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1. Introduction. Let G be a finite additive abelian group of order n.
A subset A of G is said to be a zero-sum set if the sum of all its elements is
zero. Olson’s constant Ol(G) of G is defined to be the smallest integer k such
that every set of k elements of G contains a non-empty zero-sum subset.

The exact value of this constant is only known for a few cases. As far as
bounds are concerned, Szemerédi [6] proved the Erdős–Heilbronn conjecture
that Ol(G) ≤ c

√
n, c being an absolute constant. For cyclic groups, the

conjectural value of c (due to Erdős and Graham)
√

2 was recently attained
by Nguyen, Szemerédi and Vu [4]. The conjecture was verified by Gao, Ruzsa
and Thangadurai [2] for Zp ⊕ Zp for all p > 4.67 · 1034. They in fact proved
that Ol(Z2

p) = p− 1 + Ol(Zp) for such p. Our aim is to improve the bound
for p, and we prove

Theorem 1. Let p > 6000 be a prime number. Then Ol(Z2
p) = p− 1 +

Ol(Zp).
Our proof falls into two parts, the first one being combinatorial and deal-

ing with the case where the elements of A are not well-distributed over Z2
p,

the second one being analytical, using exponential sums. Unfortunately,
our bound is still too large to allow for explicit computations. Though our
method could be used to lower the bound for p further, we would not be
able to go below p < 200.

2. Proof. For a set A, we use Σ(A) for the set of all its subset sums
while Σk(A) denotes the set of all sums of those subsets of A which have k
elements. We may use the same notation for a multiset A, though even then
Σ(A) would still be a set, that is, for example, Σ({1, 1, 5}) = {0, 1, 2, 5, 6, 7}.
We will use the fact that Ol(Zp) ≥ b

√
2pc (see [3]).
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The following is due to Dias da Silva and Hamidoune [1] which for the
case k = 2 was a conjecture of Erdős–Heilbronn.

Lemma 1. Let A ⊆ Zp be a set, and k an integer in the range 1 ≤ k
≤ |A|. Then

|Σk(A)| ≥ min(p, k(|A| − k) + 1).

In particular, if |A| ≥ ` := b
√

4p− 7c+ 1, and k = b`/2c, then Σk(A) = Zp.
Lemma 2. For A,B ⊆ Zp we have |A+B| ≥ min(p, |A|+ |B| − 1).

The following result was proven by Olson [5, Theorem 2].

Lemma 3. Let A ⊆ Zp be a set with all elements distinct and |A| = s.
Suppose that for all a ∈ A, −a 6∈ A; in particular, 0 6∈ A. Then

|Σ(A)| ≥ min
(
p+ 3

2
,
s(s+ 1)

2
+ δ

)
,

where

δ =
{

1, s ≡ 0 (mod 2),
0, s ≡ 1 (mod 2).

We will prove the following, which is slightly stronger than our initial
claim.

Theorem 2. Let A ⊆ Z2
p be a zero-sum free set of size p− 2 + Ol(Zp).

Then there exists a subgroup U ∼= Zp such that |A ∩ U | = Ol(Zp) − 1, and
all other elements of A are contained in one coset of U .

Theorem 2 implies Theorem 1, since if A ⊆ Z2
p were a zero-sum free set

with |A| = p − 1 + Ol(Zp), then deleting one point we would obtain a set
as described in Theorem 2. Hence, for each x ∈ A we see that A \ {x} is
contained in one subgroup and one coset of this subgroup, both of which
may depend on x. In particular, for Ol(Zp) > 2, that is, p ≥ 5, there is a
unique subgroup containing more than two elements, and there is a unique
coset of this subgroup containing more than one element, hence the choice
of the subgroup and the coset does not depend on x, that is, A itself is
contained within one subgroup and a coset of this subgroup. But then A
obviously has a zero-sum.

For the rest of the article we fix a set A of size p− 2 + Ol(Zp), for which
no subgroup U as in the above theorem exists.

