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In axiomatizing their study of Frobenius distributions [5], Lang and Trot-
ter introduce the notion of an adelic Galois representation of elliptic type,
and they ask in passing whether every such representation arises from an
elliptic curve (see pp. 5 and 19 of [5]). Formulated in the language of `-adic
representations [7], their question is as follows. Put G = Gal(Q/Q), let p
denote a prime, and write σp for any Frobenius element at a prime ideal
of Q over p. Let {ρ`} be a two-dimensional strictly compatible family of
integral `-adic representations of G with exceptional set S, and for p /∈ S
put a(p) = tr ρ`(σp) with any ` 6= p. Also, let ω` : G→ Z×` denote the `-adic
cyclotomic character. Although ρ` is a priori a map into GL(2,Q`), after a
conjugation in GL(2,Q`) we may regard it as a map G→ GL(2,Z`).

Question of Lang and Trotter. Suppose that {ρ`} satisfies three
conditions:

LT1. For p /∈ S ∪ {`}, det ρ`(σp) = p. In other words, det ρ` = ω`.
LT2. For p /∈ S, |a(p)| < 2

√
p.

LT3. The image of ρ` is an open subgroup of GL(2,Z`) for every ` and
is equal to GL(2,Z`) for all but finitely many `.

Does it follow that {ρ`} is isomorphic to the strictly compatible family {ρE,`}
afforded by the `-adic Tate modules T`(E) of some elliptic curve E over Q?

Here two strictly compatible families {ρ`} and {ρ′`} are understood to be
isomorphic if for each ` the representations ρ` and ρ′` are isomorphic over Q`.

If we further stipulate that E should not have complex multiplication
then the question is simply whether certain necessary conditions for {ρ`} ∼=
{ρE,`} are also sufficient. Indeed, LT1 and LT2 hold for any elliptic curve
over Q, the former being a consequence of the Galois-equivariance of the
Weil pairing and the latter an instance of Hasse’s Riemann hypothesis for
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elliptic function fields (a strict inequality here because
√
p /∈ Q). As for LT3,

if E does not have complex multiplication then the fact that ρE,` is open
for all ` and surjective for all but finitely many ` is Serre’s theorem [8].

Elliptic curves with complex multiplication do not fall within the purview
of the Lang–Trotter question, but we can include them simply by omitting
LT3. The question is then whether families of the form {ρE,`} are character-
ized by LT1 and LT2 alone. We shall see that an affirmative answer follows
from the Fontaine–Mazur conjecture [1] combined with a “catalyst.”

The version of the Fontaine–Mazur conjecture that is relevant here is
the two-dimensional case stated on pp. 190–191 of [1]. As usual, we call
a two-dimensional representation ρ of G even or odd according as det ρ is
trivial or nontrivial on the conjugacy class of complex conjugation. And we
shall refer to ρ as an Artin representation if it factors through Gal(K/Q)
for some finite Galois extension K of Q, even if the field of scalars of ρ is
not necessarily C.

FM. Fix a prime p and suppose that ρ : G→ GL(2,Qp) is an irreducible
representation which is potentially semistable at p and unramified
at all but finitely many primes of Q. Assume also that ρ does not
have the form ρ ∼= λ⊗ωnp , where n ∈ Z and λ is an even Artin rep-
resentation of G. Then there exists a primitive cusp form f such
that the associated semisimple representation ρf,p is isomorphic
to ρ.

Here “cusp form” means “cusp form of type (N, k, χ) for some positive
integers N and k and Dirichlet character χ modulo N .” Furthermore, if we
write the Fourier expansion of f as f(z) =

∑
n≥1 a(n)e2πinz then we have

implicitly fixed an embedding into Qp of the number field generated by the
coefficients a(n) and the values of χ. It is then meaningful to specify that for
primes q - Np we have tr ρf,p(σq) = a(q) and det ρf,p(σq) = χ(q)qk−1. Since
ρf,p is semisimple it is determined up to isomorphism by these properties.

The catalyst that we need does not appear to have been enunciated
in the literature, but it is implicit in the dual use of the word ordinary in
contemporary arithmetic geometry. For the sake of clarity, let us call a prime
p /∈ S classically ordinary (relative to {ρ`}) if p - a(p), and ordinary (again,
relative to {ρ`}) if p satisfies the definition on pp. 97–98 of Greenberg [2].
These notions are complementary in the sense that the former is a condition
on ρ` for ` 6= p and the latter a condition on ρp. Nonetheless, we consider
the following hypothesis:

ORD. Classically ordinary primes are ordinary.

