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1. Introduction. Pseudorandom sequences, i.e., deterministic sequences
on finite alphabets with properties reminiscent of random sequences, are an
intensively studied subject. We refer to the series of papers by Mauduit,
Sárközy and coauthors [1, 5, 6, 13, 14] among many others. A great part
of that work deals with correlation measures for binary sequences and the
problem of finding large classes of finite pseudorandom binary sequences
with small autocorrelation. Let x = x0x1 · · ·xN ∈ {−1, 1}N be a finite word
over the alphabet {−1, 1}. Then the correlation measure of order m of x is
defined as

(1.1) Um(x) = max
M,r

∣∣∣ M∑
n=0

xn+r1xn+r2 · · ·xn+rm

∣∣∣,
where the maximum is taken over all r = (r1, . . . , rm) with 0 ≤ r1 < r2 <
· · · < rm and M such that M + rm ≤ N . In the case of infinite words
x = x0x1 · · · the correlation of order m is defined as

(1.2) Vm(x,M) =
M∑
n=0

xn+r1 · · ·xn+rm ,

with fixed r. In contrast to Um(x), this definition does not take “large-
range correlations” into account. In fact, rm could be Ω(N) for the finite
word correlation [13]. Recently, Mauduit and Sárközy [15] generalized sev-
eral measures for pseudorandomness to finite sequences over k-letter alpha-
bets. These distribution measures have been studied by Bérczi [4] from a
probabilistic point of view.

The aim of the present paper is to study the discrete correlation among
members of arbitrary infinite sequences over k symbols, where we just take
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into account whether two symbols are identical. In what follows, we denote
by N the set of non-negative integers, and we assume that sums start with
index 0 (empty sums are supposed to be zero), unless otherwise stated. We
further denote by n mod k the unique integer n′ with 0 ≤ n′ ≤ k − 1 and
n ≡ n′ (mod k). We use “word” and “sequence” interchangeably.

Let x = x0x1 · · · be an infinite word over an alphabet of size k. Without
loss of generality we may assume that xi ∈ {0, 1, . . . , k − 1} for i ∈ N.
For vectors (i1, . . . , im) with integers ij (1 ≤ j ≤ m) satisfying 0 ≤ i1 <
i2 < · · · < im, define the discrete correlation coefficient δ(i1, . . . , im) of
order m by

δ(i1, . . . , im) =

{
0 if xi1 = · · · = xim ,

1 otherwise.

Moreover, define Cr for all fixed r = (r1, . . . , rm) with 0 ≤ r1 < r2 < · · ·
< rm by

(1.3) Cr = lim inf
N→∞

1
N

∑
n<N

δ(n+ r1, n+ r2, . . . , n+ rm).

It is important to remark that for a random sequence (where every sym-
bol is independently chosen with probability 1/k) the quantity Cr equals
1−1/km−1 with probability one. In this paper we investigate sequences with
respect to this leading term. We first show by combinatorial means that for
any infinite sequence on k symbols the quantity Cr cannot be too large for
all r (Theorem 2.3). Our result, however, does not rule out the existence of
deterministic sequences that actually attain our bound. We provide such a
construction in the case of m = 2 by introducing generalized Rudin–Shapiro
sequences on k symbols, which extends a construction by Queffélec [17] and
Høholdt, Jensen and Justesen [8, 9]. Other generalizations of the Rudin–
Shapiro sequence are presented in the work of Allouche and Liardet [2]
where the authors introduce the notion of so-called chained sequences in
the context of spectral measure which vastly extend Quefféllec’s construc-
tion. In the context of correlation, our construction gives a large class of
sequences with small autocorrelation for any alphabet with cardinality k,
whenever k is prime or squarefree. We also mention recent work by Pritykin
and Ulyashkina [16] for a variety of results concerning the discrete correla-
tion (called aperiodicity measure), in particular, for the Prouhet sequences
and Sturmian sequences. Also, several interesting questions are raised at the
end of that paper.

The paper is structured as follows. In Section 2 we state the general
bounds for the discrete correlation in Theorems 2.3 and 2.4. In Section 3
we give the definition of generalized Rudin–Shapiro sequences. Sections 4
and 5 are devoted to the combinatorial proofs of Theorems 2.3 and 2.4,
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respectively. In Section 6 we give the proof of Theorem 2.6 by using the
Lovász local lemma. Finally, in Sections 7 and 8 we give the proofs for
Theorems 3.1 and 3.3 by means of exponential sums.

2. Bounds for the discrete correlation. We wish to establish upper
bounds for Cr as r gets “large”. To begin with, we normalize the vector r.
For an integer sequence T = (t0, t1, . . .) with ti + r1 ≥ 0 for i ∈ N, we define
shifted versions of Cr, namely,

Cr,T = lim inf
N→∞

1
N

∑
n<N

δ(n+ tN + r1, n+ tN + r2, . . . , n+ tN + rm).

Proposition 2.1. Let r = (r1, . . . , rm) with 0 ≤ r1 < · · · < rm, and
let T = (t0, t1, . . .) be a sequence of integers with ti + r1 ≥ 0 for all i. If
tN = o(N), then Cr,T = Cr.

Proof. We note that

Cr,T = lim inf
N→∞

1
N

N+tN−1∑
n=tN

δ(n+ r1, . . . , n+ rm).

Since δ(n+ r1, . . . , n+ rm) ∈ {0, 1} for all n, the above sum differs from the
corresponding sum in (1.3) by at most 2tN . Thus if tN = o(N), then

Cr,T = lim inf
N→∞

1
N

( ∑
n<N

δ(n+ r1, . . . , n+ rm) + o(N)
)

= Cr.

By taking T = (t, t, . . .), Proposition 2.1 implies that Cr+t1 = Cr for
all constants t ≥ −r1. We shall say r is normalized whenever r1 = 0 and
r1 < · · · < rm, and henceforth only consider normalized r. In the m = 2 case,
we then have r = (0, r2) and we can establish an upper bound by taking the
limit as r2 approaches infinity. We shall obtain the following result.

Theorem 2.2. Let x be an infinite word over an alphabet of size k. Then

(2.1) lim inf
r2→∞

C(0,r2) ≤ 1− 1/k.

