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1. Introduction. In 1909, Thue [20] proved that if F (x, y) is an ir-
reducible binary form of degree at least 3 with integer coefficients, and h
a nonzero integer, then the equation F (x, y) = h has only finitely many
solutions in integers x and y.

In this paper we will consider irreducible binary quartic forms with in-
teger coefficients, i.e. polynomials of the shape

F (x, y) = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4.

The discriminant D of F is given by

D = DF = a6
0(α1−α2)2(α1−α3)2(α1−α4)2(α2−α3)2(α2−α4)2(α3−α4)2,

where α1, α2, α3 and α4 are the roots of

F (x, 1) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4.

Here, we will recall some well-known facts about the invariants of quartic
forms. We refer the reader to [9] for more details. The invariants of F form
a ring, generated by two invariants of weights 4 and 6, namely

I = IF = a2
2 − 3a1a3 + 12a0a4,

J = JF = 2a3
2 − 9a1a2a3 + 27a2

1a4 − 72a0a2a4 + 27a0a
2
3.

These are algebraically independent and every invariant is a polynomial in
I and J . For the invariant D, we have

27D = 4I3 − J2.

In what follows, we will just consider the forms F for which the quantity JF
is 0, i.e. for which we have

27D = 4I3.
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Let h be a positive integer. The number of solutions in integers x and y
of the equation
(1) |F (x, y)| = h

will be the focus of our study in this paper.

Theorem 1.1. Let F (x, y) be an irreducible binary quartic form with
integer coefficients and positive discriminant that splits in R. If JF = 0,
then the Diophantine equation |F (x, y)| = 1 possesses at most 12 solutions
in integers x and y (with (x, y) and (−x,−y) regarded as the same).

In Section 11, we will summarize the result of our computations for
binary forms with small discriminant. We will give some examples for quar-
tic binary forms F (x, y) satisfying the hypotheses of Theorem 1.1, where
|F (x, y)| = 1 has four or three solutions in integers x and y. The author is
not aware of any quartic binary form F for which |F (x, y)| = 1 has more
than four solutions.

In [2] different methods are used to give an upper bound 61 upon the
number of integral solutions to the equation |F (x, y)| = 1, where F is an
irreducible binary quartic form with no restriction on the value of JF and
with |DF | large enough. Moreover, it is shown in [2] that if the irreducible
binary quartic form F splits in R and has large discriminant, the Diophantine
equation |F (x, y)| = 1 has at most 36 solutions in integers x and y.

Theorem 1.2. Let F (x, y) be a reduced irreducible binary quartic form
with integer coefficients and positive discriminant that splits in R. If JF = 0,
then the inequality |F (x, y)| ≤ h possesses at most 12 coprime solutions
(x, y) with |y| ≥ h3/4/(3I)1/8.

The definition of a reduced form is given in Section 3. It turns out that
each quartic binary form is equivalent to a reduced one (see [9]).

One reason for us to be interested in these results, despite quite serious
restrictions upon F , is that we know important families of quartic forms with
these properties. For example, a solution to the equation aX4 − bY 2 = 1
gives rise to a solution to the Thue equation

x4 + 4tx3y − 6tx2y2 − 4t2xy3 + t2y4 = t21,

where t1 | t. We have applied the methods of this paper to treat the above
Thue equation in [1].

The method of Thue and Siegel based on Padé approximation to bino-
mial functions applies to broad families of binomial Thue equations, and
both so-called “quantitative” results (see the works of Evertse [10, 12], for
example) as well as effective results (via effective irrationality measures from
Baker [4, 5] onwards) can be obtained from it. This method has also been
used to study binary cubic forms with positive discriminant, for decades
(see [11], [6]). In 1939, Krechmar [13] showed that when the discriminant
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of a quartic form F (x, y) is sufficiently large (DF � h216/5), the equation
(1) has at most 20 solutions in integers x and y, provided that JF = 0
and all roots of F (x, 1) are real numbers. We will use a refinement of the
Thue–Siegel method by Evertse [11] to obtain our results.

2. The method of Thue–Siegel. The main purpose of this section
is to explain why we need the restriction JF = 0 in the statements of our
theorems. The answer is hidden in the method we use, the method of Thue–
Siegel. The relationship between a system of approximations to an arbitrary
cubic irrationality and Padé approximations to 3

√
1− x was first established

by Thue [21]. Siegel [15, 16] identified approximating polynomials in Thue’s
papers [21, 22] with hypergeometric polynomials and applied this method
to bounding the number of solutions to Diophantine equations f(x, y) = k
for certain binary forms f(x, y) of degree r. He also established bounds for
the number of solutions to

axn − byn = c,

where n ≥ 3 [17].
In this paper, we always suppose that JF = 0. In Section 5, we will show

that if JF = 0 then there are linear forms ξ = ξ(x, y) and η = η(x, y) so
that

F (x, y) =
1

8
√

3IA4
(ξ4 − η4),

where the quantity A4 is defined in (7). We will use Padé approximation via
hypergeometric polynomials to approximate η/ξ with rational integers. The
main idea here is to replace the construction of a family of dense approxima-
tions to η/ξ by a family of rational approximations to the function (1−z)1/4.
Consider the system of linear forms Rr(z) = −Qr(z) + (1− z)1/4Pr(z) that
approximate (1 − z)1/4 at z = 0, such that Rr(z) = z2r+1R̄r(z), R̄r(z) is
regular at z = 0, and Pr(z) and Qr(z) are polynomials of degree r. Thue
[19, 21] explicitly found polynomials Pr(z) and Qr(z) and Siegel [15] iden-
tified them in terms of hypergeometric polynomials. Refining the method
of Siegel, Evertse [11] used the theory of hypergeometric functions to give
an upper bound for the number of solutions to the equation f(x, y) = 1,
where f is a cubic binary form with positive discriminant. Here we adjust
Lemma 4 of [11] for quartic forms.

Lemma 2.1. Let r, g be integers with r ≥ 1, g ∈ {0, 1}. Put

(2)

Ar,g(z) =
r∑

m=0

(
r − g + 1/4

m

)(
2r − g −m
r − g

)
(−z)m,

Br,g(z) =
r−g∑
m=0

(
r − 1/4
m

)(
2r − g −m

r

)
(−z)m.
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(i) There exists a power series Fr,g(z) such that for all complex numbers
z with |z| < 1,

(3) Ar,g(z)− (1− z)1/4Br,g(z) = z2r+1−gFr,g(z)

and

(4) |Fr,g(z)| ≤
(
r−g+1/4
r+1−g

)(
r−1/4
r

)(
2r+1−g

r

) (1− |z|)−
1
2
(2r+1−g).

(ii) For all complex numbers z with |1− z| ≤ 1 we have

(5) |Ar,g(z)| ≤
(

2r − g
r

)
.

(iii) For all complex numbers z 6= 0 and for h ∈ {1, 0} we have

(6) Ar,0(z)Br+h,1(z) 6= Ar+h,1(z)Br,0(z).

Proof. This lemma has been proven in [1].

3. Equivalent forms. We will call forms F1 and F2 equivalent if they
are equivalent under the SL2(Z)-action (i.e. if there exist integers b, c, d and
e such that

F1(bx+ cy, dx+ ey) = F2(x, y)

for all x and y, where be− cd = ±1). Denote by NF the number of solutions
in integers x and y of the Diophantine equation

|F (x, y)| = h.

Note that if F1 and F2 are equivalent, then NF1 = NF2 , IF1 = IF2 and
JF1 = JF2 .

Let us define, for a quartic form F , an associated quartic form, the
Hessian H, by

H(x, y) =
d2F

dx2

d2F

dy2
−
(
d2F

dxdy

)2

.

Then
H(x, y) = A0x

4 +A1x
3y +A2x

2y2 +A3xy
3 +A4y

4,

where

A0 = 3(8a0a2 − 3a2
1),

A1 = 12(6a0a3 − a1a2),
A2 = 6(3a1a3 + 24a0a4 − 2a2

2),(7)
A3 = 12(6a1a4 − a2a3),
A4 = 3(8a2a4 − 3a2

3).
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We have the following identities (see Proposition 5 of [9]):

IH = 122I2
F ,(8)

JH = 123(2I3
F − J2

F )(9)

and
DH = 126J2

FDF ,

where H is the Hessian of F , and DF , DH are the discriminants of F and H,
respectively. From the identities in (7) and using algebraic manipulation, we
have

A0A
2
3 −A4A

2
1

= 123(a0a
2
3−a4a

2
1)(2a3

2−9a1a2a3 +27a2
1a4−72a0a2a4 +27a0a

2
3)

= 123(a0a
2
3 − a4a

2
1)JF

and similarly,

A3
3 + 8A1A

2
4 − 4A2A3A4 = 123(a3

3 + 8a1a
2
4 − 4a2a3a4)JF .

