
ACTA ARITHMETICA

140.4 (2009)

Zeros of Dirichlet series with periodic coefficients

by

Eric Saias (Paris) and Andreas Weingartner (Cedar City, UT)

1. Introduction. We first set the algebraic background related to our
result. We denote by F the set of Dirichlet series

∑
n≥1 an/n

s, where (an)n≥1

is periodic (1), and by P the set of Dirichlet polynomials. Then we easily
see that F is a P-module. For each Dirichlet character ψ we set Lψ(s) =∑

n≥1 ψ(n)/ns, and we denote by Dpr the set of primitive Dirichlet charac-
ters.

Theorem PDCB (Primitive Dirichlet Character Basis). The family
(Lψ)ψ∈Dpr is a basis for the P-module F .

Proof. The fact that every F in F can be written as a finite sum F (s) =∑
ψ∈Dpr Pψ(s)Lψ(s), where the Pψ(s) are Dirichlet polynomials, follows

readily from the finite orthogonal basis of Lemma 1 of the paper by Codecà,
Dvornicich, and Zannier [1] (2). On the other hand, the freeness of the fam-
ily (Lψ)ψ∈Dpr has been established by Kaczorowski and Perelli [5, Lemma
8.1].

We now turn to the distribution of zeros. Let a = (an)n≥1 be a periodic
sequence of complex numbers. We denote by Fa(s) the meromorphic con-
tinuation of

∑
n≥1 an/n

s, and by Na(σ1, σ2, T ) (respectively N ′a(σ1, σ2, T ))
the number of zeros of Fa(s) in the rectangle σ1 < Re s < σ2, |Im s| ≤ T ,
counted with their multiplicities (resp. without their multiplicities).

Theorem. Let a = (an)n≥1 be a periodic sequence of complex numbers
such that Fa(s) is not of the form P (s)Lχ(s), where P is a Dirichlet poly-
nomial and Lχ(s) is the L-function associated with a Dirichlet character χ.
Then there exists a positive number η such that , for all real numbers σ1 and
σ2 with 1/2 < σ1 < σ2 ≤ 1 + η, there exist positive numbers c1, c2, and T0
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(1) That is, there exists a positive integer q such that an+q = an for all n ≥ 1.

(2) This finite orthogonal basis also appears in Exercise 9.1.1.3 of [7].
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such that for all T ≥ T0 we have

c1T ≤ N ′a(σ1, σ2, T ) ≤ Na(σ1, σ2, T ) ≤ c2T.

Remark. When Fa(s) is developed along the basis of Theorem PDCB,
the condition in the above Theorem is equivalent to asking that Fa(s) does
not belong to one of the submodules generated by a single element Lψ(s) of
the basis.

We know by their Euler product that the functions Lψ(s) do not vanish in
the half-plane Re s > 1. Thus our result allows us to specify which functions
in F do not vanish in Re s > 1. In the same flavor as Theorem 1 of [4] we
have

Corollary. Let F be a Dirichlet series with periodic coefficients. The
following statements are equivalent :

(i) F (s) does not vanish in the half-plane Re s > 1.
(ii) F (s) = P (s)Lχ(s), where χ is a Dirichlet character and P (s) is a

Dirichlet polynomial that does not vanish in Re s > 1.

We can of course replace in this statement the open half-plane Re s > 1
by the closed half-plane Re s ≥ 1. Notice that the statement obtained by
replacing Re s > 1 by Re s > 1/2 is equivalent to the Generalized Riemann
Hypothesis (GRH).

We recall that the Dirichlet characters are exactly the arithmetic func-
tions which are both periodic and completely multiplicative. It is natural
to ask what the roles of these two properties will be in a proof of GRH.
The theorem we stated, about the zeros of Dirichlet series with periodic
coefficients, confirms the commonly held idea that in any proof of GRH the
property of complete multiplicativity of the Dirichlet characters must play
a significant role.

