E = Q(α), where α is

a root of f . We have [E : Q] = d. Let ζE(s) be the Dedekind zeta-function
of the field E. Then for Re s > 1, we have

ζE(s) =
∑

a

(Na)−s,

where the sum is extended over all integral ideals a of the field E, and Na
is the norm of a. We can rewrite it as

ζE(s) =
∞∑
n=1

an
ns

=
∏
p

(
1 +

ap
ps

+
ap2

p2s
+ · · ·

)
,

where an denotes the number of integral ideals in E with norm n. From
Lemma 9 in [1], it is known that an is a multiplicative function and satisfies

an � (τ(n))d−1,(2.4)

where τ(n) is the divisor function, and d is the degree of the polynomial f .
In addition, from page 57 in [1] we learn that

ζE(s)U(s) =
∏
p

(
1− 1

ps

)−ap

,(2.5)

where U(s) is an infinite product over primes, which is absolutely and uni-
formly convergent for Re s > 1/2. From (2.1), (2.3), (2.4), and (2.5), we
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conclude that for Re s > 1,

(2.6) L(s) = ζE(s)U(s)
∏
p

(
1 +

Nf (p)
ps

+
Nf (p2)
p2s

+ · · ·
)(

1− 1
ps

)ap

.

By Kummer’s Theorem on the decomposition of prime ideals in algebraic
extensions (see e.g. Lemma 22 in Swinnerton-Dyer [11]), we learn that except
for finitely many primes (in fact, if p does not divide the discriminant D of
f(x) or the index [OE : Z[α]]),

ap = Nf (p).(2.7)

In fact, the factorization of a prime p in the field E as

(p) = pOE = p1 · · · pg,

where Npj = pfj (1 ≤ j ≤ g) corresponds to the factorization

f(x) ≡ f1(x) · · · fg(x) (mod p),

where fj(x) (1 ≤ j ≤ g) are irreducible polynomials over Zp, of degree fj .
Therefore the number of integral ideals with norm p corresponds to the
number of linear polynomials among fj(x). Obviously the latter number
equals Nf (p). Therefore we have the identity (2.7).

We define
S = {p : p |D or p | [OE : Z[α]]}.

Then from (2.6) and (2.7), we conclude that for Re s > 1,

L(s) = ζE(s)U(s)
∏
p∈S

(
1 +

Nf (p)
ps

+
Nf (p2)
p2s

+ · · ·
)(

1− 1
ps

)ap

(2.8)

×
∏
p 6∈S

(
1 +

Nf (p2)− ap2/2− ap/2
p2s

+ · · ·
)

:= ζE(s)U(s)
∏
p∈S
×
∏
p 6∈S

:= ζE(s)A(s).

From (2.1), (2.4), and the finiteness of the set S, we learn that the prod-
uct

∏
p∈S is absolutely convergent for Re s > 0, and the product

∏
p6∈S is

absolutely convergent for Re s > 1/2. Then A(s) = U(s)
∏
p∈S ×

∏
p 6∈S is

absolutely convergent for Re s > 1/2, and uniformly convergent for Re s ≥
1/2 + ε with any ε > 0, and hence holomorphic for Re s > 1/2. There-
fore L(s) = ζE(s)A(s) has a meromorphic continuation to the half-plane
Re s > 1/2. Since ζE(s) only has a simple pole at s = 1 in this region, so
does L(s).
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3. Proof of Theorem 1.1. In this section L is the splitting field of f
over Q with the Abelian Galois group G = Gal(L/Q). Then the splitting
field L coincides with the field E = Q(α).

The Kronecker–Weber Theorem asserts that every Abelian extension
of Q is cyclotomic (see e.g. Theorem 44 in Swinnerton-Dyer [11]). We let
Q(ζm) with ζm = e2πi/m be the least cyclotomic field which contains the
Abelian field L. Then we call m the conductor of the Abelian field L. We
have Gal(Q(ζm)/Q) ∼= (Z/mZ)∗, and so H = Gal(Q(ζm)/L) can be re-
garded as a subgroup of (Z/mZ)∗. The characters of the finite Abelian group
Gal(L/Q) ∼= (Z/mZ)∗/H are also called the characters of the field L. We
denote the character group of L by L̂. Therefore L̂ consists of the Dirichlet
characters modulo m that are trivial on H.