When JF = 0, we obtain

(10)
A0A

2
3 = A4A

2
1,

A3
3 + 8A1A

2
4 = 4A2A3A4.

Therefore, when A3A4 6= 0,

H(x, y) = A0x
4 +A1x

3y +A2x
2y2 +A3xy

3 +A4y
4

=
1

4A2
3A4

(2A1A4x
2 +A2

3xy + 2A4A3y
2)2

=
1

4A2
3A4

W (x, y)2,

where we define the quadratic form W (x, y) = 2A1A4x
2 +A2

3xy+ 2A4A3y
2.

So we get

IH =
(
A4

3 − 16A1A
2
4A3

4A2
3A4

)2

.

From (8), we obtain

(11) |A4
3 − 16A1A

2
4A3| = |48A2

3A4IF |.
In order to make good use of the above identities, we prove the following

lemma:

Lemma 3.1. Let F (x, y) be a quartic form with JF = 0. There exists a
form equivalent to F (x, y) for which A3A4 6= 0.

Proof. If A4 = 0, then by (10) we have A4 = A3 = 0, and therefore

H(x, y) = x2(A0x
2 +A1xy +A2y

2).
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Let
x = mX + lY and y = pX + qY,

where m, l, p and q are integers satisfying mq − lp = ±1. Suppose that
Φ1(X,Y ) is equivalent to F (x, y) under this substitution with Hessian

HΦ1(X,Y ) = A′0X
4 +A′1X

3Y +A′2X
2Y 2 +A′3XY

3 +A′4Y
4.

We have

A′4 = HΦ1(0, 1) = HF (l, q) = l2(A0l
2 +A1lq +A2q

2).

If HF is identically zero then by (8) and (9), we will have IF = JF =DF = 0.
But since we have assumed that F (x, y) is irreducible, HF (x, y) is not iden-
tically zero. Therefore, the integers l and q can be chosen so that

A′4 = HF (l, q) 6= 0.

Let t ∈ Z and put

M = m+ lt, P = p+ qt.

Let Φ2(X,Y ) be the equivalent form to F (x, y) under the substitution

x = MX + lY and y = PX + qY,

and HΦ2(X,Y ) = A′′0X
4 + A′′1X

3Y + A′′2X
2Y 2 + A′′3XY

3 + A′′4Y
4. Then

replacing x by MX + lY and y by PX + qY in HF (x, y), we find that A′′3,
the coefficient of the term XY 3 in HΦ2(X,Y ), is equal to

A′′3 = 4Ml3A0 + (l3P + 3Ml2q)A1 + (2l2Pq + 2Mlq2)A2

+ (q3m+ 3Pq2l)A3 + 4Pq3A4

= (m+ lt)(4l3A0 + 3l2qA1 + 2lq2A2 + q3A3)
+ (p+ qt)(l3A1 + 2l2qA2 + 3lq2A3 + 4q3A4)

= K + 4t(l4A0 + l3qA1 + l2q2A2 + lq3A3 + q4A4)
= K + 4tA′4.

Since A′4 6= 0, the integer t can be chosen so that A′′3 6= 0.

In the following, we will show that F (x, y) or one of its equivalents (under
the GL2(Z)-action) satisfies

|A4| < 4I.

From now on, we will suppose that A3A4 6= 0. Let

x = mX + lY and y = pX + qY,

where m, l, p and q are integers satisfying mq − lp = ±1. Let Φ(X,Y ) be
equivalent to F (x, y) under this substitution and

Φ(X,Y ) = a′0X
4 + a′1X

3Y + a′2X
2Y 2 + a′3XY

3 + a′4Y
4.
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We observe that
A′4 = HΦ(0, 1) = HF (l, q),

where HΦ(X,Y ) = A′0X
4 +A′1X

3Y +A′2X
2Y 2 +A′3XY

3 +A′4Y
4.

To continue, we will need the following proposition due to Hermite.

Proposition 3.2. Suppose that f11x
2 + 2f12xy+f22y

2 is a binary form
with D = f11f22 − f2

12 6= 0. Then there is an integer pair (u1, u2) 6= (0, 0)
for which

0 < |f11u
2
1 + 2f12u1u2 + f22u

2| <
√

4
3 |D|.

Proof. See [7, p. 31].

Proposition 3.2 implies that we can choose l and q such that

0 < |A′4| =
1

|4A2
3A4|

(2A1A4l
2 +A2

3lq + 2A4A3q
2)2(12)

<
1

|4A2
3A4|

∣∣1
3(A4

3 − 16A1A
2
4A3)

∣∣ = 4|I|,

where the last equality comes from (11).
We have shown that the Hessian of F satisfies

H(x, y) = A0x
4 +A1x

3y +A2x
2y2 +A3xy

3 +A4y
4

=
1

4A2
3A4

(2A1A4x
2 +A2

3xy + 2A4A3y
2)2.

We will need some results due to Cremona [9]. Since we are using different
notations in this paper, we will summarize Propositions 6 and 8 of [9] in Lem-
mas 3.3 and 3.4. In particular, we note that the quartic polynomial g4(X)
in [9] is equal to −1

3 H(x, 1) and its leading coefficient is equal to −A0/3.

Lemma 3.3. Suppose F (x, y) is a quartic form with invariants I and J
and Hessian H(x, y). Let φ be a root of X3 − 3I + J . Then

−1
9H(x, y) + 4

3φF (x, y) = m(x, y)2,

where m(x, y) is a quadratic covariant of F (x, y).

Proof. See Proposition 6(iv) of [9].

Lemma 3.4. Let F (x, y) be a quartic form with real coefficients and
leading coefficient a0. Suppose that F (x, 1) = 0 has four real roots. Order the
roots φi of X3 − 3I + J so that 4a0φ1 > 4a0φ2 > 4a0φ3. Set φ = φ2. Then
m(x, y) is a positive definite quadratic form with real coefficients, where
m(x, y) is the covariant of F (x, y) defined in Lemma 3.3.

Proof. This is Proposition 8(ii) of [9]. Note that the quantity z in that
proposition is equal to −A0 and therefore is positive in our case.
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Following Definition 4 of [9], we say that the quartic form F (x, y) =
a0x

4 + a1x
3y + a2x

2y2 + a3xy
3 + a4y

4 with positive discriminant is reduced
if the positive definite quadratic form m(x, y) is reduced. Here, we remark
that the real quadratic form f(x, y) = ax2 + bxy + cy2 is called reduced if

|b| ≤ a ≤ c.
Lemma 3.5. Let F be the quartic form in Theorem 1.2 and H be its

Hessian. If F is reduced then for integers x, y we have

|H(x, y)| ≥ 36Iy4.

Proof. Suppose that F (x, y) is reduced. Taking φ = 0 in Lemma 3.3, we
know that the algebraic covariant −1

9 H(x, y) is the square of a quadratic
form, say

−1
9 H(x, y) = m(x, y)2.

We assume that y 6= 0. Put

m(x, y) = y2m(z) = y2(Az2 +Bz + C),

where z = x/y. Note thatm(z) assumes a minimum equal to (4AC−B2)/4A
at z = −B/2A. Since

m(x, y)2 =
1

36A2
3A4

(2A1A4x
2 +A2

3xy + 2A4A3y
2)2,

by (11), we get

4AC −B2 =
16A1A3A

2
4 −A4

3

−36A2
3A4

= ±4
3I.

Recall that A0 < 0 and hence, by (10), A4 < 0. Since I > 0 and m(x, y) is
reduced, we have 4AC −B2 > 0 and

A2 ≤ AC ≤ 1
3(4AC −B2) = 4

9I.

Therefore, m(x, y) ≥ 2
√
I y2.

So we can assume that |H(x, y)| ≥ h312
√

3I when looking for pairs of
solutions (x, y) with |y| ≥ h3/4/(3I)1/8.