In the next section we provide the construction of deterministic sequences
with equality in (2.1). More precisely, we show that for generalized Rudin–
Shapiro sequences (k prime or squarefree) we have

inf
r2>0

C(0,r2) = 1− 1/k.

To generalize Theorem 2.2 to larger values of m, we must precisely define
the notion of “r getting large”. Let ‖ · ‖ be a norm on the finite-dimensional
vector space Rm. We will prove the following upper bound on Cr as ‖r‖
tends to infinity:
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Theorem 2.3. Let x be an infinite word over an alphabet of size k. Then
for any m ≥ 2 and any norm ‖ · ‖, we have

(2.2) lim
λ→∞

(inf{Cr : r ∈ Nm, r normalized, ‖r‖ ≥ λ}) ≤ 1− 1/km−1.

We note that Theorem 2.2 is immediately implied by Theorem 2.3 by
taking m = 2. Theorem 2.3 is proven via a combinatorial argument in Sec-
tion 4.

In order to also consider the local autocorrelation properties of sequences,
we define a related quantity. Again, let x be an infinite word over an alphabet
of size k. For a given vector r and positive integers d, we define

(2.3) Dd
r = min

n≥0

(
1
d

n+d−1∑
i=n

δ(i+ r1, . . . , i+ rm)
)
.

Note that for a random sequence on k symbols, we necessarily have Dd
r = 0

for all r and d. We will prove that for a given vector r, the value of Cr of
an infinite sequence is an upper bound for all of the values of Dd

r:

Theorem 2.4. Let x be an infinite word over an alphabet of size k, let
r be normalized and let d > 0. Then Dd

r ≤ Cr.

As an immediate consequence of Theorems 2.3 and 2.4, we obtain an
upper bound on Dd

r as ‖r‖ tends to infinity.

Corollary 2.5. Let x be an infinite word over an alphabet of size k.
Then for any m ≥ 2, d > 0, and norm ‖ · ‖, we have

(2.4) lim
λ→∞

(inf{Dd
r : r ∈ Nm, r normalized, ‖r‖ ≥ λ}) ≤ 1− 1/km−1.

An interesting example occurs when we choose a fixed d > 0 and take

r = (0, d, 2d, . . . , (m− 1)d).

Then for each subword w1 · · ·wm of x with |wi| = d for all i, the number of
indices j where |{wi[j] : 1 ≤ i ≤ m}| > 1 is at least dDd

r. In this case, for
sufficiently large d, we can get arbitrarily close to the bound in (2.4).

Theorem 2.6. For all ε > 0 there exist an infinite word x over an al-
phabet of size k and d0 = d0(ε) such that for all d > d0 and r = (0, d, 2d, . . . ,
(m− 1)d) we have

Dd
r ≥ 1− 1

km−1
− ε.

3. Generalized Rudin–Shapiro sequences. The quantity Cr has
been studied for various special sequences. A classical result of Mahler [11]
states that for the Thue–Morse sequences over k symbols, the summatory
correlation has no uniform leading term. On the contrary, Queffélec [17]
noted (referring to an unpublished result by Kamae) that the Rudin–Shapiro
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sequence indeed has the desired leading term, whenever r is fixed. As for
the hub of the present article, Mauduit and Sárközy [14, Corollary after
Theorem 4] showed that for the correlation of order 2 one may let r2 = o(N)
without losing this property. The following definition gives an extension to
alphabets of size k ≥ 2.

Definition 3.1. Let g : {0, 1, . . . , k − 1} × Z → Z, (j, n) 7→ g(j, n) be
a function which is periodic in n with period k. Furthermore, let g be such
that for all integers u, i with 0 ≤ u < u+ i ≤ k − 1 we have

{(g(u+ i, n)− g(u, n)) mod k : 0 ≤ n ≤ k − 1} = {0, 1, . . . , k − 1}.
Then we call a sequence (â(n))n≥0 over the alphabet {0, 1, . . . , k − 1} a
generalized Rudin–Shapiro sequence if there exists a sequence of integers
(a(n))n≥0 such that â(n) ≡ a(n) (mod k) and

(3.1) a(nk + j) = a(n) + g(j, n), 0 ≤ j ≤ k − 1, n ≥ 1.

The function g is called an admissible function.

Example 1. A “canonical” admissible function g in the sense of Defi-
nition 3.1 is

(3.2) g(j, n) = j · (n mod k),

which is Queffélec’s generalization for the ordinary Rudin–Shapiro sequence
[17, Section 4]. In this case g(u+ i, n)−g(u, n) ≡ in (mod k), and {in : 0 ≤
n ≤ k − 1} runs for i with 0 ≤ i ≤ k − 1 through all residue classes mod k,
provided k is prime. In particular, for k = 2 and

g(j, n) =

{
1 if j = 1, n ≡ 1 (mod 2),
0 otherwise,

we get the Rudin–Shapiro sequence over the alphabet {0, 1}, namely,

(â(n))n≥0 = 0, 0, 0, 1, 0, 0, 1, 0, . . . ,

where the corresponding sequence a(n) counts the number of subblocks (1, 1)
in the binary expansion of n.

Example 2. For k = 2 and appropriate initial conditions, we get se-
quences which count any fixed block of size two. For instance, by setting

g(1, 0) = 1, g(0, 0) = g(1, 1) = g(0, 1) = 0,

the resulting sequence (â(n))n≥0 counts (mod 2) the number of subblocks
(01) in the binary expansion of n.

Example 3. For k=3 an admissible function other than (3.2) is given by

g(j, n) =

{
1 if j ≡ n (mod 3),
0 otherwise.
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Here, the resulting sequence (â(n))n≥0 (with initial conditions â(0) = â(1) =
â(2) = 0) gives the cumulative number of appearances (mod 3) of subblocks
(00), (11) and (22) in the ternary expansion of integers.

The following theorem shows that generalized Rudin–Shapiro sequences
resemble the discrete autocorrelation behavior of random sequences ifm = 2.

Theorem 3.1. Let
â(0), â(1), â(2), . . .

be a generalized Rudin–Shapiro sequence over {0, 1, . . . , k−1} with k prime.
Moreover , let 0 ≤ r1 < r2. Then, as N →∞, we have∑

n<N

δ(n+ r1, n+ r2) =
(

1− 1
k

)
N +Ok

(
(r2 − r1) log

N

r2 − r1
+ r2

)
,(3.3)

where the implied constant only depends on k.