As a simple corollary of Abelian class field theory we can write ζL(s)
as a product of the Riemann zeta-function and Dirichlet L-functions. More
precisely, we have

ζL(s) =
∏
χ∈bL

L(s, χ∗) = ζ(s)
∏
χ∈bL
χ 6=χ0

L(s, χ∗),

where χ∗ is a primitive character modulo m′ with m′ |m, which induces
χ mod m. For simplicity, we shall write

ζL(s) = ζ(s)
d−1∏
j=1

L(s, χj),(3.1)

where L(s, χj) are primitive Dirichlet L-functions.
From (2.8) and (3.1), we have

L(s) = ζL(s)A(s) = ζ(s)
d−1∏
j=1

L(s, χj)A(s),(3.2)

which admits a meromorphic continuation to the half-plane Re s > 1/2, and
only has a simple pole at s = 1 in this region. Here A(s) is absolutely and
uniformly convergent for Re s ≥ 1/2 + ε with any ε > 0.

Now we begin the proof. First we assume that 4 ≤ d ≤ 11. By (2.1),
(2.2) and Perron’s formula (see Proposition 5.54 in [7]), we have∑

n≤x
Nf (n) =

1
2πi

b+iT�

b−iT
L(s)

xs

s
ds+O

(
x1+ε

T

)
,(3.3)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.
Next we move the integration to the parallel segment with Re s = 1/2+ε.

By Cauchy’s residue theorem, we have
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∑
n≤x

Nf (n) =
1

2πi

{ 1/2+ε+iT�

1/2+ε−iT

+
b+iT�

1/2+ε+iT

+
1/2+ε−iT�

b−iT

}
L(s)

xs

s
ds(3.4)

+ Ress=1 L(s)x+O(x1+ε/T )

:= I1 + I2 + I3 + C(f)x+O(x1+ε/T ),

where C(f) = Ress=1 L(s).
It is well known that

ζ(1/2 + it)� (1 + |t|)1/6 log(|t|+ 1)
and

L(1/2 + it, χ)� (1 + |t|)1/6 log(|t|+ 1)
(see e.g. Theorems 24.1.1 and 24.2.1 in Pan and Pan [10]). Then by the
Phragmén–Lindelöf principle for a strip (see e.g. Theorem 5.53 in Iwaniec
and Kowalski [7]), we deduce that for 1/2 ≤ σ ≤ 1 + ε,

(3.5) ζ(σ+ it)� (1 + |t|)(1−σ)/3+ε and L(σ+ it, χ)� (1 + |t|)(1−σ)/3+ε,

where we have used

ζ(1 + ε+ it)� 1 and L(1 + ε+ it, χ)� 1.

Hence we have

(3.6) ζ(1/2 + ε+ it)� (1 + |t|)1/6+ε, L(1/2 + ε+ it, χ)� (1 + |t|)1/6+ε.

For I1, by (2.8) or (3.2) we have

I1 � x1/2+ε + x1/2+ε
T�

1

|L(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

|ζL(1/2 + ε+ it)A(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

|ζL(1/2 + ε+ it)|t−1 dt,

where we have used that A(s) is absolutely convergent in the region Re s ≥
1/2 + ε and is O(1) there.

By (3.1) and (3.6), we have

I1 � x1/2+ε + x1/2+ε
T�

1

∣∣∣ζ(1/2 + ε+ it)
3∏
j=1

L(1/2 + ε+ it, χj)

×
d−1∏
j=4

L(1/2 + ε+ it, χj)
∣∣∣t−1 dt

� x1/2+ε + x1/2+ε
T�

1

∣∣∣ζ(1/2 + ε+ it)
3∏
j=1

L(1/2 + ε+ it, χj)
∣∣∣t(d−4)/6−1 dt.
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Then by Hölder’s inequality, we have

I1 � x1/2+ε log T max
T1≤T

{
T

(d−4)/6−1
1

( T1�

T1/2

|ζ(1/2 + ε+ it)|4 dt
)1/4

(3.7)

×
3∏
j=1

( T1�

T1/2

|L(1/2 + ε+ it, χj)|4 dt
)1/4}

+ x1/2+ε

� x1/2+εT (d−4)/6+ε + x1/2+ε,

where we have used
T1�

T1/2

|ζ(1/2 + ε+ it)|4 dt� T 1+ε
1

and
T1�

T1/2

|L(1/2 + ε+ it, χj)|4 dt� T 1+ε
1 .