As a matter of fact, in our Theorem, only the result on the lower bound
of the number of zeros in Re s > 1 is really new. The upper bound

(1) Na(1/2 + u,∞, T )�a,u T

comes from Steuding’s work. More precisely, the proof of the slightly weaker
Na(1/2 + u,∞, T ) �a,u T log T appears in [8] (2002). In [9] (2007), the
upper bound (1) is stated in Theorem 11.3, but the proof is given only
in the analogous situation of the extended Selberg class. For the sake of
completeness we give in the appendix the details of the proof in the case of
Dirichlet series with periodic coefficients, and take the opportunity to make
the dependence on u explicit.

The lower bound N ′a(σ1, σ2, T )� T appears in the paper of Laurinčikas
[6] with the condition 1/2 < σ1 < σ2 < 1, and the restriction that the
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sequence a is a linear combination (with scalars in the complex plane) of at
least two Dirichlet characters modulo q.

For 1/2 < σ1 < σ2 < 1, the lower bound N ′a(σ1, σ2, T ) � T is proven
by Kaczorowski and Kulas (3) [4, Theorem 2] for the set of Dirichlet series
F (s),

(2) F (s) =
N∑
j=1

Pj(s)Lχj (s),

where N ≥ 2, χ1, . . . , χn are pairwise inequivalent Dirichlet characters, and
P1, . . . , PN are not identically vanishing Dirichlet polynomials. By Theorem
PDCB, their result applies to the same set of Dirichlet series as our Theorem.

Finally, let us recall what seems to be the first result on the subject. In
1936, Davenport and Heilbronn [2] showed that for all rational α in ]0, 1[
different from 1/2, the Hurwitz zeta function ζ(s, α) =

∑∞
n=0(n+ α)−s has

infinitely many zeros in the half-plane Re s > 1.
Let us now say a few words about our method. By previous results, we

only have to prove that for a function Fa(s) satisfying the hypothesis, there
exists a number η > 0 such that for any 1 < σ1 < σ2 < 1 + η we have
N ′a(σ1, σ2, T )� T for T large enough.

We did not attempt to generalize the proof by Davenport and Heilbronn.
Our goal was instead to extend the method of Kaczorowski and Kulas, which
is to use a strong joint universal property for the Dirichlet L-functions. But
this property is no longer valid in strips 1 < σ1 < σ2 < 1 + η. In place of
it we use a kind of weak joint universal property for Dirichlet L-functions,
which leads us to add a new tool into the picture: the Brouwer fixed point
theorem (see the proof of Lemma 2).

2. Lemmas. In the following two lemmas, we use the notation

Dn(R) := {z = (zj)1≤j≤n ∈ Cn : |zj | ≤ R for all 1 ≤ j ≤ n}.

Lemma 1. Let q be a positive integer , and y and R be positive real
numbers. Let χ1, . . . , χn be pairwise distinct Dirichlet characters modulo q.
Then there exists a real η > 0 such that for all fixed σ with 1 < σ ≤ 1 + η,
and for all prime numbers p > y, there exists a continuous function tp :
Dn(R)→ R such that for all z in Dn(R),

z =
(∑
p>y

χj(p)
pσ+itp(z)

)
1≤j≤n

.

(3) In papers [6] and [4], only Na(σ1, σ2, T ) � T is stated, but it is clear that it is
N ′
a(σ1, σ2, T ) � T that is proven.
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Remark. We can interpret this lemma as a linear system to be solved.
There are n equations. The unknowns are the infinite family of (p−itp)p>y
that must be chosen in the unit circle, and z ∈ Cn is a parameter. The
solution must be chosen continuously in the parameter z.

Proof of Lemma 1. If n < ϕ(q), we extend (χj)1≤j≤n to (χj)1≤j≤ϕ(q),
using all the Dirichlet characters modulo q. This allows us to restrict the
proof to the case n = ϕ(q).

We denote by C the unitary matrix of the characters modulo q, that is,

C := (χj(a))1≤a≤q, (a,q)=1
1≤j≤ϕ(q)

.

We have ∑
p>y

χj(p)
pσ+itp

=
∑

1≤a≤q
(a,q)=1

χj(a)
∑
p>y

p≡a (q)

1
pσ+itp

.

To change variables we write

z = Cw, where z = (zj)1≤j≤ϕ(q), w = (wa)1≤a≤q
(a,q)=1

,

and
θp = −(log p)(tp ◦ C).