In the proof, we give an explicit value for the implied constant. As an
immediate consequence we note

Corollary 3.2. In the setting of Theorem 3.1, if r2 = o(N) then∑
n<N

δ(n+ r1, n+ r2) ∼
(

1− 1
k

)
N.

It seems natural to consider the cross-product of two generalized Rudin–
Shapiro sequences to prime bases to construct an extremal sequence for
squarefree k. Let k = p1 · · · pd be a product of pairwise distinct primes, and
put c1 = 1, ci = p1 · · · pi−1 for 2 ≤ i ≤ d. We define the sequence (â(n))n≥0

by

(3.4) â(n) = a(n) mod k,

where (a(n))n≥0 is defined by

(3.5) a(n) = c1a1(n) + · · ·+ cdad(n).

Here (ai(n))n≥0 satisfies the recursive relation

(3.6) ai(pin+ j) = ai(n) + gi(j, n), 1 ≤ i ≤ d,

for n ≥ 1 and 0 ≤ j ≤ pi−1. Again, the functions gi are admissible functions
in the sense of Definition 3.1 for 1 ≤ i ≤ d. Our next result gives an estimate
for the correlation of order two.

Theorem 3.3. Let k = p1 · · · pd with d ≥ 2 be squarefree and denote by

â(0), â(1), â(2), . . .
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a generalized Rudin–Shapiro sequence over {0, 1, . . . , k−1} defined by (3.4)–
(3.6). Moreover , let 0 ≤ r1 < r2 and 0 < γ < 1. Then, as N →∞, we have

(3.7)
∑
n<N

δ(n+ r1, n+ r2)

=
(

1−1
k

)
N+Ok

(
(r2−r1)N1−γ/d+(r2−r1)N1−γ log

Nγ/d

r2 − r1
+Nγ+r1

)
,

where the implied constant only depends on k.

Corollary 3.4. In the setting of Theorem 3.3, if r2 = o(Nγ/d) then∑
n<N

δ(n+ r1, n+ r2) ∼
(

1− 1
k

)
N.

4. Proof of Theorem 2.3. We need the following lemma for our proof
of Theorem 2.3.

Lemma 4.1. Suppose we have a multiset of n distinct objects of k types,
and let d ≤ n be a fixed constant. Then among the

(
n
d

)
subsets of d objects,

the number containing at least one pair of objects of different types is at most

nd

d!

(
1− 1

kd−1

)
.

Proof. Suppose we have bi objects of type i for all 1 ≤ i ≤ k. Then we
have

(
bi
d

)
subsets consisting entirely of objects of type i. Thus the total num-

ber of subsets P that contain at least one pair of objects of different types is

P =
(
n

d

)
−

k∑
i=1

(
bi
d

)

=
1
d!

(
n(n− 1) · · · (n− d+ 1)−

k∑
i=1

bi(bi − 1) · · · (bi − d+ 1)
)
.

Consider the polynomial φ(x) = x(x− 1) · · · (x− d+ 1) = e1x+ · · ·+ edx
d.

We rewrite our expression for P in terms of φ:

P =
1
d!

(
φ(n)−

k∑
i=1

φ(bi)
)

=
1
d!

(
φ(n)−

(
e1

k∑
i=1

bi + e2

k∑
i=1

b2i + · · ·+ ed

k∑
i=1

bdi

))
.

By the power means inequality,

n

k
=

1
k

k∑
i=1

bi ≤
(

1
k

k∑
i=1

bνi

)1/ν

for all ν ≥ 1,
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and thus
nν

kν−1
≤

k∑
i=1

bνi .

We apply this bound to our expression for P to yield the desired result:

P ≤ 1
d!

(
φ(n)−

(
e1n+ e2

n2

k
+ · · ·+ ed

nd

kd−1

))
=

1
d!

(
n(n− 1) · · · (n− d+ 1)− k · n

k

(
n

k
− 1
)
· · ·
(
n

k
− d+ 1

))
≤ 1
d!

(
nd − k

(
n

k

)d)
.

With our lemma in hand, we now prove Theorem 2.3. We proceed via
contradiction. Suppose that for some m ≥ 2 and some norm ‖ · ‖ on Rm,
there exists an ε > 0 such that

lim
λ→∞

(inf{Cr : r ∈ Nm, r normalized, ‖r‖ ≥ λ}) = 1− 1
km−1

+ ε.

We assume without loss of generality that ε < 1/km−1. Our limit implies
that there is some λ0 ∈ R such that for all normalized r ∈ Nm with ‖r‖ ≥ λ0

we have

(4.1) lim inf
N→∞

1
N

N−1∑
i=0

δ(i+ r1, . . . , i+ rm) ≥ 1− 1
km−1

+
ε

2
.

We define ρ(r) = max{rj} − min{rj} to be the range of r and note that
ρ(r) = rm whenever r is normalized. Let r∗ = (0, . . . , 0, 1) ∈ Rm and let p
be an integer such that p‖r∗‖ ≥ λ0. Then whenever r is normalized with
ρ(r) ≥ p, we have ‖r‖ ≥ ‖pr∗‖ = p‖r∗‖ ≥ λ0. Hence, for all normalized r
with ρ(r) ≥ p, we can pick nr ∈ N by (4.1) such that for all N ≥ nr, we
have

(4.2)
1
N

N−1∑
i=0

δ(i+ r1, . . . , i+ rm) ≥ 1− 1
km−1

+
ε

3
.

To construct our counterexample, we ensure that we have selected p such
that

(4.3) p ≥ m,
and then pick q ∈ N such that the following both hold:

q >
18m2(m− 1)

ε
,(4.4)

qm−1 >
9m(m− 1)pm−1

ε
.(4.5)
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Since there are finitely many normalized r ∈ Nm with p ≤ ρ(r) ≤ q, we can
then pick an n ∈ N such that the following both hold:

n ≥ nr for all normalized r with p ≤ ρ(r) ≤ q,(4.6)

n >
18qm!
ε

.(4.7)

Now, for any set U ⊂ N with |U | = m, there is a unique normalized vector
rU and integer offset µ(U) such that the vector rU + µ(U)1 is an ordering
of the elements of U . We write δ(U) to denote the correlation coefficient
associated to this vector, namely δ(U) = δ(rU1 + µ(U), . . . , rUm + µ(U)). We
also write ρ(U) = max(U) − min(U) for the range of U . It follows that
ρ(U) = ρ(rU ) = rUm, and µ(U) = min(U). With these definitions in hand,
we consider the following sum, which will be counted in two different ways
to achieve our contradiction:

S =
n−1∑
a=0

( ∑
U⊆{a,...,a+q−1}

|U |=m

δ(U)
)

.