These results can be established by using Gabriel’s convexity theorem (see
e.g. Lemma 8.3 in Ivić [6]), and the following two classical results (see e.g.
Theorems 29.3.1 and 29.3.4 in Pan and Pan [10]):

T1�

T1/2

|ζ(1/2 + it)|4 dt� T1(log T1)4

and
T1�

T1/2

|L(1/2 + it, χj)|4 dt� T1(log T1)4.

By (3.1) and (3.5), we conclude that for 1/2 ≤ σ ≤ 1 + ε,

ζL(σ + it)� (1 + |t|)
d
3
(1−σ)+ε.

Therefore for the integrals over the horizontal segments we have

I2 + I3 �
b�

1/2+ε

xσ|ζL(σ + iT )|T−1 dσ(3.8)

� max
1/2+ε≤σ≤b

xσT
d
3
(1−σ)+εT−1

= max
1/2+ε≤σ≤b

(
x

T d/3

)σ
T d/3−1+ε

� x1+ε/T + x1/2+εT d/6−1+ε.



324 G. S. Lü

From (3.4), (3.7) and (3.8), we have∑
n≤x

Nf (n) = C(f)x+O(x1+ε/T ) +O(x1/2+εT (d−4)/6+ε).(3.9)

On taking T = x3/(d+2) in (3.9), we have∑
n≤x

Nf (n) = C(f)x+O(x1−3/(d+2)+ε).

Now we consider the case d ≥ 12. From the context we only need to
estimate the integral I1. We have

I1 � x1/2+ε + x1/2+ε
T�

1

|L(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

|ζL(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

∣∣∣ζ(1/2 + ε+ it)
11∏
j=1

L(1/2 + ε+ it, χj)

×
d−1∏
j=12

L(1/2 + ε+ it, χj)
∣∣∣t−1 dt

� x1/2+ε + x1/2+ε
T�

1

∣∣∣ζ(1/2 + ε+ it)
11∏
j=1

L(1/2 + ε+ it, χj)
∣∣∣t(d−12)/6−1 dt.

Then by Hölder’s inequality, we have

I1 � x1/2+ε log T max
T1≤T

{
T

(d−12)/6−1
1

( T1�

T1/2

|ζ(1/2 + ε+ it)|12 dt
)1/12

×
11∏
j=1

( T1�

T1/2

|L(1/2 + ε+ it, χj)|12 dt
)1/12}

+ x1/2+ε

� x1/2+ε + x1/2+εT d/6−1+ε,

where we have used
T1�

T1/2

|ζ(1/2 + ε+ it)|12 dt� T 2+ε
1

and
T1�

T1/2

|L(1/2 + ε+ it, χ)|12 dt� T 2+ε
1 .
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These results can be deduced from Gabriel’s convexity theorem (see e.g.
Lemma 8.3 in Ivić [6]), and the results of Heath-Brown [4] and Meurman [9]
respectively, which state that

T1�

T1/2

|ζ(1/2 + it)|12 dt� T 2
1 (log T1)17

and
T1�

T1/2

|L(1/2 + it, χ)|12 dt� T 2+ε
1 .

Then on taking T = x3/d, we have∑
n≤x

Nf (n) = C(f)x+O(x1−3/d+ε).

Finally, we consider the cases d = 2, 3. For d = 2, we have

I1 � x1/2+ε log T max
T1≤T

{
T−1

1

( T1�

T1/2

|ζ(1/2 + ε+ it)|2 dt
)1/2

×
( T1�

T1/2

|L(1/2 + ε+ it, χ)|2 dt
)1/2}

� x1/2+ε,

where we have used
T1�

T1/2

|ζ(1/2 + ε+ it)|2 dt� T 1+ε
1

and
T1�

T1/2

|L(1/2 + ε+ it, χj)|2 dt� T 1+ε
1 .