4. Reduction to a diagonal form. Our goal in this section will be to
reduce the problem at hand to consideration of diagonal forms over a suitable
imaginary quadratic field. The method of Thue–Siegel is particularly well
suited for application to such forms. We will show

Lemma 4.1. Let F be the binary form in Theorem 1.1. Then

F (x, y) =
1

96A2
3A4

√
−3I

(ξ(x, y)4 − η(x, y)4),

where ξ and η are complex conjugate linear forms in x and y.
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Proof. Let H(x, y) = A0x
4 + A1x

3y + A2x
2y2 + A3xy

3 + A4y
4, with

A3A4 6= 0, be the Hessian of F (x, y). We can factor 2A1A4x
2 + A2

3xy +
2A4A3y

2 over C as

(13) ξ(x, y)η(x, y) = 2A1A4x
2 +A2

3xy + 2A4A3y
2,

where ξ and η are linear forms. So we may write

x = mξ + lη, y = pξ + qη,

for some m, l, p, q ∈ C. Therefore,

F (x, y) = F (mξ + lη, pξ + qη) = a′0ξ
4 + a′1ξ

3η + a′2ξ
2η2 + a′3ξη

3 + a′4η
4

= Φ(ξ, η).

The Hessian H ′(ξ, η) of Φ(ξ, η) satisfies

H ′(ξ, η) = A′0ξ
4 +A′1ξ

3η +A′2ξ
2η2 +A′3ξη

3 +A′4η
4

= ∆2H(x, y) =
∆2

4A2
3A4

ξ2η2.

Hence,

(14) A′0 = A′1 = A′3 = A′4 = 0, A′2 = ∆2 1
4A2

3A4
.

On the other hand,

A′0 = 3(8a′0a
′
2 − 3a′21 ), A′1 = 12(6a′0a

′
3 − a′1a′2).

Using Maple, it is easy to check that for any form F (x, y),

−10a4A0 + 2a3A1 − a2A2 + a1A3 − 2a0A4 = 6J.

So, for Φ(ξ, η), we obtain

−10a′4A
′
0 + 2a′3A

′
1 − a′2A′2 + a′1A

′
3 − 2a′0A

′
4 = 6JΦ = 6∆4JF = 0,

where a′i are the coefficients of Φ and A′i are the coefficients of its Hes-
sian. Therefore, by (14), a′2 = 0, and from the expressions for A′0 and A′4
respectively that result from (7), we have a′1 = a′3 = 0, whereby

F (x, y) = Φ(ξ, η) = a′0ξ
4 + a′4η

4.

Observe that if

2A1A4x
2 +A2

3xy + 2A4A3y
2 = (αx+ βy)(γx+ δy)

then for any complex number λ, in (13) we may take ξ = λ(αx + βy) and
η = µ(γx + δy), where λµ = 1. Our goal now is to determine the values of
λ and µ = 1/λ in ξ = λ(αx + βy) and η = µ(γx + δy), so that a′4 = −a′0.
We have (

λα λβ

µγ µδ

)(
m l

p q

)
=
(

1 0
0 1

)
.
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Thus,

(15)
(
m l

p q

)
=
(
λα λβ

µγ µδ

)−1

=
1

λµ(αδ − βγ)

(
µδ −λβ
−µγ λα

)
whereby

p

q
=
−µγ
λα

and so q = −λpα
µγ

.

Since Φ(ξ, η) = a′0ξ
4 + a′4η

4, we have

a′0 = Φ(1, 0) and a′4 = Φ(0, 1).

When η= µ(γx+δy) = 0, we have m=−δp/γ, and when ξ = λ(αx+ βy) = 0,
we have l = −βq/α. So we can write

a′0 = F (m, p) = F (−δp/γ, p) =
p4

γ4
F (−δ, γ),

a′4 = F (l, q) = F (−βq/α, q) =
q4

α4
F (−β, α).

Therefore, if we choose λ and µ so that µ8 = µ4/λ4 = F (−β, α)/F (δ,−γ),
then −a′0 = a′4.

We have shown that F (x, y) can be written as a′0(ξ(x, y)4 − η(x, y)4),
where

(16) ξ = λ(αx+ βy), η = µ(γx+ δy)

and λµ = 1. It remains to calculate the value of a′0. Using (14) and (7), we
get

A′2 = ∆2 1
4A2

3A4
= 6(3a′1a

′
3 + 24a′0a

′
4 − 2a′2) = 144a′0a

′
4.

Replacing a′4 by −a′0, we obtain

a′20 = − ∆2

242A2
3A4

,

where ∆ = mq− lp is the determinant of the matrix
(
m l
p q

)
. Therefore, from

(15) and the fact that λµ = 1,

a′20 = − 1
(αδ − βγ)2242A2

3A4
.

To calculate (αδ − βγ)2, we recall that

2A1A4x
2 +A2

3xy + 2A3A4y
2 = (αx+ βy)(γx+ δy);

consequently, computing the discriminant of the above quadratic form and
by (11),

(17) |αδ − βγ|2 = |A4
3 − 16A1A

2
4A3| = |48A2

3A4I|,
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and therefore
a′0 = ± 1

96A2
3A4

√
−3I

,

where I = IF .
We will assume, without loss of generality, that

(18) a′0 =
1

96A2
3A4

√
−3I

.

5. Resolvent forms. Suppose that ξ and η are linear forms in Lem-
ma 4.1. Let us define

ξ′ =
ξ

(12A2
3)1/4|A4|1/8

, η′ =
η

(12A2
3)1/4|A4|1/8

,

so that
F (x, y) =

1
8
√

3IA4
(ξ′(x, y)4 − η′(x, y)4).

Lemma 4.1 can be restated as follows:

Lemma 5.1. Let F be the binary form in Theorem 1.1. Then

(19) F (x, y) =
1

8
√

3IA4
(ξ(x, y)4 − η(x, y)4),

where ξ and η are complex conjugate linear forms in x and y, with

ξ4, η4 ∈ Q(
√
A0I/3).

Proof. For the binary form F (x, y) with Hessian H(x, y), the sextic co-
variant Q(x, y) is defined by

Q(x, y) =
δF

δx
.
δH

δy
− δF

δy
.
δH

δx
.

Since we have taken H(x, y) = 1
4A2

3A4
(2A1A4x

2 +A2
3xy+2A4A3y

2)2, we may
write

Q(x, y) =
1

2A2
3A4

W (x, y)ψ(x, y),

where
W (x, y) = 2A1A4x

2 +A2
3xy + 2A4A3y

2,

ψ(x, y) = (A2
3x+ 4A3A4y)

δF

δx
− (4A1A4x+A2

3y)
δF

δy
.

We have (see equation (25) of [9])

16H3 + 9Q2 = 44 · 33IHF 2.

We remark that in [9], g4 = −1
3 H, g6 = −1

36Q and the invariants I and J are
the negatives of our I and J , respectively. Since H(x, y) = 1

4A2
3A4

W (x, y)2
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is not identically zero, we can divide both sides of the above identity by
H(x, y) to get

(20) W (x, y)4 + 9A2
3A4ψ(x, y)2 = 44 · 33IA4

3A
2
4F (x, y)2.

Since W (x, y) = ξη and F (x, y) = ξ4−η4

96A2
3A4
√
−3I

, (20) implies that

ξ4η4 + 9A2
3A4ψ(x, y)2 = 1

4(−ξ8 − η8 + 2ξ4η4)

and we obtain

(21) (ξ4 + η4)2 = −36A2
3A4ψ(x, y)2.

Therefore, by (10),

ξ4 + η4 = ±6A2
3

A1

√
−A0 ψ(x, y).

Note that if all roots of F (x, 1) are real then I > 0 and A0 < 0 (see
[9, Proposition 7]). So we may write

ξ4 + η4 = b
√
−A0,

with b ∈ Q. We have also seen that

ξ4 − η4 = ia
√

3I

for some even integer a. Therefore, for integers x, y, the quantities ξ(x, y)4

and η(x, y)4 are complex conjugates and belong to Q(
√
−A0,

√
−3I). More-

over,
√
−A0 ξ(x, y)4 and

√
−A0 η(x, y)4 are algebraic integers in Q(

√
A0I/3).

This is because √
−A0 (ξ4 + η4) = ±−6A0A

2
3

A1
ψ(x, y),

and by (10), A1 |A0A
2
3. We will work in the number field Q(

√
A0I/3). We

also have
ξ4

η4
=
b
√
−A0 + ia

√
3I

b
√
−A0 − ia

√
3I

=
−A0b

2 − 3a2I + i6ab
√
−A0I/3

−A0b2 + 3a2I
.

Therefore,
ξ4/η4 ∈ Q(

√
A0I/3).

Note that, in (16), we started with two linear forms and continued with their
fourth powers. Let the linear form ξ = ξ(x, y) be a fourth root of ξ(x, y)4

and define
η(x, y) = ξ̄(x, y).