We first use Lemma 4.1 to bound S from above. The sum∑
U⊆{a,...,a+q−1}

|U |=m

δ(U)

counts the number of subsets of m elements from the multiset

[xa, xa+1, . . . , xa+q−1]

that contain at least one pair of distinct symbols of the k possible symbols.
Thus Lemma 4.1 applies, yielding

(4.8) S ≤
n−1∑
a=0

qm

m!

(
1− 1

km−1

)
=
nqm

m!

(
1− 1

km−1

)
.

Next, we will attempt to bound S from below by expressing it in terms
of partial sums of the form seen in (4.2). Our first goal will be to rearrange
this sum according to the multiplicity of δ(U) for each U . Sets U will be
subsets of {a, . . . , a + q − 1} for more values of a if they have lower range,
so we sort the terms according to the value of ρ(U), yielding

S =
q−1∑

b=m−1

n−1∑
a=0

( ∑
U⊆{a,...,a+q−1}

|U |=m
ρ(U)=b

δ(U)
)
.

For a given U ⊂ {0, . . . , n + q − 2} with |U | = m, we have U ⊆ {a, . . . ,
a + q − 1} if and only if min(U) ≥ a and max(U) ≤ a + q − 1. Thus
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U ⊆ {a, . . . , a+ q − 1} for precisely those a with µ(U) + ρ(U) − (q − 1) ≤
a ≤ µ(U). However, when we rearrange our sum, we must count only those
a which also lie in the range {0, . . . , n− 1}. We rewrite our sum as

S =
q−1∑

b=m−1

( ∑
U⊆{0,...,n+q−2}

|U |=m
ρ(U)=b

( min{µ(U),n−1}∑
a=max{µ(U)+ρ(U)−(q−1),0}

δ(U)
))
.

We drop all terms containing elements less than q or greater than n− 1. All
the sets U which remain will have µ(U)+ρ(U)−(q−1) ≥ 0 and µ(U) ≤ n−1,
so that

S≥
q−1∑

b=m−1

( ∑
U⊆{q,...,n−1}
|U |=m
ρ(U)=b

( µ(U)∑
a=µ(U)+ρ(U)−(q−1)

δ(U)
))

=
q−1∑

b=m−1

( ∑
U⊆{q,...,n−1}
|U |=m
ρ(U)=b

((q − ρ(U))δ(U))
)

=
q−1∑

b=m−1

(
(q− b)

∑
U⊆{q,...,n−1}
|U |=m
ρ(U)=b

δ(U)
)
.

We now need to add back some of the terms we dropped and subtract away
appropriate compensation. We can choose U ⊆ {0, . . . , n−1} with |U | = m,
ρ(U) = b and U * {q, . . . , n− 1} by picking min(U) ∈ {0, . . . , q− 1}, taking
max(U) = min(U) + b, and then choosing the remaining m − 2 elements
from {min(U)+1, . . . ,min(U)+b−1}. There are q

(
b−1
m−2

)
ways of doing this.

It is convenient to instead use qbm−2 as an upper bound for this quantity;
we then use the fact that δ(U) ∈ {0, 1} to write

S ≥
q−1∑

b=m−1

(
(q − b)

(( ∑
U⊆{0,...,n−1}
|U |=m
ρ(U)=b

δ(U)
)
− qbm−2

))

>

q−1∑
b=m−1

(
(q − b)

∑
U⊆{0,...,n−1}
|U |=m
ρ(U)=b

δ(U)
)
− qm+1.

In a similar manner, we add back more terms so that we may consider all
U ⊆ {0, . . . , n+ q−1} with |U | = m and ρ(U) = b, and subtract off another
multiple of qm+1 to compensate:

S >

q−1∑
b=m−1

(
(q − b)

∑
U⊆{0,...,n+q−1}

|U |=m
ρ(U)=b

δ(U)
)
− 2qm+1.
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We now associate each set U to its sorted vector rU +µ(U)1 and group them
according to their rU values. Since we count each subset of {0, . . . , n+q−1}
having range ≤ q − 1, we are certain to include r + i1 for every normalized
r of range ≤ q − 1 and every offset i from 0 to n. We drop any other terms
and ignore those r with ρ(r) < p (recalling (4.3), where we ensured that
p ≥ m), leaving us with

S >

q−1∑
b=m−1

(
(q − b)

∑
r∈Nm

r normalized
ρ(r)=b

n∑
i=0

δ(r + i1)
)
− 2qm+1.

Finally, we may use (4.2) to bound the inner sums from below, since for all
r with ρ(r) ≥ p we have n ≥ nr by (4.6). We then simply count the number
of normalized r vectors of each range, obtaining

S >

q−1∑
b=p

(
(q − b)

∑
r∈Nm

r normalized
ρ(r)=b

n

(
1− 1

km−1
+
ε

3

))
− 2qm+1(4.9)

= n

(
1− 1

km−1
+
ε

3

) q−1∑
b=p

(
(q − b)

(
b− 1
m− 2

))
− 2qm+1

≥ n

(m− 2)!

(
1− 1

km−1
+
ε

3

) q−1∑
b=p

((q − b)(b−m)m−2)− 2qm+1.

We simplify and evaluate the remaining sum to get

q−1∑
b=p

((q − b)(b−m)m−2) ≥
q−1∑
b=p

((q +m− b)(b−m)m−2)−mqm−1

≥
q+m∑
b=p

((q +m− b)(b−m)m−2)− 2mqm−1

=
q∑

b=p−m
((q − b)bm−2)− 2mqm−1

≥
q∑
b=0

((q − b)bm−2)− 2mqm−1 − qpm−1

= q

q∑
b=0

bm−2 −
q−1∑
b=0

bm−1 − (2m+ 1)qm−1 − qpm−1
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≥ q
q�

0

bm−2 db−
q�

0

bm−1 db− 2mqm−1 − qpm−1

=
qm

m(m− 1)
− 2mqm−1 − qpm−1.