These results can also be established by applying Gabriel’s convexity theo-
rem (see e.g. Lemma 8.3 in Ivić [6]), and the following two classical results
(see e.g. Theorems 25.2.1 and 25.3.1 in Pan and Pan [10]):

T1�

T1/2

|ζ(1/2 + it)|2 dt� T1 log T1

and
T1�

T1/2

|L(1/2 + it, χj)|2 dt� T1 log T1.
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Then on taking T = x1/2, we have∑
n≤x

Nf (n) = C(f)x+O(x1/2+ε).

For the case d = 3, we have

I1 � x1/2+ε log T max
T1≤T

{
T−1

1

( T1�

T1/2

|ζ(1/2 + ε+ it)|2 dt
)1/2

×
2∏
j=1

( T1�

T1/2

|L(1/2 + ε+ it, χj)|4 dt
)1/4}

� x1/2+ε.

Then on taking T = x1/2, we also have∑
n≤x

Nf (n) = C(f)x+O(x1/2+ε).

4. Proof of Theorem 1.2. Recall that L is the splitting field of f over
Q with Galois group G = Gal(L/Q) and E = Q(α), where α is a root of f .
From our assumption, G is not Abelian in this section.

By (2.1), (2.2), and Perron’s formula (see Proposition 5.54 in [7]), we
have ∑

n≤x
Nf (n) =

1
2πi

b+iT�

b−iT
L(s)

xs

s
ds+O

(
x1+ε

T

)
,(4.1)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.
Next we move the integration to the parallel segment with Re s = 1/2+ε.

By Cauchy’s residue theorem, we have∑
n≤x

Nf (n) =
1

2πi

{ 1/2+ε+iT�

1/2+ε−iT

+
b+iT�

1/2+ε+iT

+
1/2+ε−iT�

b−iT

}
L(s)

xs

s
ds(4.2)

+ Ress=1 L(s)x+O

(
x1+ε

T

)
:= J1 + J2 + J3 + C(f)x+O

(
x1+ε

T

)
.

For J1, by (2.8) we have

J1 � x1/2+ε + x1/2+ε
T�

1

|L(1/2 + ε+ it)|t−1 dt
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� x1/2+ε + x1/2+ε
T�

1

|ζE(1/2 + ε+ it)A(1/2 + ε+ it)|t−1 dt

� x1/2+ε + x1/2+ε
T�

1

|ζE(1/2 + ε+ it)|t−1 dt,

where we have used that A(s) is absolutely convergent in the region Re s ≥
1/2 + ε and is O(1) there.

To go further, we cite a result of Heath-Brown [5] about the subconvexity
bound for the Dedekind zeta-function on the critical line, which states that
if E is an algebraic number field of degree d, then

ζE(1/2 + it)�E t
d/6+ε (t ≥ 1)

for any fixed ε > 0. Then by the Phragmén–Lindelöf principle for a strip
(see e.g. Theorem 5.53 in Iwaniec and Kowalski [7]), we deduce that for
1/2 ≤ σ ≤ 1 + ε,

ζE(σ + it)� (1 + |t|)
d
3
(1−σ)+ε,(4.3)

where we have used the estimate ζE(1 + ε)� 1.
By (4.3), we have

J1 � x1/2+ε + x1/2+ε
T�

1

|ζE(1/2 + ε+ it)|t−1 dt(4.4)

� x1/2+ε + x1/2+ε
T�

1

td/6−1+ε dt� x1/2+ε + x1/2+εT d/6+ε.

For the integrals over the horizontal segments, by (4.3) we have

J2 + J3 �
b�

1/2+ε

xσ|ζE(σ + iT )|T−1 dσ(4.5)

� max
1/2+ε≤σ≤b

xσT
d
3
(1−σ)+εT−1

= max
1/2+ε≤σ≤b

(
x

T d/3

)σ
T d/3−1+ε

� x1+ε/T + x1/2+εT d/6−1+ε.

From (4.2), (4.4) and (4.5), we have∑
n≤x

Nf (n) = C(f)x+O(x1+ε/T ) +O(x1/2+εT d/6+ε).(4.6)
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On taking T = x3/(d+6) in (4.6), we have∑
n≤x

Nf (n) = C(f)x+O(x1−3/(d+6)+ε).

This completes the proof of Theorem 1.2.
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