Indeed, η(x, y) is a fourth root of η4. Hence, when F (x, 1) splits in R, we
can define the complex conjugate linear forms ξ(x, y) and η(x, y) so that

ξ4 − η4 = 96A2
3A4

√
−3I F (x, y)
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and
|ξη| = |2A1A4x

2 +A2
3xy + 2A4A3y

2|.

Now let us define

ξ′ =
ξ

(12A2
3)1/4|A4|1/8

, η′ =
η

(12A2
3)1/4|A4|1/8

,

so that

F (x, y) =
1

8
√

3IA4
(ξ′(x, y)4 − η′(x, y)4).

From (7), for every pair of integers (x, y), we have

3
∣∣ 1

4A2
3A4

W (x, y)2 = H(x, y).

This gives
12A2

3A4 |W (x, y)2.

By (20), for every pair (x, y) of integers, we have

16A2
3A4 |ψ(x, y)2.

Using (21), we conclude that the real part of ξ4 has the factor 12A2
3A4. Since

ξ4−η4 = a′0F , by (18), the imaginary part of ξ4 also has the factor 12A2
3A4.

So
ξ4

|12A2
3A4|

,
η4

|12A2
3A4|

∈ Q(
√
−A0,

√
−3I).

By (10), √
−A4 ξ

4

|12A2
3A4|

,

√
−A4 η

4

|12A2
3A4|

∈ Q(
√
A0I/3).

We call a pair of complex conjugates ξ and η satisfying the identities in
Lemma 5.1 a pair of resolvent forms, and note that if (ξ, η) is one pair, there
are precisely three others, given by (iξ,−iη) , (−ξ,−η) and (−iξ, iη), where
i =
√
−1. We will, however, work with (ξ, η), a fixed pair of resolvent forms.

For this pair, we have

(22) |ξη| =
∣∣∣∣2A1A4x

2 +A2
3xy + 2A4A3y

2√
12A2

3

√
|A4|

∣∣∣∣ =
(H(x, y)2|A4|)1/4√

3
.

Remark. The fact that for integers x and y, ξ(x, y)4 and η(x, y)4 are
complex conjugates and belong to an imaginary quadratic field is crucial for
our proof. To satisfy these conditions, when JF = 0, we only need IFA0 < 0
(see the proof of Lemma 5.1). Proposition 7 of [9] guarantees this property
for quartic binary forms that split in R. So we may generalize Theorem 1.1
to all quartic binary forms with IFA0 < 0.
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6. Gap principles. Let ω be a fourth root of unity (for some j ∈
{1, 2, 3, 4}, let ω=e2jπi/4). We say that the integer pair (x, y) is related to ω if∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤3

∣∣∣∣e2kπi/4 − η(x, y)
ξ(x, y)

∣∣∣∣.
Let us define z = 1−(η(x, y)/ξ(x, y))4, where (ξ, η) is a fixed pair of resolvent
forms (in other words, η/ξ is a fourth root of 1− z). We have

|1− z| = 1, |z| < 2.

Note that |z| = 2 is impossible here, because it would mean η4 = −ξ4, so
F (x, y) = 1

4
√

3IA4
ξ4 and hence DF = 0.

Lemma 6.1. Let ω be a fourth root of unity and suppose the integral pair
(x, y) satisfies F (x, y) = 1

8
√

3IA4
(ξ(x, y)4 − η(x, y)4) = 1 and is related to ω.

If |z| ≥ 1 then

(23)
∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ ≤ π

8
|z|.

If |z| < 1 then

(24)
∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ < π

12
|z|.

Proof. Put

4θ = arg
(
η(x, y)4

ξ(x, y)4

)
.

We have √
2− 2 cos(4θ) = |z|.

Therefore, when |z| < 2 we have |θ| < π/4, and when |z| < 1 we have
|θ| < π/12. Since ∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ ≤ |θ|,
we obtain ∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ ≤ 1
4

|4θ|√
2− 2 cos(4θ)

∣∣∣∣1− η(x, y)4

ξ(x, y)4

∣∣∣∣.
By differential calculus |4θ|/

√
2− 2 cos(4θ) < π/2 whenever 0 < |θ| < π/4.

Therefore ∣∣∣∣ω − η(x, y)
ξ(x, y)

∣∣∣∣ < π

8
|z|,

and from the fact that |4θ|/
√

2− 2 cos(4θ) < π/3 whenever 0 < |θ| < π/12,
we conclude ∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ < π

12
|z|,

as desired.
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Suppose that we have distinct solutions to |F (x, y)| ≤ h indexed by i,
say (xi, yi), related to a fixed fourth root of unity ω with |ξ(xi+1, yi+1)| ≥
|ξ(xi, yi)|. Let

F (xi, yi) = hi, F (xi+1, yi+1) = hi+1.

For brevity, we will write ηi = η(xi, yi) and ξi = ξ(xi, yi). We have(
λα λβ

µγ µδ

)(
x1 x2

y1 y2

)
=
√

12A2
3

√
|A4|

(
ξ1 ξ2

η1 η2

)
(see the definition of the linear forms ξ and η in Section 5). Since (x1, y1)
and (x2, y2) are distinct coprime solutions, x1y2− x2y1 is a nonzero integer.
So by (17) and (10), we get

(25) |ξ1η2 − ξ2η1| =
|(αδ − βγ)(x1y2 − x2y1)|√

12A2
3

√
|A4|

≥ 2
√
I |A4|1/4.

On the other hand, by (23) and (24), we have

|ξiηi+1 − ξi+1ηi| = |ξi(ηi+1 − ωξi+1)− ξi+1(ηi − ωξi)|

≤
∣∣∣∣ξiξi+1

(
ηi+1

ξi+1
− ω

)∣∣∣∣+
∣∣∣∣ξiξi+1

(
ηi
ξi
− ω

)∣∣∣∣
(by the triangle inequality)

≤ π

8
(|ξiξi+1zi+1|+ |ξiξi+1zi|) (from (23))

=
π

8

(∣∣∣∣ξiξi+1
η4
i+1 − ξ4i+1

ξ4i+1

∣∣∣∣+
∣∣∣∣ξiξi+1

η4
i − ξ4i
ξ4i

∣∣∣∣)
≤ πh

√
|3IA4|

(
|ξi|
|ξ3i+1|

+
|ξi+1|
|ξ3i |

)
,

the last inequality holding from the expression for F (x, y) in Lemma 5.1 and
since |F (x, y)| < h. Since we assumed |ξi| ≤ |ξi+1|, we get

|ξiηi+1 − ξi+1ηi| ≤ 2πh
√
|3IA4|

|ξi+1|
|ξ3i |

.

Combining this with (25), we conclude

(26) |ξi+1| ≥
1

π
√

3h|A4|1/4
|ξi|3.

Let us now assume that there are four distinct solutions to |F (x, y)| ≤ h
related to a fixed choice of ω, corresponding to ξ−1, ξ0, ξ1 and ξ2, where
|ξ−1| ≤ |ξ0| ≤ |ξ1| ≤ |ξ2| and F (xi, yi) = hi. We will deduce a contradic-
tion, which shows that at most three such solutions can exist. By (26) and
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since |hi| ≤ h,

|zi+1| ≤
3π4|zi|3h2

64I
,

where zi = 1 − η4
i /ξ

4
i = 8h

√
|3IA4|/ξ4i . Since |z−1| ≤ 2, if I > 36.6h2 then

|z0|, |z1|, |z2| < 1. By (23),

|ξ−1η0 − ξ0η−1| = |ξ−1(ωη0 − ξ0)− ξ0(ωη−1 − ξ−1)|

≤ 8h
(

1 +
π

12

)√
|3IA4|

|ξ0|
|ξ3−1|

.

Combining this with (25), we conclude

|ξ0| ≥
2
√

3
5πh|A4|1/4

|ξ−1|3.

Similarly, we get

|ξ0η1 − ξ1η0| = |ξ0(ωη1 − ξ1)− ξ1(ωη0 − ξ0)|

≤ 8h
√
|3IA4|

π

12

(
|ξ0|
|ξ31 |

+
|ξ1|
|ξ30 |

)
≤ 4π

3
h
√
|3IA4|

|ξ1|
|ξ30 |

,

which leads to

(27) |ξ1| ≥
3

2πh|A4|1/4
|ξ0|3 ≥

72
√

3
2πh4(5π)3|A4|

|ξ−1|9.

Note that |8h
√
|3IA4|/ξ4−1| = |z−1| = |1− (η−1/ξ−1)4| < 2, and therefore

(28) |ξ−1|4 > 4h
√
|3IA4|.