While ORD lacks the legitimacy conferred by an eponym, it seems indis-
pensable in the following application of FM:
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Theorem 1. Assume FM and ORD. If {ρ`} satisfies LT1 and LT2
then there is an elliptic curve E over Q such that {ρ`} ∼= {ρE,`}.

The proof of Theorem 1 quickly reduces to an elementary remark. Let
Λ be the set of primes ` such that ρ` is absolutely irreducible, and let Λsurj

be the subset of Λ consisting of those ` for which ρ`(G) = GL(2,Z`).
Theorem 2. Suppose that {ρ`} satisfies LT1 and LT2. Then Λ has den-

sity 1, and if there exists a prime `0 such that ρ`0(G) is open in GL(2,Z`0)
then Λsurj has density 1.

Only the density of Λ is needed in the proof of Theorem 1, but the
contingent density of Λsurj can be viewed as a weak form of LT3, which
in this weak form is therefore a consequence of LT1 and LT2. Thus even
without assuming FM or ORD there is reason to pose the Lang–Trotter
question with LT3 omitted.

The reader may wonder why no use is made in this note of the extraor-
dinary recent work of Kisin [3] establishing FM under certain hypotheses.
The answer is that two of the hypotheses in [3] do not mesh well with the
problem at hand. Indeed, one of these hypotheses—the potential semista-
bility of ρ—is intrinsic to FM itself, and our appeal to ORD is merely a
cheap way of evading the difficulty. The second problematic hypothesis is
condition (4) of Kisin’s main theorem ([3, p. 642]), which is a purely techni-
cal assumption and may well be eliminated in the not-too-distant future but
which for the moment makes it difficult to apply [3] in any context where a
Galois representation is expected to arise from an elliptic curve.

The preceding paragraph stems from a request for clarification by the
referee, who also hinted that an explicit reminder regarding Greenberg’s
definition might be more helpful to the reader than a mere reference to [2].
So fix a prime ideal of Q over p and let Gp ⊂ G be the corresponding
decomposition group, which we identify with Gal(Qp/Qp). Also write Vp for
the space of ρp and view ρp as a representation of Gal(Qp/Qp) via restriction
to Gp. We say that p is ordinary if there is a descending filtration of Vp by
Gp-stable Qp-subspaces F iVp (i ∈ Z) such that F iVp = {0} for i sufficiently
large, F iVp = Vp for i sufficiently small, and the restriction of ρp to the
inertia subgroup of Gp acts on F iVp/F

i+1Vp by the character ωip. Here ωip
is viewed as a character of the inertia subgroup by restriction.

1. Proof of Theorem 1 (granting Theorem 2). Given a prime `, let
ρ` denote the representation G → GL(2,F`) obtained from ρ` by reduction
modulo `. We begin the proof of Theorem 1 by fixing an odd prime `0 and
identifying ρ`0(G) with the Galois group over Q of the fixed field of the
kernel of ρ`0 . Applying the Chebotarev density theorem to the one-element
conjugacy class consisting of the identity 1 ∈ ρ`0(G), we find that the set of
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primes p /∈ S ∪ {`0} such that ρ`0(σp) = 1 has positive density. Since we are
granting that Λ has density 1, it follows that there is a prime p /∈ S∪{2, 3, `0}
such that ρp is absolutely irreducible and ρ`0(σp) = 1. The latter condition
implies that a(p) ≡ 2 mod `0, and as `0 is odd we deduce that a(p) 6= 0.
Since p ≥ 5 it follows from LT2 and the nonvanishing of a(p) that p - a(p). In
other words, p is classically ordinary, hence ordinary by ORD, and therefore
a theorem of Fontaine and Perrin-Riou [6] assures us that ρp is semistable
at p. Furthermore, ρp is not the twist of an even Artin representation by
some power of ωp, for then det ρp would be even, contrary to LT1. Thus
FM is in force, and we can write ρp ∼= ρf,p for some primitive cusp form f .
In fact, from LT1 we deduce that f is of weight 2 with trivial character.
And since tr ρp(σq) = a(q) for primes q /∈ S ∪ {p}, we obtain the further
information that the Fourier coefficients of f are rational integers, whence
ρf,p ∼= ρE,p for some elliptic curve E over Q. Thus ρp ∼= ρE,p. The proof of
Theorem 1 is now completed by the following lemma.