We substitute this back into (4.9) to obtain

(4.10) S >
nqm

m!

(
1− 1

km−1
+
ε

3

)
− 2qm+1 − 2mnqm−1

(m− 2)!
− nqpm−1

(m− 2)!
.

What remains is to eliminate the three leftover terms on the right hand
side with the bounds we used when selecting q and n. First,

(4.11)
(
nqm

m!

)(
ε

9

)
>

2mnqm−1

(m− 2)!
.

Second, by (4.5), we also picked q such that

(4.12)
(
nqm

m!

)(
ε

9

)
>

nqpm−1

(m− 2)!
.

Third, by (4.7), we picked n such that

(4.13)
(
nqm

m!

)(
ε

9

)
> 2qm+1.

Adding (4.11), (4.12), and (4.13) together, we get(
nqm

m!

)(
ε

3

)
> 2qm+1 +

2mnqm−1

(m− 2)!
+
nqpm−1

(m− 2)!

and we substitute this into (4.10) to obtain

S >
nqm

m!

(
1− 1

km−1

)
,

which contradicts (4.8), proving the desired result.

5. Proof of Theorem 2.4. Suppose, for our sequence, that there exist
some m ≥ 2, r ∈ Nm, and d > 0 such that Dd

r > Cr. Let ε = Dd
r − Cr and

pick p ∈ N such that

p >
2dDd

r

ε
.

Then by our definition of Cr, there is some n ≥ p such that

1
n

n−1∑
i=0

δ(i+ r1, . . . , i+ rm) < Cr +
ε

2
.

Dividing n by d, we let n = ad+ b, where a and b are non-negative integers
and b < d. Then rearranging our expression and applying the definition
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of Dd
r yields

Cr >
1
n

n−1∑
i=0

δ(i+ r1, . . . , i+ rm)− ε

2

=
1
n

(a−1∑
i=0

id+d−1∑
j=id

δ(j + r1, . . . , j + rm)+
ad+b−1∑
j=ad

δ(j + r1, . . . , j + rm)
)
− ε

2

≥ 1
n

(a−1∑
i=0

(dDd
r) +

ad+b−1∑
j=ad

δ(j + r1, . . . , j + rm)
)
− ε

2

≥ adDd
r

n
− ε

2
≥ Dd

r −
dDd

r

n
− ε

2
.

However, since

n ≥ p > 2dDd
r

ε
,

we then have
dDd

r

n
<
ε

2
,

and substituting this into the above yields

Cr > Dd
r −

ε

2
− ε

2
= Dd

r − ε = Cr.

Thus we have a contradiction, and so Dd
r ≤ Cr for all r and d.

6. Proof of Theorem 2.6. It is sufficient to show that for all integers
k,m ≥ 2 and all real numbers ε > 0, there exist an integer d0 and an
infinite word x = x0x1x2 · · · over a k-letter alphabet such that for every
integer d > d0 and i ≥ 0 there are at least 1 − 1/km−1 − ε positions where
the m words

xi · · ·xi+d−1, xi+d · · ·xi+2d−1, . . . , xi+(m−1)d · · ·xi+md−1

do not all agree. We use the Lovász local lemma to show the existence of
finite words of every sufficiently long length satisfying the condition. The
existence of an infinite word then follows from the usual compactness argu-
ment.

Here is the statement of the Lovász local lemma, as taken from [3,
Chap. 5].

Lemma 6.1. Let A1, . . . , AT be events in a probability space, with a de-
pendency digraph D = (S,E). Suppose there exist real numbers u1, . . . , uT
with 0 ≤ ui < 1 for 1 ≤ i ≤ T such that

(6.1) Pr[Ai] ≤ ui
∏

(i,j)∈E

(1− uj)
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for 1 ≤ i ≤ T . Then the probability that none of the events A1, . . . , AT occur
is ≥

∏
1≤i≤T (1− ui).

Let Ai,d denote the event that there are < t positions where the m words

xi · · ·xi+d−1, xi+d · · ·xi+2d−1, . . . , xi+(m−1)d · · ·xi+md−1

do not all agree. Moreover, let S be the space of all such events Ai,d and
(S,E) the dependency digraph specifying when one event is dependent on
another, which corresponds to overlapping ranges of the word being con-
structed.

To evaluate Pr[Ai,d] it suffices to count the number of such strings. First,
we choose the values for the symbols of the first string, xi, . . . , xi+d−1, which
can be done in kd ways. Next, we choose the precise number of positions j
in which the m strings will fail to agree, and the positions themselves. This
can be done in

∑
0≤j<t

(
d
j

)
ways. For each such position, there are km−1− 1

ways to choose the symbols of the remaining m−1 strings in such a way that
they do not universally agree with the first string. The remaining symbols
in the last m−1 strings are now completely determined, as they must agree
with the symbols in the corresponding position in the first string. The total
number of such strings is therefore

P = kd
∑

0≤j<t

(
d

j

)
(km−1 − 1)j .

We therefore find

Pr[Ai,d] =
P

kmd
=
∑

0≤j<t

(
d

j

)(
km−1 − 1
km−1

)j( 1
km−1

)d−j
.

To estimate this sum we use the following classical estimate on the tail
of the binomial distribution, which is a version of Hoeffding’s inequality [7]:

Lemma 6.2. Suppose 0 < p < 1, and let t, d be positive integers with
t ≤ dp. Then ∑

0≤j≤t

(
d

j

)
pj(1− p)d−j ≤ e−2(dp−t)2/d.

If we take t = (1− 1/km−1 − ε)d, p = (km−1 − 1)/km−1, we obtain

Pr[Ai,d] ≤ e−2dε2 .

Now fix n, the length of the string. We want none of the events Aj,s for
d0 ≤ s ≤ n/m, 0 ≤ j ≤ n−ms to take place. Choose uj,s = e−

1
2
sε2 . Then∏

((i,d),(j,s))∈E

(1− uj,s) =
∏

i−ms+1≤j≤i+md−1
0≤j≤n−ms
d0≤s≤n/m

(1− uj,s)≥
∏
s≥d0

(1− uj,s)md+ms−1.
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Taking logarithms, we get∑
((i,d),(j,s))∈E

log(1− uj,s) ≥
∑
s≥d0

(md+ms− 1) log(1− uj,s).