Thus, when I > 36.6h2 we have

(29) |ξ1| > I9/8 72
√

3(4
√

3)9/4|A4|1/8

2π(5π)3h7/4
> 0.39

I9/8|A4|1/8

h7/4
.

Recall that by Lemma 3.5, we can assume that |H(x, y)| ≥ h312
√

3I
when looking for pairs of solutions (x, y) with |y| ≥ h3/4/(3I)1/8. This im-
plies

|H(x−1, y−1)| ≥ 12
h3
√

3I
|A2

3A4|
.

So by (22),
|ξ−1|4 = H

√
|A4|/3 ≥ 4h3

√
|3IA4|.

Moreover, one may assume that h > 2, for the case h = 1 has been addressed
when we have been treating the Thue equation. Under these assumptions,
we have

|z−1| =
∣∣∣∣8h
√
|3IA4|
ξ4i

∣∣∣∣ < 1
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and by (27) and Lemma 6.1,

(30) |ξ1| > (4
√

3)9/4I9/8h11/4|A4|1/8
(

3
2π

)4

> 4h11/4I9/8 |A4|1/8.

Here the point is that the inequality |y| ≥ h3/4/(3I)1/8 provides us with
a good enough lower bound (30) for the size of ξ1. Hence, to prove Theo-
rem 1.2, we do not need the assumption I > 36.6h2.

7. Some algebraic numbers. Combining the polynomials Ar,g and
Br,g in Lemma 2.1 with the resolvent forms, we will consider the complex
sequences Σr,g given by

Σr,g =
η2

ξ2
Ar,g(z1)− η1

ξ1
Br,g(z1)

where z1 = 1 − η4
1/ξ

4
1 . For any pair of integers (x, y), ξ(x, y)4 and η(x, y)4

are algebraic integers in Q(
√
A0I/3) (see Lemma 5.1). We have seen that

A0 < 0 and one can assume A3A4 6= 0 (see Lemma 3.1). Therefore from
(10), we have A1 6= 0. Define

Λr,g = (9|A4|)(1−g)/4ξ4r+1−g
1 ξ2Σr,g.

We will show that Λr,g is either an integer in Q(
√
A0I/3) or a fourth root

of such an integer. If Λr,g 6= 0, this provides a lower bound upon |Λr,g|.
Lemma 7.1. For any pair (s, t) of integers, we have

ξ(s, t)
ξ(1, 0)

,
η(s, t)
η(1, 0)

∈ Q(
√
A0I/3)[s, t].

Proof. By (10) and (17), we have

αδ − βγ =
√
A4

3 − 16A1A2
4A3 =

4A2
3

A1

√
3IA0 =

12A2
3

A1

√
IA0

3
.

Since

2A1A4x
2 +A2

3xy + 2A3A4y
2 = (αx+ βy)(γx+ δy)

=
√

12A2
3

√
|A4| ξ(x, y)η(x, y),

we conclude that αγ, βδ, αδ + βγ ∈ Z. This implies the assertion.

Lemma 7.2. If (x1, y1) and (x2, y2) are two pairs of rational integers
then √

3|A4|1/2 ξ(x1, y1)η(x2, y2),

ξ(x1, y1)3ξ(x2, y2)
and

η(x1, y1)3η(x2, y2)

are integers in Q(
√
A0I/3).
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Proof. For any pair of integers (x, y), Lemma 7.1 implies that

ξ(x, y)
ξ(1, 0)

∈ Q(
√
A0I/3).

Thus,
ξ(x1, y1)
ξ(x2, y2)

∈ Q(
√
A0I/3).

Since √
3|A4|1/2 ξ(x2, y2)η(x2, y2) =

ω(x, y)
2|A3|

∈ Q,

the algebraic integer
√

3|A4|1/2 ξ(x1, y1)η(x2, y2) belongs to Q(
√
A0I/3).

Let ξ(x, y) = ε1x+ε2y. Clearly, ε1 and ε2 are algebraic integers and so are
ε41, ε31ε2, ε21ε

2
2, ε1ε32 and ε42. Since ξ4 is an integer in Q(

√
A0I/3), we conclude

that ε41, ε31ε2, ε21ε
2
2, ε1ε32 and ε42 are all algebraic integers in Q(

√
A0I/3).

Now, ξ(x1, y1)3ξ(x2, y2) is an integer in Q(
√
A0I/3), because it can be

written as a linear combination with rational integer coefficients of ε41, ε31ε2,
ε21ε

2
2, ε1ε32 and ε42.
We can similarly show that η(x1, y1)3η(x2, y2) is also an integer in

Q(
√
A0I/3).

For every polynomial P (z) = anz
n+an−1z

n−1 + · · ·+a1z+a0, we define

P ∗(x, y) = xnP (y/x) = a0x
n + a1x

n−1y + · · ·+ an−1xy
n−1 + any

n.

Let Ar,g and Br,g be as in (2) and

Cr,g(z) = Ar,g(1− z), Dr,g(z) = Br,g(1− z).

For z 6= 0, we have Dr,0(z) = zrCr,0(z−1), hence

A∗r,0(z, z − z̄) = zrAr,0(1− z̄/z) = zrCr,0(z̄/z)(31)
= z̄rDr,0(z/z̄) = z̄rBr,0(1− z/z̄)
= B∗r,0(z̄, z̄ − z) = B̄∗r,0(z, z − z̄).

Lemma 7.3. For any pair (x, y) of integers,

A∗r,g(ξ(x, y)4, ξ(x, y)4 − η(x, y)4) and B∗r,g(ξ(x, y)4, ξ(x, y)4 − η(x, y)4)

are algebraic integers in Q(
√
A0I/3).

Proof. It is clear that the above two elements belong to Q(
√
A0I/3).

That they are algebraic integers follows immediately from Lemma 4.1 of [8]
since

ξ(x, y)4 − η(x, y)4 = 8h
√

3IA4 F (x, y).
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We now proceed to show that for any r ∈ Z, Λr,0 and Λ4
r,1 are integers

in Q(
√
A0I/3). We have

Λr,g = (9|A4|)(1−g)/4ξ4r1 ξ
1−g
1 ξ2Σr,g

= (9|A4|)(1−g)/4(ξ1−g1 η2A
∗
r,g(ξ

4
1 , ξ

4
1 − η4

1)− ξ−g1 ξ2η1B
∗
r,g(ξ

4
1 , ξ

4
1 − η4

1)).

For g = 0, we obtain

Λr,0 = (9|A4|)1/4(ξ1η2A
∗
r,0(ξ41 , ξ

4
1 − η4

1)− ξ2η1B
∗
r,0(ξ41 , ξ

4
1 − η4

1)).

By Lemma 7.2, the numbers (9|A4|)1/4(ξ1η2) and (9|A4|)1/4(ξ2η1) are inte-
gers in Q(

√
A0I/3). They are also complex conjugates. From (31), Lemma 7.3

and the characterization of algebraic integers in quadratic number fields, we
conclude that Λr,0 ∈ Z

√
A0I/3. By Lemmas 7.2 and 7.3, Λ4

r,1 is an algebraic
integer in Q(

√
A0I/3). Next we will show that Λ4

r,1 is not an integer when
Σr,1 is nonzero.

Suppose Λ4
r,1 ∈ Z. Then ρΛr,1 = Λ̄r,1 for some ρ ∈ {±1,±i}. Hence by

the definition of Λr,1 and since ξi and ηi are complex conjugates,

ρΣr,1 = ξ−4r
1 ξ−1

2 Λ̄r,1

= ξ−4r
1 ξ−1

2 η4r
1 η2

(
ξ2
η2
Ar,1

(
1− ξ41

η4
1

)
− ξ1
η1
Br,1

(
1− ξ41

η4
1

))
=
η4r
1

ξ4r1

(
Ar,1

(
1− ξ41

η4
1

)
− ξ1η2

ξ2η1
Br,1

(
1− ξ41

η4
1

))
.

This, together with Lemmas 7.2 and 7.3, implies that

(32) ρΣr,1 ∈ Q(
√
A0I/3).

We have, by definition,

Σr,g =
η2

ξ2
Ar,g(z1)− η1

ξ1
Br,g(z1) =

η

ξ

[
η2/η

ξ2/ξ
Ar,g(z1)− η1/η

ξ1/ξ
Br,g(z1)

]
,

where η = η(1, 0) and ξ = ξ(1, 0). By Lemmas 7.1 and 7.3,

η2/η

ξ2/ξ
Ar,g(z1)− η1/η

ξ1/ξ
Br,g(z1) ∈ Q(

√
A0I/3).