To prove the lemma, it is sufficient to solve the system

(3)
∑
p>y

p≡a (q)

eiθp

pσ
= wa, 1 ≤ a ≤ q, (a, q) = 1,

in the real unknowns (θp)p>y, continuously in w ∈ Dϕ(q)(‖C−1‖∞R). We
put

Sa = Sa(q, y, σ) :=
∑
p>y

p≡a (q)

1
pσ
.

Using the prime number theorem for arithmetic progressions, we readily find
that there exists an η > 0 such that for each 1 < σ ≤ 1 + η and 1 ≤ a ≤ q,
(a, q) = 1, we have

(4) Sa ≥ 10‖C−1‖∞R,

and there exist prime numbers p1,a and p2,a, such that

1
3
≤ λ0 :=

1
Sa

∑
y<p≤p1,a
p≡a (q)

1
pσ
≤ 1

3
+

1
100
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and
1
3
≤ λ1 :=

1
Sa

∑
p1,a<p≤p2,a
p≡a (q)

1
pσ
≤ 1

3
+

1
100

.

We also write
λ2 :=

1
Sa

∑
p>p2,a
p≡a (q)

1
pσ
,

so that λ0 + λ1 + λ2 = 1. We choose

θp =


0 if y < p ≤ p1,a,
π + u1 if p1,a < p ≤ p2,a,
π − u2 if p2,a < p

with u1 and u2 to be fixed later. In view of (3) it is sufficient to solve, for
each a, the equation

(5) λ1e
iu1 + λ2e

−iu2 = λ0 −
wa
Sa

in the real unknowns u1 and u2, continuously in wa for |wa| ≤ ‖C−1‖∞R.
We define the function F by

F : ]0, π/2[2 → C, (u1, u2) 7→ λ1e
iu1 + λ2e

−iu2 .

Then F is a diffeomorphism onto its image. Moreover, as 1
3 ≤ λ0, λ1 ≤

1
3 + 1

100 , and 1
3 −

1
50 ≤ λ2 ≤ 1

3 , we have

{s ∈ C : |s− λ0| ≤ 1/10} ⊂ ImF,

as illustrated in Figure 1.

q
0
�
�
�
�
�
�
�
��

λ1

��
�*1

10q
λ0

ImF

Fig. 1. The image of F (with the dotted boundary) contains the disk with center λ0 and
radius 1/10.
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Thus by (4) we can solve (5) continuously in wa. This concludes the
proof of Lemma 1.

Lemma 2. Let q and L be positive integers, and R ≥ 1 be real. Let
χ1, . . . , χn be pairwise distinct Dirichlet characters modulo q. For all 1 ≤
j ≤ n, let hj be a rational function in L complex variables, not identically
vanishing. Then there exists a real η > 0 such that , for all σ with 1 < σ ≤
1 + η, we have

{z ∈ Cn : 1/R ≤ |zj | ≤ R}

⊂
{(

hj

(
1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

) ∏
p>pL

(
1− χj(p)

pσ+itp

)−1)
1≤j≤n

: tp ∈ R
}
.

Proof. We first consider the particular case where all the hj are 1. We
put y = pL and R′ = π+ logR. Applying Lemma 1 (and changing the letter
z to w) we have continuous functions tp such that

(6) wj =
∑
p>y

χj(p)
pσ+itp(w)

, w ∈ Dn(1 +R′), 1 ≤ j ≤ n.

We define the error term E by

(7)
(∑
p>y

log
(

1− χj(p)
pσ+itp

))
1≤j≤n

=
(
−
∑
p>y

χj(p)
pσ+itp

)
1≤j≤n

+ E((tp)p>y).

The real number σ > 1 being fixed, the function E is continuous for the
product topology. Moreover, for all j and all (tp)p>y, we have

(8) |Ej((tp)p>y)| ≤
∑
p

1
p2

< 1.

Let z ∈ Dn(R′) be fixed. From (8) we see that, for all j and all (tp)p>y,

|zj + Ej((tp)p>y)| ≤ 1 +R′.