Lemma. Let {ρ`} and {ρ′`} be two strictly compatible families of `-adic
representations of G, and suppose that ρp ∼= ρ′p for some prime p. Suppose
in addition that ρ′` is irreducible for every prime `. Then {ρ`} ∼= {ρ′`}.

Proof. The argument is standard, but we nonetheless recall it. Fix a
prime `, and let S and S′ be the exceptional sets of the two families. For
primes q /∈ S ∪ S′ ∪ {`, p} the strict compatibility of the two families gives
tr ρ`(σq) = tr ρp(σq) and tr ρ′`(σq) = tr ρ′p(σq), and since tr ρp = tr ρ′p by hy-
pothesis we deduce that tr ρ`(σq) = tr ρ′`(σq). It follows that tr ρ` = tr ρ′`. Let
ρss
` denote the semisimplification of ρ`. By assumption, ρ′` is irreducible and

a fortiori semisimple, and since a semisimple representation in characteristic
0 is determined up to isomorphism by its trace, we obtain ρss

`
∼= ρ′`. This im-

plies in particular that ρss
` is irreducible and so coincides up to isomorphism

with ρ` itself. We conclude that ρ` ∼= ρ′`.

2. Proof of Theorem 2. As before, write ρ` for the reduction of ρ`
modulo `. In the following lemma, ` denotes a fixed prime.

Lemma 1. Consider prime numbers p, p′ /∈ S, and put d = a(p)2 − 4p
and d′ = a(p′)2 − 4p′.

(a) If ` - 2pp′dd′ and (
d

`

)
= −

(
d′

`

)
then ρ` is absolutely irreducible.

(b) If in addition ` - a(p)a(p′) then the restriction of ρ` to every subgroup
of index 2 in G is also absolutely irreducible.
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Proof. (a) Put V = F2
` , so that V is the space of ρ`, and suppose on

the contrary that there exists a one-dimensional G-stable subspace W of
F`⊗F`

V . We will obtain a contradiction by proving that W is both defined
over F` (in other words, of the form F` ⊗F`

U for some subspace U of V )
and not defined over F`.

The characteristic polynomials of ρ`(σp) and ρ`(σp′) are x2 − a(p)x + p
and x2 − a(p′)x + p′, whence the eigenvalues of ρ`(σp) and ρ`(σp′) are the
images in F` of the numbers

(1) λ± =
a(p)±

√
d

2
and

(2) λ′± =
a(p′)±

√
d′

2
respectively. Applying the hypothesis to (1) and (2), we see that in one case
the two eigenvalues are distinct elements of F` while in the other case the
eigenvalues are distinct elements of F` not belonging to F`. Now the fact
that in both cases the eigenvalues are distinct implies that the correspond-
ing eigenspaces are one-dimensional, and since W is stable under G it follows
that W is an eigenspace both of ρ`(σp) and of ρ`(σp′). The rationality prop-
erties of the eigenvalues of ρ`(σp) and ρ`(σp′) now imply the contradictory
rationality properties of W mentioned above, and we conclude that ρ` is
indeed absolutely irreducible.

(b) Suppose on the contrary that there is a subgroup H of index 2 in G
and a one-dimensional subspace W of F` ⊗F`

V which is stable under H.
Then ρ`(g)2(W ) = W for every g ∈ G. This holds in particular for g = σp
and g = σp′ , and for these two choices of g the eigenvalues of ρ`(g)2 can be
read from (1) and (2): they are the images in F` of the numbers

(λ±)2 =
(a(p)2 − 2p)± a(p)

√
d

2
and

(λ′±)2 =
(a(p′)2 − 2p′)± a(p′)

√
d′

2
respectively. Since a(p) and a(p′) are by hypothesis nonzero modulo `, we
see once again that in both cases the two eigenvalues are distinct. Hence
the fact that the one-dimensional subspace W is stable under ρ`(σp)2 and
ρ`(σp′)2 implies that W is an eigenspace of both maps. But as before, one
set of eigenvalues belongs to F` and the other does not, so we have a con-
tradiction.

In the next lemma we view Q×/Q×2 as a vector space over F2. Given
a prime p /∈ S, we have a(p)2 − 4p < 0 by LT2 and hence in particular
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a(p)2 − 4p 6= 0, so if we set d = a(p)2 − 4p then we can consider the coset
dQ×2 in Q×/Q×2.