Provided uj,s is sufficiently small, we can bound log(1−uj,s) with −cuj,s for
some constant c. Hence∑
s≥d0

(md+ms− 1) log(1− uj,s)

≥
∑
s≥d0

−(md+ms− 1)ce−
1
2
ε2s = −(md−1)c

∑
s≥d0

e−
1
2
ε2s −mc

∑
s≥d0

se−
1
2
ε2s

= −(md− 1)c
e−

1
2
ε2(d0−1)

e
1
2
ε2 − 1

−mc e
− 1

2
ε2(d0−1)(1− d0) + d0e

− 1
2
ε2(d0−2)

(e
1
2
ε2 − 1)2

.

Now choose d0 large enough so that

e−
1
2
ε2(d0−1)

e
1
2
ε2 − 1

≤ ε2

2mc
,

and also large enough so that

e−
1
2
ε2(d0−1)(1− d0) + d0e

− 1
2
ε2(d0−2)

(e
1
2
ε2 − 1)2

≤ ε2d0

2mc
.

It follows that

log
(
ui,d

∏
((i,d),(j,s))∈E

(1−uj,s)
)
≥ −1

2
ε2d− (md− 1)c

ε2

2mc
−mc ε

2d0

2mc

≥ −1
2
ε2d− 1

2
ε2d− 1

2
ε2d0 ≥−

3
2
ε2d≥−2ε2d

≥ log Pr[Ai,d],

as desired. Hence, by the Lovász local lemma, it follows that the probability
that none of the events Aj,s occur is ≥

∏
((i,d),(j,s))∈E(1 − uj,s) > 0, and

hence such a string of length n exists.

7. Proof of Theorem 3.1. Before turning to the proof of Theorem 3.1,
we need one auxiliary tool. We rewrite the left-hand-side expression of (3.3)
in terms of exponential sums. As usual, set e(z) = e2πiz for z ∈ R.

Proposition 7.1. For any infinite word x0x1x2 · · · over {0, 1, . . . , k−1}
we have∑
n<N

δ(n+ r1, n+ r2) = N

(
1− 1

k

)
− 1
k

∑
1≤h<k

∑
n<N

e
(
h

k
(xn+r2 − xn+r1)

)
.
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Proof. The proof is based on the relation

(7.1)
∑

0≤h<k
e
(
hu

k

)
=

{
0 if k - u,
k if k | u.

First, since xn ∈ {0, 1, . . . , k − 1} we notice that k | (xn+r2 − xn+r1) if and
only if xn+r2 = xn+r1 . Therefore,∑
n<N

δ(n+ r1, n+ r2) = N −
∑
n<N

1
k

∑
0≤h<k

e
(
h

k
(xn+r2 − xn+r1)

)

= N

(
1− 1

k

)
−
∑
n<N

1
k

∑
1≤h<k

e
(
h

k
(xn+r2 − xn+r1)

)
.

In view of Proposition 2.1 it suffices to show that for all 1 ≤ h ≤ k − 1
we have

(7.2)
∑
n<N

e
(
h

k
(â(n+ r)− â(n))

)
= Ok

(
r log

(
N

r

)
+ r

)
,

where the implied constant only depends on k. Since e(z + 1) = e(z), the
left-hand-side sum in (7.2) can be rewritten in the form

(7.3) γN (r) =
∑
n<N

e
(
h

k
(a(n+ r)− a(n))

)
.

In what follows, we will need the generalized quantities

(7.4) γN (r, f) =
∑
n<N

e
(
h

k
(a(n+ r)− a(n))

)
e
(
hf(n)
k

)
,

where f : N → Z is an arbitrary periodic function with period k. We first
show that for all such f we have γN (1, f) = Ok(logN) for N > k. We will
then use induction on r to prove (7.2), which in turn proves Theorem 3.1.

We follow the reasoning of Mauduit [12]. Regarding (7.4) we split up the
summation over n < N according to the residue class of n modulo k. We
obtain

γkN+j(1, f) =
∑

n<kN+j

e
(
h

k
(a(n+ 1)− a(n))

)
e
(
hf(n)
k

)

=
k−1∑
i=0

∑
kn+i<kN+j

e
(
h

k
(a(kn+ i+ 1)− a(kn+ i))

)
e
(
hf(i)
k

)
.
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Thus,

(7.5) γkN+j(1, f) =
k−1∑
n=0

e
(
h

k
(a(n+ 1)− a(n))

)
e
(
hf(n)
k

)

(7.6) +
j−1∑
u=0

e
(
h

k
(a(kN + u+ 1)− a(kN + u))

)
e
(
hf(u)
k

)

(7.7) +
k−2∑
u=0

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(kn+ u+ 1)− a(kn+ u))

)
(7.8) + e

(
hf(k − 1)

k

) ∑
1≤n<N

e
(
h

k
(a(kn+ k)− a(kn+ k − 1))

)
.

The sums (7.5) and (7.6) are trivially bounded by k+ j ≤ 2k− 1. Concern-
ing (7.7) we note that for 0 ≤ u ≤ k − 2 we have∑

1≤n<N
e
(
h

k
(a(kn+ u+ 1)− a(kn+ u))

)
=

∑
1≤n<N

e
(
h

k
(a(n) + g(u+ 1, n)− a(n)− g(u, n))

)
=

∑
1≤n<N

e
(
h

k
(g(u+ 1, n)− g(u, n))

)
.

By our assumption g(u + 1, n) − g(u, n) runs through a complete residue
system mod k for 1 ≤ n ≤ k, so this sum is bounded in modulus by k/2.
Therefore, (7.7) is bounded by k(k−1)/2. Finally, we rewrite the sum in (7.8)
in the form∑

1≤n<N
e
(
h

k
(a(kn+ k)− a(kn+ k − 1))

)
=

∑
1≤n<N

e
(
h

k
(a(n+ 1) + g(0, n+ 1)− a(n)− g(k − 1, n))

)

=
∑

1≤n<N
e
(
h

k
(a(n+ 1)− a(n))

)
e
(
hf̂(n)
k

)
,

where f̂(n) = g(0, n+ 1)− g(k − 1, n) is again periodic with period k in n.
Summing up, we get

(7.9) |γkN+j(1, f)| ≤ |γN (1, f̂)|+ k

2
(k + 3).