Hence

(33) f = Q(
√
A0I/3, ρΣr,g) = Q(

√
A0I/3, ρξ/η).

If we choose a complex number X so that ξ(X, 1) = η(X, 1) then by
Lemma 7.1, X ∈ f. We have F (X, 1) = 1

8
√

3IA4
(ξ(X, 1)4 − η(X, 1)4) = 0.

Since we have assumed that F is irreducible, X has degree 4 over Q. But
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from (32) and the definition of the number field f in (33),

X ∈ f = Q(
√
A0I/3).

This contradicts the fact that X has degree 4 over Q. We conclude that Λr,1
cannot be a rational integer.

From the well-known characterization of algebraic integers in quadratic
fields, we may therefore conclude that if Λr,g 6= 0, then for g ∈ {0, 1},

(34) |Λr,g| ≥ 2−g/4(−A0I/3)1/2−3g/8.

8. Approximating polynomials. In order to apply (25), we must
make sure that Λr,g or equivalently Σr,g does not vanish. First we will show
that for small r, Σr,0 6= 0.

Lemma 8.1. Suppose that (x, y) is a pair of solutions to F (x, y) = ±1
with I > 135 or a pair of solutions to |F (x, y)| ≤ h with |y| > h3/4/(3I)1/8.
For this pair of solutions and r ∈ {1, 2, 3, 4, 5}, we have

Σr,0 6= 0.

Proof. Let r ∈ {1, 2, 3, 4, 5}. Suppose that Σr,0 = 0. From (3), we can
find, for each r, a polynomial Fr(z) ∈ Q[z], satisfying

Ar,0(z)4 − (1− z)B4
r,0 = z2r+1Fr(z).

In fact, using Maple, we have
A1(z) = 4A1,0(z) = 8− 5z,

B1(z) = 4B1,0(z) = 8− 3z,

F1(z) = 320− 320z + 81z2,

A2(z) = 32
3

A2,0(z) = 64− 72z + 15z2,

B2(z) = 32
3

B2,0(z) = 64− 56z + 7z2,

F2(z) = 86016− 172032z + 114624z2 − 28608z3 + 2401z4,

A3(z) = 128A3,0(z) = 2560− 4160z + 1872z2 − 195z3,

B3(z) = 128B3,0(z) = 2560− 3520z + 1232z2 − 77z3,

F3(z) = 14057472000− 42172416000z + 48483635200z2 − 26679910400z3

+ 7150266240z4 − 839047040z5 + 35153041z6,

A4(z) = 2048
5

A4,0(z) = 28672− 60928z + 42432z2 − 10608z3 + 663z4,

B4(z) = 2048
5

B4,0(z)

= 28672− 53760z + 31680z2 − 6160z3 + 231z4,

F4(z) = 13989396348928− 55957585395712z + 91916125077504z2

− 79896826347520z3 + 39463764078592z4 − 11050000539648z5

+ 1648475542656z6 − 113348764800z7 + 2847396321z8,

A5(z) = 8192
21

A5,0(z)

= 98304− 258048z + 243712z2 − 99008z3 + 15912z4 − 663z5,
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B5(z) = 8192
21

B5,0(z)

= 98304− 233472z + 194560z2 − 66880z3 + 8360z4 − 209z5,

F5(z) = 121733331812352− 608666659061760z + 1301756554248192z2

− 1555026262622208z3 + 1136607561252864z4

− 523630732640256z5 + 151029162176512z6 − 26204424888320z7

+ 2515441608384z8 − 113971885760z9 + 1908029761z10.

We also define

A∗r(x, y) = xrAr(y/x) and B∗r (x, y) = xrBr(y/x).

Since Σr,0 is assumed to be zero,

η4
2

ξ42
=
η4
1(B∗r (ξ41 , ξ

4
1 − η4

1))4

ξ41(A∗r(ξ41 , ξ
4
1 − η4

1))4
.

Let Ir be the integral ideal in Q(
√
IA0/3) generated by ξ41(A∗(ξ41 , ξ

4
1−η4

1))4

and η4
1(B∗(ξ41 , ξ

4
1 − η4

1))4, and N(Ir) be the absolute norm of Ir. Since
the ideal generated by ξ41(A∗r(ξ

4
1 , ξ

4
1 − η4

1))4 − η4
1(B∗r (ξ41 , ξ

4
1 − η4

1))4 divides
(ξ42 − η4

2).Ir, we obtain

|ξ1|4(4r+1)|A4
r(z1)− (1− z1)B4

r (z1)|
= |ξ41(A∗r(ξ

4
1 , ξ

4
1 − η4

1))4 − η4
1(B∗r (ξ41 , ξ

4
1 − η4

1))4.

Since Ir is an imaginary quadratic field, by (18), we get

|ξ1|4(4r+1)|A4
r(z1)− (1− z1)B4

r (z1)| ≤ N(Ir)1/2|ξ42 − η4
2|.

By (3),
A4
r(z1)− (1− z1)B4

r (z1) = z2r+1
1 Fr(z1),

and so we conclude

|z1|2r+1|Fr(z1)| ≤ N(Ir)1/2|ξ42 − η4
2| |ξ1|−4(4r+1),

i.e.

1 ≤ N(Ir)1/2|ξ42 − η4
2| |ξ1|−4(4r+1)

|z1|2r+1|Fr(z1)|
.

Since ξ41 = (ξ41 − η4
1)(1− η4

1/ξ
4
1)−1 = (ξ41 − η4

1)z−1
1 we obtain

1 ≤ N(Ir)1/2|ξ42 − η4
2| |ξ41 − η4

1|−4r−1|z1|2r

|Fr(z1)|
.

Noting that |z1| = |ξ−4
1 | |ξ41 − η4

1| and |ξ4i − η4
i | = |8h

√
3IA4 F (x, y)|, we

obtain, for r ∈ {1, 2, 3, 4, 5},

(35) |ξ1|8r ≤
(N(Ir)1/2|ξ41 − η4

1|−4r−1)|8h
√

3IA4|2r+1

|Fr(z1)|
.

To estimate N(Ir)1/2, we choose a finite extension M of Q(
√
A0I/3)

so that the ideal generated by ξ41 and ξ41 − η4
1 in M is a principal ideal,
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with generator p, say. We denote the extension of Ir to M by I′r. Let rr
be the ideal in M generated by A∗r(u, v) and B∗r (u, v), where u = ξ41/p and
v = (ξ41 − η4

1)/p. Since A∗r(x, x− y) = B∗r (y, y − x),

p4r+1r4rB
∗
r (0, 1)4 ⊂ p4r+1r4r(u,B

∗
r (0, v)4)(u− v,B∗r (0, v)4)(36)

⊂ p4r+1r4r(u,B
∗
r (0, v)4)(u− v,A∗r(v, v)4)

⊂ p4r+1r4r(u, u− v)(u,B∗r (u, v)4)(u− v,A∗r(u, v)4)
⊂ p4r+1(uA∗(u, v)4, (u− v)B∗r (u, v)4) = I′r,

where (m1, . . . ,mn) denotes the ideal in M generated by m1, . . . ,mn.
We have

A∗1(x, y)−B∗1(x, y) = −2y.

Therefore,
2(v) ⊂ (A∗1(u, v), B∗1(u, v)) ⊂ r1,

where (v) is the ideal generated by v in M. Since B∗1(0, 1) = −3, it follows
from (36) that

1296(ξ41 − η4
1)5 ⊂ 1296p(ξ41 − η4

1)4 = p516v4B∗1(0, 1)4 ⊂ I′1.

For r = 2, we first observe that

B∗1(x, y)A∗2(x, y)−A∗1(x, y)B∗2(x, y) = −10y3

and
(−32x+ 7y)A∗2(x, y)− (−32x+ 15y)B∗2(x, y) = 80xy2.

Therefore, by (36) we have

80(v)2 ⊂ (−10v3, 80uv2) ⊂ (A∗2(u, v), B∗2(u, v)) ⊂ r2.

Since B∗2(0, 1) = 7, we have

804 · 74(ξ41 − η4
1)9 ⊂ 804 · 74p(ξ41 − η4

1)8 = 804p9v8B∗2(0, 1)4 ⊂ I′2.

When r = 3, we have

B∗2(x, y)A∗3(x, y)−A∗2(x, y)B∗3(x, y) = −210y5,

(1616x2 − 1078xy + 77y2)A∗3(x, y)− (1616x2 − 1482xy + 195y2)B∗3(x, y)
= −16800x2y3.