Our aim now is to show that A contains a zero-sum.
For an affine subspace x + U and a set B we define N(x, U,B) = |B ∩

(x + U)| and set M = M(A) = maxx,U N(x, U,A). For a subgroup U < Z2
p

with |U | = p, we denote by πU : Z2
p → Zp a surjection with kernel U . Note

that this map is not unique but any such choice serves our purpose.
Similar to Gao, Ruzsa and Thangadurai we begin by reducing the size

ofM . On the one hand, the result below is slightly better than [2, Lemma 3.4]
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and [2, Lemma 3.5], since here the set A under consideration is smaller in
cardinality by 1; on the other hand, our bound on p is worse, for the sake
of considerable simplification of the proof.

Lemma 4. Suppose that M ≥ 2p/5 and p > 100. Then A contains a
zero-sum.

Proof. Let U be a subgroup for which the maximum of N(x, U,A) is
attained and set B = A ∩ (x + U) and ` = |A ∩ U |. Let V be a subgroup
with 〈U, V 〉 = Z2

p. We have M − 3 > p/3 for all p > 45. Thus Lemma 1
shows that for 3 ≤ k ≤ M − 3, we have Σk(πV (B)) = Zp, hence if we can
represent 0 as a subset sum of πU (A) using between 3 and M − 3 elements
from B, then we can choose the elements in B in such a way that we obtain
a zero-sum in Z2

p. In particular, if we can choose six points {x1, . . . , x6}
from B such that Σ(πU (A \ {x1, . . . , x6})) = Zp, we can construct a zero-
sum in πU (A) which contains x1, x2, x3 but not x4, x5, x6. Then by suitably
replacing certain points chosen in B we obtain a zero-sum in A using between
3 and M − 3 elements in B. Set A′ = A \ (U ∪ {x1, . . . , x6}). Then |A′| =
p+Ol(Zp)−2−(`+6). If ` ≥ Ol(Zp), we already obtain a zero-sum in A∩U ,
while for ` ≤ Ol(Zp)− 7, we find |A′| ≥ p− 1, and we have Σ(πU (A′)) = Zp.
Hence, we only have to consider the case Ol(Zp)− 6 ≤ ` ≤ Ol(Zp) − 1 and
p− 7 ≤ |A′| ≤ p− 2.

Suppose that in πU (A′) we can find six pairs (xi, yi) such that xi 6= ±yi.
Then from Lemma 2 we obtain

|Σ(πU (A′))|

≥ min
(
p, |Σ(πU (A′) \ {x1, y1, . . . , x6, y6})|+

6∑
i=1

(|Σ({xi, yi})| − 1)
)

≥ min(p, p− 18 + 6 · 3) = p,

and our claim follows in this case. If there are six elements in A′ which are
neither in x+ U nor in −x+ U , we can find such pairs by taking one such
element and one element in B. If there are three elements in −x + U , we
take three elements in −x+ U ∩A and three in x+ U ∩A, that is, we find
a zero-sum in πU (A) using three elements in B. Hence, it only remains to
consider the case that there are at most two elements in A∩(−x+U), and at
most five elements a ∈ A with πU (a) 6∈ {±x, 0}, in particular, M ≥ p− 8. If
πU (A) contains a zero-sum which uses some, but not all, elements of πU (B),
we can obtain p− 8 different elements in U as subset sums of A \ U . Since
|A ∩ U | ≥ Ol(Zp) − 6 > 8 for p > 100, one of these sums can be combined
with some element in A ∩ U to form a zero-sum. Since |A \ U | ≥ p − 1 the
only possibility to avoid this situation is when all elements of A \ U are in
one coset of U , but this situation was excluded from the outset. Hence, our
claim follows in any case.
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Hence, to prove Theorem 2 it suffices to show that for p ≥ 6000 any set
A with |A| = p− 2 + Ol(Zp) and M < 2p/5 contains a zero-sum.

The following is the main technical result of the combinatorial part.

Lemma 5. Let U be a non-trivial subgroup, and B ⊆ A a set. Let
x1, . . . , xp be representatives of Z2

p/U . Suppose that the multi-set πU (B)
represents each element of Zp as a (possibly empty) subset sum, and that∑

i

bN(xi, U,A \B)/2cdN(xi, U,A \B)/2e ≥ p− 1.