Thus we have the following continuous function:

F : Dn(1 +R′)→ Dn(1 +R′), w 7→ z + E((tp(w))p>y).

The Brouwer fixed point theorem shows that there exists a w ∈ Dn(1 +R′)
such that F (w) = w. Together with (6) and (7) this yields(

−
∑
p>y

log
(

1− χj(p)
pσ+itp(w)

))
1≤j≤n

= z.

Taking exponentials allows us to conclude the case when hj ≡ 1.
We now consider the case with a general h. Let us choose (tp1 , . . . , tpL)

such that for all j, hj(1/p
σ+itp1
1 , . . . , 1/p

σ+itpL
L ) has neither zeros nor poles
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for 1 ≤ σ ≤ 2. We put

c := min
1≤j≤n

min
1≤σ≤2

∣∣∣∣hj( 1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

)∣∣∣∣,
C := max

1≤j≤n
max

1≤σ≤2

∣∣∣∣hj( 1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

)∣∣∣∣.
Applying the particular case where hj ≡ 1 with R̃ = max(C/R,R/c) allows
us to conclude the general case.

3. Proof of the Theorem. Let F (s) in F be such that it is not of the
form P (s)Lχ(s), with P in P. By previous results (see the introduction), we
only need to show that there exists an η > 0 such that, for 1 < σ1 < σ2 <
1 + η and T large enough, we have N ′(σ1, σ2, T )� T .

By Theorem PDCB, we can write

F (s) =
n∑
j=1

Fj(s),

where n ≥ 2,
Fj(s)
Lψj (s)

=
∑
k≥1

cj,k
ks

are Dirichlet polynomials for 1 ≤ j ≤ n, and ψ1, . . . , ψn are distinct primitive
Dirichlet characters. Let q be the least common multiple of the conductors
of ψ1, . . . , ψn. Choose y = pL such that if p divides a k for which there is
a j such that cj,k 6= 0, then p ≤ y. Denoting by χj the Dirichlet character
modulo q that is induced by ψj we can thus write

Fj(s) = hj

(
1
ps1
, . . . ,

1
psL

) ∏
p>pL

(
1− χj(p)

p s

)−1

where hj is a rational function, not identically vanishing, such that

(9) hj has no poles in {(z1, . . . , zL) ∈ CL : |zl| < 1}.
Choosing R = 1 we get by Lemma 2 a real η > 0, which will be the one we
use here. Let σ1 and σ2 be real numbers such that 1 ≤ σ1 < σ2 ≤ 1 + η. We
choose

σ =
σ1 + σ2

2
.

By Lemma 2, there is a sequence (tp)p of real numbers such that for all j
with 1 ≤ j ≤ n,

hj

(
1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

) ∏
p>pL

(
1− χj(p)

pσ+itp

)−1

= e2iπj/n.
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We write

Gj(s) := hj

(
1

p
s+itp1
1

, . . . ,
1

p
s+itpL
L

) ∏
p>pL

(
1− χj(p)

ps+itp

)−1

.

As n ≥ 2, we have

(10)
n∑
j=1

Gj(σ) = 0.

We now choose a circle C = C(σ, r) centered at σ = (σ1 + σ2)/2 and with
a radius r with 0 < r < (σ2 − σ1)/2, such that

∑n
j=1Gj(s) does not vanish

on C. We write

γ := min
s∈C

∣∣∣ n∑
j=1

Gj(s)
∣∣∣ > 0.

Because of (9) and the uniform convergence of the infinite products, we can
choose a prime number pM ≥ pL such that for all j with 1 ≤ j ≤ n,∣∣∣∣Fj(z)− hj( 1

pz1
, . . . ,

1
pzL

) ∏
pL<p≤pM

(
1− χj(p)

pz

)−1∣∣∣∣ < γ

3n
, Re z ≥ σ − r,

and∣∣∣∣Gj(s)− hj( 1

p
s+itp1
1

, . . . ,
1

p
s+itpL
L

) ∏
pL<p≤pM

(
1− χj(p)