Substituting 77 for B∗3(0, 1), we conclude

168004 · 774(ξ41 − η4
1)13 ⊂ 168004 · 774p(ξ41 − η4

1)12

= 168004p13v12B∗3(0, 1)4 ⊂ I′3.

For r = 4, setting

G4(x, y) = 14178304x3 − 15889280x2y + 4071760xy2 − 162393y3,

H4(x, y) = 14178304x3 − 19433856x2y + 6714864xy2 − 466089y3,
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we may verify that

B∗3(x, y)A∗4(x, y)−A∗3(x, y)B∗4(x, y) = −6006y7,

G4(x, y)A∗4(x, y)−H4(x, y)B∗4(x, y) = −150678528y4x3.

These two identities imply that

1506785284 · 2314(ξ41 − η4
1)17 ⊂ 1506785284 · 2314p(ξ41 − η4

1)16.

Since this last quantity is equal to 1506785284p17v16B∗4(0, 1)4, from (36) it
follows that

1506785284 · 2314(ξ41 − η4
1)17 ⊂ I′4.

Finally, for r = 5, set

G5(x, y) = 43706368x4 − 69346048x3y + 32767856x2y2

− 4764782xy3 + 123519y4,

H5(x, y) = 43706368x4 − 80272640x3y + 46006896x2y2

− 8845746xy3 + 391833y4.

Then we have

B∗4(x, y)A∗5(x, y)−A∗4(x, y)B∗5(x, y) = − 14586y7,

G5(x, y)A∗5(x, y)−H5(x, y)B∗5(x, y) = −134424576y5x4.

These two identities imply that

1344245764 · 2094(ξ41 − η4
1)21 ⊂ 1344245764 · 2094p(ξ41 − η4

1)20.

So by (36),

1344245764 · 2094(ξ41 − η4
1)21 ⊂ 1344245764p21v20B∗5(0, 1)4 ⊂ I′5.

From the preceding arguments, we are thus able to deduce the following
series of inequalities:

N(I1)1/2|ξ41 − η4
1|−5 ≤ 1296,

N(I2)1/2|ξ41 − η4
1|−9 ≤ 5604,

N(I3)1/2|ξ41 − η4
1|−13 ≤ (77 · 16800)4,

N(I4)1/2|ξ41 − η4
1|−17 ≤ (231 · 150678528)4,

N(I5)1/2|ξ41 − η4
1|−21 ≤ (134424576 · 209)4.

Substituting any of these in (35) provides a contradiction to inequality (29)
when I > 135 and to (30) when |y| > h3/4/(3I)1/8. Note that under
both assumptions I > 135 and |y| > h3/4/(3I)1/8, the function |z| =
|ξ−4| |8h

√
3IA4 F (x, y)| is small. This makes |Fr(z)| large enough for our

contradictions.

Lemma 8.2. If r ∈ N and h ∈ {0, 1}, then at most one of {Σr,0, Σr+h,1}
can vanish.
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Proof. Let r be a positive integer and h ∈ {0, 1}. Following an argument
of Bennett [6], we define the matrix M :

M =

 Ar,0(z1) Ar+h,1(z1) η1/ξ1

Ar,0(z1) Ar+h,1(z1) η1/ξ1

Br,0(z1) Br+h,1(z1) η2/ξ2

 .

The determinant of M is zero because it has two identical rows. Expanding
along the first row, we get

0 = Ar,0(z1)Σr+h,1 −Ar+h,1(z1)Σr,0

+
η2

ξ2
(Ar,0(z1)Br+h,1(z1)−Ar+h,1(z1)Br,0(z1)).

If Σr,0 = 0 and Σr+h,1 = 0 then Ar,0(z1)Br+h,1(z1)−Ar+h,1(z1)Br,0(z1) = 0,
which contradicts Lemma 2.1(iii).

9. An auxiliary lemma. We now combine the lower bound for Λr,g ob-
tained in (34) with the upper bounds from Lemma 2.1 to prove the following
lemma.

Lemma 9.1. If Σr,g 6= 0, then

c1(r, g)|ξ1|4r+1−g|ξ2|−3 + c2(r, g)|ξ1|−4r−3(1−g)|ξ2| > 1,

where we may take

c1(1, 0) = 4πh
(

3|A4|3/2

|A0|

)1/2

,

c2(1, 0) = 27h3

(
3|A4|1/2

|A0|

)1/2

(9
√

3I|A4|)2
5

128

and for (r, g) 6= (1, 0),

c1(r, g) = 2
√
π h

(
3|A4|3/2

|A0|

)1/2( 3|A4|
|A0|3/2

)−g/4 4r√
r
,

c2(r, g) = 27h2r+1−g
(

3|A4|1/2

|A0|

)1/2( 3|A4|
|A0|3/2

)−g/4
(9
√

3I|A4|)2r−g
√

2√
rπ4r

.

Proof. By the definition of Λr,g and (3), we can write

|Λr,g| = (9|A4|)(1−g)/4|ξ1|4r+1−g|ξ2| |(η2/ξ2 − ω)Ar,g(z1) + ωz2r+1−g
1 Fr,g(z1)|.

Since |1 − z1| = 1, |z1| ≤ 1 and |zi| = 8h
√

3I/|ξ4i |, by (4), (5) and inequal-
ity (24), we have

(37) |Λr,g| ≤ (9|A4|)(1−g)/4|ξ1|4r+1−g|ξ2|L,
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where

L =
(

2r − g
r

)
2πh

√
3I|A4|

3|ξ42 |
+

(
r−g+1/4
r+1−g

)(
r−1/4
r

)(
2r+1−g

r

) (
9h
√

3I|A4|
|ξ41 |

)2r+1−g
.

Comparing this with (34), we obtain

c1(r, g)|ξ1|4r+1−g|ξ2|−3 + c2(r, g)|ξ1|−4r−3(1−g)|ξ2| > 1,

where we may take c1 and c2 so that

c1(r, g) ≥ 2πh
(

3|A4|3/2

|A0|

)1/2( 3|A4|
|A0|3/2

)−g/4(2r
r

)
and

c2(r, g)

≥ 27h2r+1−g
(

3|A4|1/2

|A0|

)1/2( 3|A4|
|A0|3/2

)−g/4
(9
√

3I|A4|)2r−g
(
r−g+1/4
r+1−g

)(
r−1/4
r

)(
2r+1−g

r

) .

Substituting r = 1 and g = 0, we get the desired values for c1(1, 0) and
c2(1, 0). Let us apply the following version of Stirling’s formula (see Theorem
(5.44) of [18]):

1
2
√
k

4k ≤
(

2k
k

)
<

1√
πk

4k

for k ∈ N. This leads to the stated choice of c1 immediately.
To evaluate c2(r, g), we first note that(

2r + 1− g
r

)
≥
(

2r
r

)
≥ 4r

2
√
r
.

Next we will show that

(38)
(
r − g + 1/4
r + 1− g

)(
r − 1/4

r

)
<

1√
2πr

for r ∈ N and g ∈ {0, 1}, whence we may conclude that(
r−g+1/4
r+1−g

)(
r−1/4
r

)(
2r+1−g

r

) <

√
2√

r π4r
.

This leads immediately to the stated choice of c2. It remains to show (38).
Let us set

Xr =
(
r − 3/4

r

)(
r − 1/4

r

)
=
yr
r
,

whereby

Xr+1 =
(
r + 1/4
r + 1

)(
r + 3/4
r + 1

)
=
(
r2 + r + 2/9

r2 + r

)
yr
r + 1

.



26 S. Akhtari

This implies

y1 = 3/16, yr =
3
16

r−1∏
k=1

k2 + k + 3/16
k2 + k

.

Since
∞∏
k=1

k2 + k + 3/16
k2 + k

=
16

3Γ (1/4)Γ (3/4)
=

16
3
√

2π
,

we obtain

Xr <
1√
2πr

.

For r ∈ N, we have (
r − 3/4

r

)
>

(
r + 1/4
r + 1

)
.

So when g ∈ {0, 1}, (
r − g + 1/4
r + 1− g

)(
r − 1/4

r

)
≤ Xr,

which completes the proof.

10. Proof of the main theorems. Let us now assume that there are
four distinct solutions (xi, yi) to reduced form

|F (x, y)| ≤ h

related to ω with |yi| > h3/4/(3I)1/8, corresponding to ξ−1, ξ0, ξ1 and ξ2,
where we have ordered these in nondecreasing modulus. We will deduce a
contradiction, implying that at most three such solutions can exist. Then
Theorem 1.2 will be proven, since there are four choices of ω.