Then A contains a zero-sum.

Proof. In each set (A \ B) ∩ (xi + U) we choose all subsets of size
bN(xi, U,A \ B)/2c and add them up. By Lemma 1 we obtain at least
bN(xi, U,A \B)/2cdN(xi, U,A \B)/2e+ 1 elements in Z2

p in this way, each
of which has the same image under πU . By Lemma 2 and the assumption
we find that there exists some x such that every element of x+U is a subset
sum of A \B. On the other hand, there is a subset of B with sum contained
in (−x) +U , hence we can combine a subset sum of B with a subset sum of
A \B to obtain a zero-sum.

Now we shall repeatedly apply this lemma to reduce the size of the
numbers N(x, U,A).

Lemma 6. Suppose that p > 120 and 2p/5 ≥M ≥ b
√

4p− 7c+ 1. Then
A contains a zero-sum.

Proof. Let U be a subgroup such that there exists some x withN(x, U,A)
= M . We choose a set C of size b

√
4p− 7c + 1 elements in one coset, and

set B = A \ (C ∪π−1(0)). Since U contains at most Ol(Zp)− 1 elements, we
have |B| ≥ p− 2

√
p− 1. Consider the multi-set B = πU (B). By assumption,

B contains no element with multiplicity ≥ 2p/5, hence in B we can find a
system of p/5−2

√
p−1 disjoint subsets containing three different elements,

that is, we find p/5 − 2
√
p − 1 subsets containing two different elements

which are not inverse to each other. We apply Lemma 3 to these pairs and
obtain

p ≥ |Σ(B)| ≥ min(p, 3(p/5− 2
√
p− 1) + p− 2(p/5− 2

√
p− 1))

= min(p, (6/5)p− 2
√
p− 1) = p,

where we used p > 120. Hence, we can apply Lemma 5 to obtain our claim.

We now combine Lemma 5 with an estimate for exponential sums to
obtain a criterion for our theorem to hold which is numerically applicable.

Lemma 7. Let p > 800 be a prime number. Let A ⊆ Z2
p be a subset with

|A| = p−2+Ol(Zp). For a subgroup U ∼= Zp fix a complement V , and define
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λUj = N(j, U,A), where j is viewed as an element of V via the isomorphism
Zp ∼= V . Suppose that one of the following two conditions holds true.

(1) There exists a subgroup U such that the following holds true. Denote
by J the set of indices j such that λj is odd. Suppose there exists a
set of integers I ⊆ Zp, disjoint from J , such that λi ≥ 1 for all i ∈ I,
Σ(I ∪ J) = Zp, and

∑
ibλ∗i /2cdλ∗i /2e ≥ p− 1, where

λ∗i =
{
λi − 1, i ∈ I,
λi, otherwise.

(2) For all subgroups U and all isomorphisms Zp ∼= V we have the bound
p−1∏
j=0

∣∣∣∣cos
jπ

p

∣∣∣∣λj

≤ 1
p2
.

Then A contains a zero-sum.

Proof. We begin by proving that the first assumption is sufficient. The
idea of the proof is to partition A into two subsets A1, A2 such that Σ(A1)
contains a coset of U , while πU (Σ(A2)) = Zp. To achieve the first goal we
consider not all subset sums of A1, but only those which contain precisely
bλ∗i /2c or bλ∗i /2c+ 1 summands in π−1

U (U).
More precisely, we set x =

∑
ibλ∗i /2c. Since Σ(I) +Σ(J) = Zp, we can

choose a subset of I∪J adding up to −x; let I ′, J ′ be the intersection of this
set with I and J , respectively. Set Ck = π−1