ps+itp

)−1∣∣∣∣ < γ

3n
,

Re s ≥ σ − r.
By Weyl’s criterion, we know that the set {pit1 , . . . , pitM} is uniformly

distributed in {z : |z| = 1}M . Using (9) once more it follows that the set of
t ∈ R such that for all s with |s− σ| ≤ r and all j with 1 ≤ j ≤ n,∣∣∣∣hj( 1

ps+it1

, . . . ,
1

ps+itL

) ∏
pL<p≤pM

(
1− χj(p)

ps+it

)−1

− hj
(

1

p
s+itp1
1

, . . . ,
1

p
s+itpL
L

) ∏
pL<p≤pM

(
1− χj(p)

ps+itp

)−1∣∣∣∣ < γ

3n
,

has positive lower density. For these real t, we thus have

max
s∈C

∣∣∣ n∑
j=1

Fj(s+ it)−Gj(s)
∣∣∣ < γ = min

s∈C

∣∣∣ n∑
j=1

Gj(s)
∣∣∣.

As
∑n

j=1Gj(σ) = 0 (formula (10)), it follows by Rouché’s theorem that
F (s + it) =

∑n
j=1 Fj(s + it) has at least one zero in |s − σ| < r. By the

positive lower density of these t, we conclude that N ′F (σ1, σ2, T )�F,σ1,σ2 T
for sufficiently large T .
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Appendix

Proposition. Let a = (an)n≥1 be a periodic sequence not identically
equal to zero. Then

Na(1/2 + u,∞, T )�a T
log(1/u)

u

for 0 < u ≤ 1/2 and T ≥ 1.

Proof. We establish the upper bound for the number N+
a (1/2+u,∞, T )

of zeros in 1/2 +u < Re s <∞, 0 ≤ Im s ≤ T . The proof is similar for zeros
with negative imaginary part.

Let ζ(s, r) denote the Hurwitz zeta function. From Theorem 1 of [3] we
have, for 1/2 < σ < 1,

(11)
T�

0

|Fa(σ + it)|2 dt

=
T

q2σ

q∑
j=1

|aj |2ζ(2σ, j/q) +O

(
q2−2σT 2−2σ

∑q
j=1 |aj |2

(2σ − 1)(1− σ)

)

= Oa

(
T

(2σ − 1)(1− σ)

)
,

since ζ(2σ, r) = Or((2σ − 1)−1). By Jensen’s inequality,

(12)
T�

0

log |Fa(σ + it)| dt ≤ T

2
log
(

1
T

T�

0

|Fa(σ + it)|2 dt
)

= Oa(T log(1/u))

for σ = (1 + u)/2, according to (11).
Let am be the first nonzero term of the sequence (an)n≥1, and let c ≥ 2

be large enough so that, for Re s ≥ c, we have Fa(s) = (am/ms)(1 + θ(s))
with |θ(s)| ≤ 1/2. We apply Littlewood’s lemma (see [10, Section 3.8]) to
the rectangle R with vertices c+ i, c+ iT , (1 + u)/2 + iT , (1 + u)/2 + i, to
get

2π
∑

β>(1+u)/2
1<γ≤T

(β−(1+u)/2) =
T�

1

log |Fa((1+u)/2+ it)| dt−
T�

1

log |Fa(c+ it)| dt

+
c�

(u+1)/2

argFa(σ + iT ) dσ −
c�

(u+1)/2

argFa(σ + i) dσ.

The second integral is clearly Oa(T ) since log |Fa(c + it)| � 1. Steuding
shows on page 302 of [8] that |arg(1 + θ(σ + iT ))| � log T if σ is from
a bounded interval. Thus the third integral is Oa(T ). The last integral is
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bounded. Together with (12) this shows that∑
β>(1+u)/2

1<γ≤T

(β − (1 + u)/2) = Oa(T log(1/u)).

The desired bound now follows from
u

2
N+
a (1/2+u,∞, T ) =

∑
β>1/2+u
0≤γ≤T

u

2
≤

∑
β>(1+u)/2

0≤γ≤T

(β−(1+u)/2)�a T log(1/u).
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[1] P. Codecà, R. Dvornicich and U. Zannier, Two problems related to the non-vanishing
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