We will show that |ξ2| is arbitrarily large in relation to |ξ1|. By (29)
and (30), we know that |ξ1| is large and hence |ξ2| is arbitrarily large, a
contradiction.

Lemma 10.1. Let F (x, y) be the quartic form. Suppose that (x1, y1) and
(x2, y2) are two pairs of solutions to |F (x, y)| ≤ h, both related to ω, a fixed
fourth root of unity. Put ξj = ξ(xj , yj). Assume further that either

(i) F (x, y) is the quartic form in Theorem 1.2 with

4|A4|1/8h11/4I9/8 < |ξ1| < |ξ2|,
or

(ii) F (x, y) is the quartic form in Theorem 1.1 with I > 135 and

(39) 0.39|A4|1/8h11/4I9/8 < |ξ1| < |ξ2|.
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Then, for each positive integer r,

|ξ2| >
4r
√
r

27
|A0|1/8

(3|A4|1/2)1/2h2r+1
(9
√

3I|A4|)−2r|ξ1|4r+3.

Proof. We will use the upper bound (30) for case (i) and the upper bound
(39) for case (ii). Note that (39) is a generalization for the upper bound (29)
obtained to treat the equation |F (x, y)| = 1. By (27),

|ξ2| ≥
3|ξ1|3

2πh|A4|1/4
.

This implies

c1(1, 0)|ξ1|5|ξ2|−3 ≤ 4h4π · 123/2(3/|A0|)1/2|A4| |ξ1|−4.

Therefore, by (30) or (39) and from the fact that |A4| < 4I, we obtain

c1(1, 0)|ξ1|5|ξ2|−3 < 0.01.

Lemma 8.1 implies that Σ1,0 6= 0. So we may apply Lemma 9.1 to get

c2(1, 0)I3|ξ1|−7|ξ2| > 0.99.

One may now conclude

|ξ2| >
0.99

c2(1, 0)
|ξ1|7 > 0.93h−3

(
3|A4|1/2

|A0|

)−1/2

(9
√

3I|A4|)−2|ξ′1|7.

This proves the lemma for r = 1. Moreover, we may conclude that

c1(2, 0)|ξ1|9|ξ2|−3 <
18h10√π · 16 · (5 · 27)3|A4|

|A0|21273
√

2
(9
√

3I|A4|)6|ξ1|−12.

Since |A4| ≤ 4I, by (30) or (39) we have

c1(2, 0)|ξ1|9|ξ2|−3 < 0.1.

Via Lemmas 9.1 and 8.1, we obtain

|ξ2| >
0.9

c2(1, 0)
|ξ1|11.

This yields the assertion of the lemma for r = 2, after substituting the value
of c2(2, 0). To complete the proof, we use induction on r. Suppose that the
assertion holds for some r ≥ 2. Then

c1(r + 1, 0)|ξ1|4r+5|ξ2|−3 <
18
√
π · 273|A4|h6r+4

|A0|7/842r−1
√
r + 1 r

√
r

(9
√

3I|A4|)6r|ξ1|−8r−4.

By (30) or (39), we have

c1(r + 1, 0)|ξ1|4r+5|ξ2|−3 < 0.1.

If Σr+1,0 6= 0, then by Lemma 9.1,

c2(r + 1, 0)|ξ1|−4(r+1)−3|ξ2| > 0.9.
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Hence,

|ξ2| >
0.9

c2(r + 1, 0)
|ξ1|4(r+1)+3

>
4r+1
√
r + 1

27h2r+3

(
|A0|

3|A4|1/2

)1/2

(9
√

3I)−2r−2|ξ1|4r+7.

If, however, Σr+1,0 = 0, then by Lemma 8.2, both Σr+1,1 and Σr+2,1 are
nonzero and by Lemma 8.1, we have r > 5. Using the induction hypothesis,
we get

c1(r + 1, 1)|ξ1|4r+4|ξ2|−3 < 0.01,

and thus by Lemma 9.1, (10) and (29), we conclude

c2(r + 1, 1)|ξ1|−4r−4|ξ2| > 0.99.

So, we obtain

|ξ2| >
4r+1
√
r + 1 |A0|1/8

27h2r+2|3A4|1/4
(9
√

3I|A4|)−2r−1|ξ1|4(r+1).

Consequently,

c1(r + 2, 1)|ξ1|4r+8|ξ2|−3

<
2
√
π · 27(3|A4|)(9

√
3I|A4|)6r+3h6r+7

42r+1(r + 1)
√

(r + 1)(r + 2)|A0|
|ξ1|−8r−4 < 0.1.

A final application of Lemma 9.1 implies

c2(r + 2, 1)|ξ1|−4r−8|ξ2| > 0.9,

or

|ξ2| >
0.9

c2(r + 2, 1)
|ξ1|4r+8.

It follows that

|ξ2| >
√
r + 2 4r+2

27
|A0|1/8

31/4h2r+4
(9
√

3I|A4|)−2r−3|ξ1|4(r+1)+4.

Since |ξ1| > 4I9/8h11/4|A4|1/8, we conclude that

|ξ2| >
4r+1
√
r + 1

27
|A0|1/8

(3|A4|1/2)1/2
(9
√

3I|A4|)−2r−2|ξ1|4r+7.

11. Forms with small discriminant. To finish the proof of Theo-
rem 1.1, we need to study the quartic forms F (x, y) = a0x

4 + a1x
3y +

a2x
2y2 + a3xy

3 + a4y
4 with 0 < IF ≤ 135 and A0 = 3(8a0a2 − 3a2

1) < 0.
We followed an algorithm of Cremona, in Section 4.6 of [9], which gives

all inequivalent integer quartics with given invariant I and J = 0. Using
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Magma, we counted the number of solutions to

|F (x, y)| = 1

for all reduced quartic forms F with IF ≤ 135 and JF = 0. Regarding (x, y)
and (−x,−y) as the same, we did not find any form F for which there are
more than four solutions to F (x, y) = ±1. Our program was not efficient in
the sense that it solves more than one equation from some equivalent classes.
While reading the earlier versions of this paper, the referee has verified these
computations in a very efficient way and kindly shared his results with the
author. The following table contains all representatives of the complete set
of binary forms F with IF ≤ 135 and JF = 0 that split in R.

F (x, y) IF

x4 − x3y − 6x2y2 + xy3 + y4 51

x4 + 2x3y − 6x2y2 − 2xy3 + y4 60

x4 − 12x2y2 + 16xy3 − 4y4 96

x4 + 8x3y + 6x2y2 − 4xy3 − 2y4 108

x4 + x3y − 15x2y2 + 18xy3 − 4y4 123

To solve the Thue equations F (x, y) = ±1 for forms F in the above table,
we may also use PARI since all of the binary forms in the table are monic.

If
F (x, y) = x4 − x3y − 6x2y2 + xy3 + y4

then IF = 51 and the solutions are

(−1, 0), (0, 1), (1, 2), (−2, 1).

Note that we can write

F (x, y) = x4 − x3y − 6x2y2 + xy3 + y4 = ξ(x, y)4 − η(x, y)4,

so that η(x, y)/ξ(x, y) = (x− iy)/(x+ iy) and we have

η(−1, 0)
ξ(−1, 0)

= 1,
η(0, 1)
ξ(0, 1)

= −1,
η(1, 2)
ξ(1, 2)

= −3 + 4i
5

,
η(−2, 1)
ξ(−2, 1)

=
3 + 4i

5
.

This means (−1, 0) is related to ω = 1, (0, 1) is related to ω = −1, (1, 2) is
related to ω = −i, and (−2, 1) is related to ω = i. Therefore, one pair of
solutions is related to each root of unity.

If
F (x, y) = x4 + 2x3y − 6x2y2 − 2xy3 + y4

then IF = 60 and the solutions are (1, 0) and (0, 1).
If

F (x, y) = x4 − 12x2y2 + 16xy3 − 4y4
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then IF = 96 and F (x, y) = 1 has four solutions (5, 2), (1, 3), (1, 1), (1, 0),
while the equation F (x, y) = −1 has no solution.

If
F (x, y) = x4 + 8x3y + 6x2y2 − 4xy3 − 2y4

then IF = 108 and the solutions are (1, 0) and (−1, 1).
If

F (x, y) = x4 + x3y − 15x2y2 + 18xy3 − 4y4

then IF = 123 and the solutions are (1, 1) and (1, 0).
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[16] —, Einige Erläuterungen zu Thues Untersuchungen über Annäherungswerte alge-
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