From (7.9) and |γn(1, f)| ≤ k − 1 for 1 ≤ n ≤ k − 1 and all f we see by
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induction that for all k-periodic functions f and all N > k,

(7.10) |γN (1, f)| ≤ k(k + 3)
2 log k

logN + k − 1.

For our induction on r to work, we need one more initial value, namely

γN (0, f) =
∑
n<N

e
(
hf(n)
k

)
,

which satisfies

(7.11) |γN (0, f)| ≤ k

2
if f({0, 1, . . . , k − 1}) = {0, 1, . . . , k − 1}.

Now, let us consider the general case with r = kM + i > 0 where M ≥ 0
and 0 ≤ i ≤ k − 1 but (M, i) 6= (0, 0). Similarly to (7.5)–(7.8) we have

γkN+j(kM + i, f)

(7.12) =
k−2∑
u=0

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(kn+ u+ kM + i)− a(kn+ u))

)
(7.13) + e

(
hf(k − 1)

k

) ∑
1≤n<N

e
(
h

k
(a(kn+k−1+kM+i)−a(kn+k−1))

)
+O(1),

where the implied constant is bounded in modulus by 2k−1. We again need
a close inspection of the two infinite sums (7.12) and (7.13). First, suppose
i 6= 0. We rewrite the sum (7.12) in the form

k−1−i∑
u=0

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(n+M) + g(u+ i, n+M)−a(n)−g(u, n))

)

+
k−2∑
u=k−i

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(n+M + 1) + g(u+ i− k, n+M + 1)

− a(n)− g(u, n))
)

=
k−1−i∑
u=0

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(n+M)− a(n))

)
e
(
hf1(n)
k

)

+
k−2∑
u=k−i

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(n+M + 1)− a(n))

)
e
(
hf2(n)
k

)
,
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where

f1(n) = g(u+ i, n+M)− g(u, n) for 0 ≤ u ≤ k − 1− i,
f2(n) = g(u+ i− k, n+M + 1)− g(u, n) for k − i ≤ u ≤ k − 2.

Using (7.4) this yields

(7.14)
k−2∑
u=0

e
(
hf(u)
k

) ∑
1≤n<N

e
(
h

k
(a(kn+ u+ kM + i)− a(kn+ u))

)

=
k−1−i∑
u=0

e
(
hf(u)
k

)
γN (M,f1) +

k−2∑
u=k−i

e
(
hf(u)
k

)
γN (M + 1, f2) +O(1),

where the O(1)-term comes from including n = 0 in (7.14) and therefore
is trivially bounded in modulus by (k − i) + (i − 1) = k − 1. Consider the
second sum (7.13) and let i 6= 0. Then

a(k(n+M + 1) + i− 1)− a(kn+ k − 1)

= a(n+M + 1)− a(n) + g(i− 1, n+M + 1)− g(k − 1, n).

Therefore,

(7.15)
∣∣∣∣e(hf(k−1)

k

) ∑
1≤n<N

e
(
h

k
(a(kn+k−1 +kM + i)−a(kn+k−1))

)∣∣∣∣
≤ |γN (M + 1, f3)|+ 1,

where

f3(n) = g(i− 1, n+M + 1)− g(k − 1, n).

Now, from (7.12)–(7.15) we see that

(7.16) |γkN+j(kM + i, f)| ≤ |γN (M,f1)| · (k− i) + |γN (M + 1, f2)| · (i−1)

+ |γN (M + 1, f3)|+ 1 + (2k − 1) + (k − 1).

Plugging in M = 0, using (7.10) and (7.11) and observing that f1(n) =
g(u+ i, n)− g(u, n) permutes {0, 1, . . . , k − 1} by assumption, we get

|γkN+j(i, f)| ≤ k(k − 1)(k + 3)
2 log k

logN +
k

2
(2k + 3), 1 ≤ i ≤ k − 1.

This implies that for 1 ≤ i ≤ k − 1 and all functions f with period k we
have

(7.17) |γN (i, f)| ≤ k(k − 1)(k + 3)
2 log k

log
(
N

k

)
+
k

2
(2k + 3), N > k.



364 E. Grant et al.

On the other hand, if 0 ≤ u ≤ k − 1 then

a(k(n+M) + u)− a(kn+ u) = a(n+M)− a(n) + g(u, n+M)− g(u, n),

so by joining (7.12) and (7.13) in the case that i = 0 we get

(7.18) |γkN+j(kM, f)| ≤
k−1∑
u=0

(|γN (M,f4)|+ 1) + (2k − 1),

where
f4(n) = g(u, n+M)− g(u, n).

Therefore, by (7.10) and (7.18) applied for M = 1 we have

(7.19) |γN (k, f)| ≤ k2(k + 3)
2 log k

log
(
N

k

)
+ k2 + 2k − 1,

provided N > k. Therefore, for all N > k,

(7.20) |γN (i, f)| ≤ k2(k + 3)
2 log k

log
(
N

k

)
+ k2 + 2k − 1,

for the whole range 1 ≤ i ≤ k.
We now start our induction on the parameter r = kM + i. We iter-

ate (7.16) and (7.18) with (7.20) as an initial value to obtain, for r =
ks + 1, ks + 2, . . . , ks+1 with s ≥ 0 and for all N > ks+1,

|γN (r, f)| ≤ k2(k + 3)
2 log k

ks log
(

N

ks+1

)
+ ks(k2 + 2k − 1) +

s−1∑
j=0

(3k − 1)kj

≤ k2(k + 3)
2 log k

ks log
(

N

ks+1

)
+
ks(k3 + k2)

k − 1
.

This finishes the proof of Theorem 3.1.

8. Proof of Theorem 3.3. For the proof of Theorem 3.3 it suffices to
show that for all 1 ≤ h ≤ k − 1 and 0 < γ < 1 we have

(8.1)
∑
n<N

e
(
h

k
(a(n+ r)− a(n))

)
�Nγ + rN1−γ/d + rN1−γ log

(
Nγ/d

r

)
,

where the implied constant only depends on k. We follow Kim [10, Section 4],
however suitably modifying the argument to deal with the function a not
being k-additive in the usual sense. We need some more notation. Let b =
(b1, . . . , bd) and set

Pb = {n ∈ N : n ≡ bi (mod psi
i ), 1 ≤ i ≤ d},
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where si is the unique integer with psi
i ≤ Nγ/d < psi+1

i . Since the pi’s denote
different primes by assumption, we have

#{n ∈ N : n ∈ Pb} =
N∏d
i=1 p

si
i

+O(1).