U (k) ∩ A and, for every i ∈ I ′,
choose an element xi ∈ Ci. If we choose subsets Ak ⊆ Ck with |Ak| = bλ∗k/2c
for k 6∈ J ′, and |Ak| = bλ∗k/2c+ 1 for k ∈ J ′, and xk 6∈ Ak for k ∈ I ′, then

s =
∑
i∈I′

xi +
p−1∑
k=0

∑
a∈Ak

a

is an element in U . To prove that A contains a zero-sum, it suffices to show
that by choosing the sets Ak in all possible ways, all elements in U can be
obtained. The number of subset sums obtained by varying Ak depends on
the index k as follows: For k ∈ J ′ this quantity is

|Σbλ∗k/2c+1(Ck)| = |Σdλ∗k/2e(Ck)| = |Σbλ∗k/2c(Ck)|,

since for k ∈ J ′ we know that λ∗k is odd. By Lemma 1 this quantity is
bounded below by bλ∗k/2cdλ∗k/2e+ 1. If k ∈ I ′, the number of possible sums
is now |Σbλ∗k/2c(Ck \{xk})|, which by the definition of λ∗i has the same lower
bound. If k is neither in I ′ nor in J ′, we also obtain the same lower bound.

Applying the Cauchy–Davenport inequality we see that we obtain a zero-
sum provided that

∑
kbλ∗k/2cdλ∗k/2e ≥ p − 1. Thus, the first condition is

sufficient.
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Hence, we may assume that for each subgroup U the partition N(i, U,A)
satisfies the second condition. Write e(x) = e2πix/p; we view this as a func-
tion e : Zp → C. Then using orthogonality we see that the number of subsets
of A adding up to 0 equals

1
p2

∑
α∈Z2

p

∏
a∈A

1 + e(〈a, α〉).

Clearly, the summand α = 0 contributes 2|A|/p2. We have∏
a∈A
|1 + e(〈a, (0, 1)〉)| =

∏
j∈Zp

|1 + e(j)|N(j,〈(0,1)〉,A)

= 2|A|
∏
j∈Zp

|cos(πj/p)|N(j,〈(0,1)〉,A) ≤ 2|A|

p2
,

where in the last step we used the second condition. Hence, the number of
zero-sums is bounded from below by

2|A|

p2
− p2 − 1

p2

2|A|

p2
=

2|A|

p4
≥ 2

provided that p ≥ 13, that is, there exists a non-empty subset with sum 0.

Note that the two conditions in the lemma work in different directions:
While the first condition says that most of the λj are small, the second
condition says that most of the weight of the partition lies on indices i
which are close to 0 or to p. From this difference we shall obtain our result.

Lemma 8. Suppose that p > 1024 and that there exists a subgroup U
such that the image πU (A) of the projection has fewer than p/5 elements.
Then A contains a zero-sum.

Proof. We distinguish two cases, depending on the size of πU (A). As-
sume first that |πU (A)| ≥

√
4p− 7. Then we take for B an arbitrary set of

size b
√

4p− 7c such that no two elements of B map to the same element
under πU . Then |A\B| ≥ p−√p. Set f(`) = b`/2cd`/2e. Using the convexity
of the function f it can be established that

∑
x f(N(x, U,A \ B)) ≥ p and

we can apply Lemma 5. In fact, we have∑
x

f(N(x, U,A \B)) ≥ f(5)
5
|A \B| = 6

5
|A \B|,

and we consider the minimum of
∑k

i=1 f(ni), where the ni are natural num-
bers. We can assume that

∑
ni = p−b√pc and k = bp/5c. Suppose there is

some j with nj ≤ ni − 2. Then if we increase nj by 1, and decrease ni by 1,
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the sum changes by

f(nj + 1)− f(nj)− f(ni) + f(ni − 1) =
⌊
nj + 1

2

⌋
−
⌊
ni
2

⌋
≤ 0.

Thus, for the tuple realizing the minimum we may assume |ni − nj | ≤ 1 for
all i, j. Note that for p > 25 there is some i with ni ≥ 5, and therefore we
have ni ≥ 4 for all i. If ni ≥ 5 for all i we would have p − b√pc ≤ 5 · p/5,
which is absurd, and we conclude that ni ∈ {4, 5} for all i, and that there
are d√pe sets of size 4, and bp/5c − d√pe sets of size 5. Hence the sum is
bounded below by

d√pef(4) + (bp/5c − d√pe)f(5) ≥ 4
√
p+

6p
5
− 6
√
p− 16 ≥ p

provided that p > 1000.
In the second case there are p/2 elements in A contained in pre-images of

πU of single points, which contain
√
p/4 elements. Let B be the complement

of this set. Again from convexity we see that
∑

x f(N(x, U,A \ B)) ≥ p
provided that

√
p/4 ≥ 8, which is the case for p > 1024. On the other hand,

the remaining points may be partitioned into sets containing p/2 elements
altogether, and no 2

√
p have the same image under πU , hence we see that

Σ(πU (B)) = Zp as well.

Lemma 9. Suppose that p > 6000. Then A contains a zero-sum.

Proof. By the previous lemma we can select dp/5e elements with different
values under πU . It suffices to show that the second condition of Lemma 7
is satisfied for each set consisting of dp/5e different elements. Of course, the
product over dp/5e different factors of the form |cos(jπ/p)| becomes smallest
if the relevant values of j form an interval around 0, which is as symmetric
as possible, that is, of the form [−x, y] with |x − y| ≤ 1. In this case there
are at least p/10 − 1 positive and at least that many negative values of j,
hence, the product in question is at most

dp/10e−1∏
−dp/10e+1

cos(jπ/p).

To facilitate the computations, we take logarithms and replace the occurring
sum by an integral. For n > 0 we have

n�

n−1

log cos(tπ/p) dt > log cos(nπ/p),

while for n < 0 we have
n+1�

n

log cos(tπ/p) dt > log cos(nπ/p),
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hence we obtain

log
dp/10e−1∏

j=−dp/10e+1

cos(jπ/p) <
p/10−1�

−p/10+1

log cos(tπ/p) dt

< p

1/10�

−1/10

log cos(tπ) dt− 2 log cos
π

10

< −0.00332296p+ 0.1004.

Hence, our claim follows provided that 1.1057p2 < 1.003328p, which is the
case for p > 6000.

There are several obvious ways to improve the argument. First, p/5 in
Lemma 8 can be improved though not beyond p/4. Then, 1/p2 in the second
condition of Lemma 7 can be improved since the exponential sum will have
a smaller value most of the time. However, it will be difficult to ensure that
for some subgroup there will be no large term, that is, we do not expect
to obtain anything better than 1/p. Finally, one could consider the set of
all partitions explicitly in the second part of Lemma 7; the improvement
here would certainly be smaller than the bound obtained by taking p/4 ele-
ments four times each. However, none of these improvements are completely
straightforward, and even if we suppose that the technical difficulties could
be overcome, our method cannot reach p < 200 and 200 is already way be-
yond our current computational means. Moreover, the technicalities would
certainly require very long arguments and this is particularly true for the
enumeration of all partitions of p. Therefore we did not attempt to push our
method to its limits. We did, however, formulate Lemma 7 in a way more
general than we actually needed, to help possible improvements.

Acknowledgments. We are grateful for the very detailed and helpful
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[4] H. H. Nguyen, E. Szemerédi and V. H. Vu, Subset sums modulo a prime, ibid. 131
(2008), 303–316.

[5] J. E. Olson, An addition theorem modulo p, J. Combin. Theory 5 (1968), 45–52.

http://dx.doi.org/10.1112/blms/26.2.140
http://dx.doi.org/10.1016/j.jcta.2004.03.007
http://dx.doi.org/10.4064/aa131-4-1
http://dx.doi.org/10.1016/S0021-9800(68)80027-4


Improvement on Olson’s constant 319
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Université de Lille 1
59655 Villeneuve d’Ascq Cedex, France
E-mail: bhowmik@math.univ-lille1.fr

Jan-Christoph Schlage-Puchta
Mathematisches Institut

Albert-Ludwigs-Universität
Eckerstr. 1

79104 Freiburg, Germany
E-mail: jcp@math.uni-freiburg.de

Received on 14.5.2008
and in revised form on 12.10.2009 (5706)


	Introduction
	Proof