Further set

B = {(b1, b2, . . . , bd) : 0 ≤ bi < psi
i for 1 ≤ i ≤ d},

B0 = {(b1, b2, . . . , bd) : 0 ≤ bi < psi
i − r for 1 ≤ i ≤ d}.

Now, consider n = nip
si
i + bi where 0 ≤ bi < psi

i − r. We may assume that
ni ≥ 1, which is true for most n, i.e. Nγ/d ≤ n < N (the error term of Nγ/d

is negligible in the final estimate). Write

bi + r = β′si−1p
si−1
i + β′si−2p

si−2
i + · · ·+ β′0,

bi = βsi−1p
si−1
i + βsi−2p

si−2
i + · · ·+ β0,

where βν , β′ν ∈ {0, 1, . . . , pi − 1} for 0 ≤ ν < si. Furthermore, set

vi = max(j : β′j 6= 0, 0 ≤ j ≤ si − 1),

wi = max(j : βj 6= 0, 0 ≤ j ≤ si − 1),

which indicate the uppermost non-zero coefficients in the expansions. Then
by (3.6) we can rewrite ai(n+ r)− ai(n) in the form

ai(nipsi
i + β′si−1p

si−1
i + · · ·+ β′0)− ai(nipsi

i + βsi−1p
si−1
i + · · ·+ β0)

= ai(ni) + gi(β′si−1, ni) +
si−2∑
ν=0

gi(β′ν , β
′
ν+1)

−
(
ai(ni) + gi(βsi−1, ni) +

si−2∑
ν=0

gi(βν , βν+1)
)

= gi(β′si−1, ni)− gi(βsi−1, ni) +
si−2∑
ν=0

(gi(β′ν , β
′
ν+1)− gi(βν , βν+1))

= ai(bi + r)− ai(bi) + µi(bi, r, ni),

where

µi(bi, r, ni) = gi(β′si−1, ni)− gi(βsi−1, ni)

+
si−2∑
ν=vi

gi(β′ν , β
′
ν+1)−

si−2∑
ν=wi

gi(βν , βν+1).
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Consequently,∑
n<N

e
(
h

k
(a(n+ r)− a(n))

)

=
∑
n<N

d∏
i=1

e
(
h

k
ci(ai(n+ r)− ai(n))

)

=
∑
b∈B0

∑
n<N
n∈Pb

d∏
i=1

e
(
h

k
ci(ai(bi + r)− ai(bi) + µi(bi, r, ni))

)

+
∑

b∈B\B0

∑
n<N
n∈Pb

e
(
h

k
(a(n+ r)− a(n))

)
,

which equals∑
b∈B

d∏
i=1

e
(
h

k
ci(ai(bi + r)− ai(bi))

) ∑
n<N
n∈Pb

d∏
i=1

e
(
h

k
ciµi(bi, r, ni)

)
(8.2)

+
∑

b∈B\B0

∑
n<N
n∈Pb

(
e
(
h

k
(a(n+ r)− a(n))

)
(8.3)

−
d∏
i=1

e
(
h

k
ci(ai(bi + r)− ai(bi) + µi(bi, r, ni))

))
.

The second sum (8.3) is trivially bounded by (we follow [10])

(8.4) 2|B \ B0| ·#{n < N : n ∈ Pb}

�
( d∑
i=1

r

psi
i

d∏
j=1

p
sj

j

)(
N∏d
i=1 p

si
i

+O(1)
)
� rN1−γ/d,

which is one of the error terms in the estimate. Now, consider the first
sum (8.2). Let

Br = {b ∈ B : vi = wi and βvi = β′wi
for all 1 ≤ i ≤ d}.

Obviously, for every b ∈ Br we have µi(bi, r, ni) = 0 for all n < N , n ∈ Pb.
We use a similar splitting as above, so that (8.2) is

�
∑
b∈B

d∏
i=1

e
(
h

k
ci(ai(bi + r)− ai(bi))

) ∑
n<N
n∈Pb

1 + 2|B \ Br|
(

N∏d
i=1 p

si
i

+O(1)
)
.

Our next task is to establish a bound for |B \ Br|. Let ptii ≤ r < pti+1
i . We
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have to count the number of bi’s with 0 ≤ bi < psi
i such that performing

the addition bi + r gives rise to a carry propagation which is transported to
the digits βvi of bi, thus giving a contribution to µi(bi, r, ni). A necessary
condition for this effect is that

βti+1 = βti+2 = · · · = βsi−2 = pi − 1.

Hence

|B \ Br| ≤
d∑
i=1

(pti+1
i + (si − 1− ti)pti+2

i )

�
d∑
i=1

(
r + pir

(
logNγ/d

log pi
− log r

))
� r logNγ/d.

Summing up, we obtain∑
n<N

e
(
h

k
(a(n+ r)− a(n))

)

=
∑
b∈B

d∏
i=1

e
(
h

k
ci(ai(bi + r)− ai(bi))

) ∑
n<N
n∈Pb

1

+O(rN1−γ/d + rN1−γ logNγ/d)

=
d∏
i=1

p
si
i −1∑
bi=0

e
(
h

k
ci(ai(bi + r)− ai(bi))

)(
N∏d
i=1 p

si
i

+O(1)
)

+O(rN1−γ/d)

= N
d∏
i=1

1
psi
i

p
si
i −1∑
bi=0

e
(
h

k
ci(ai(bi + r)− ai(bi))

)
+O(Nγ + rN1−γ/d).

Finally, we show how to obtain the saving in the exponent, which again
finishes the proof of Theorem 3.3. Since ci = p1 · · · pi−1, we see that for
every h there exists an index l with 1 ≤ l ≤ d and

h

k
cl =

hp1 · · · pi−1

p1 · · · pd
=
h′

pl
,

with gcd(h′, pl) = 1. Applying Theorem 3.1 with k = pl and estimating the
other factors trivially, we get∑

n<N

e
(
h

k
(a(n+ r)− a(n))

)

� N1−γr log
Nγ/d

r
+N1−γr +Nγ + rN1−γ/d,

which gives the statement of the theorem.
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