Lemma 2. Let P be a set of primes which contains S and has density 0.
There is a sequence {pi}∞i=1 of primes pi /∈ P such that the cosets of the
numbers di = a(pi)2 − 4pi are linearly independent in Q×/Q×2.

Proof. We shall construct the sequence {pi} inductively. To start the
induction, choose any prime p1 /∈ P. As just noted, the quantity d1 =
a(p1)2 − 4p1 is negative and hence not in Q×2. Thus the vector d1Q×2 is
nonzero.

Now suppose that for some n ≥ 1 we have chosen primes p1, . . . , pn /∈ P
such that the cosets of d1, . . . , dn in Q×/Q×2 are linearly independent. Then
the Chebotarev density theorem ensures that the set of primes p - 2d1 · · · dn
such that

(3)
(
d1

p

)
= · · · =

(
dn
p

)
= −1

has density 2−n and in particular positive density. Hence we can choose a
prime pn+1 /∈ P such that (3) holds with p = pn+1. Put dn+1 = a(pn+1)2 −
4pn+1. We must show that the vector dn+1Q×2 is not in the span of the
vectors diQ×2 (1 ≤ i ≤ n).

Suppose on the contrary that for some choice of exponents εi ∈ {0, 1}
(1 ≤ i ≤ n) and some choice of v ∈ Q× we have

(4) dn+1 = dε11 · · · d
εn
n · v2.

Then the quantity ε = ε1 + · · ·+ εn is odd, because d1, . . . , dn < 0 and also
dn+1 < 0 while v2 > 0. Thus on setting

d = dε11 · · · d
εn
n

we have (
d

pn+1

)
= (−1)ε = −1,

because by construction, (3) holds with p = pn+1. It follows that pn+1

remains prime in Q(
√
d) and hence is not a norm from Q(

√
d). This is a

contradiction, for we can rewrite (4) in the form pn+1 = (u2 − dv2)/4 with
u = a(pn+1).

Let Π be the set of primes p /∈ S such that a(p) = 0. If Π has density 0
then let L denote the set of primes ` such that ρ`|H is absolutely irreducible
for every subgroup H of index 2 in G. If the upper density of Π is strictly
positive then we define L by requiring only that ρ` itself be absolutely ir-
reducible. In both cases L ⊂ Λ, so the first assertion of Theorem 2 is a
consequence of the next lemma:

Lemma 3. L has density 1.
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Proof. We apply Lemma 2 with

P =
{
Π ∪ S if Π has density 0,
S otherwise,

obtaining sequences {pi} and {di} with pi /∈ P and di = a(pi)2 − 4pi such
that for every n ≥ 1 the Galois group of Q(

√
d1, . . . ,

√
dn) over Q is (Z/2Z)n.

Let

cn =
{

2
∏n
i=1 pidia(pi) if Π has density 0,

2
∏n
i=1 pidi otherwise.

Then cn 6= 0. We put Mn = M+
n ∪M−n , where M±n is the set of primes

` - cn such that

(5)
(
d1

`

)
= · · · =

(
dn
`

)
= ±1.

By the Chebotarev density theorem, M+
n and M−n each have density 2−n,

whence Mn has density 21−n. It follows that the complement of Mn in the
set of all primes not dividing cn has density 1 − 21−n. Denote this comple-
ment Ln. To prove the lemma it suffices to see that Ln ⊂ L, for then L has
lower density ≥ 1 − 21−n with n arbitrarily large. So suppose that ` ∈ Ln.
Then ` /∈ Mn, and consequently there are indices i and j (1 ≤ i < j ≤ n)
such that (

di
`

)
= −

(
d′j
`

)
.

Applying Lemma 1 with p = pi, p′ = pj , d = di, and d′ = d′j , we conclude
that ` ∈ L.

It remains to prove the second assertion of Theorem 2. Let L∗ ⊂ L be
the subset consisting of all ` ∈ L such that ρ`(G) either contains SL(2,F`)
or is contained in the normalizer of a Cartan subgroup of GL(2,F`).

Lemma 4. L∗ has density 1. In fact, Lr L∗ is finite.

Proof. In view of Lemma 3 it suffices to prove the second statement.
Now if ` ∈ L then ρ` is irreducible, and consequently ρ`(G) is not contained
in a Borel subgroup of GL(2,F`). If in addition ` /∈ L∗ then ρ`(G) neither
contains SL(2,F`) nor is contained in the normalizer of a Cartan subgroup
of GL(2,F`), whence the classification of subgroups of GL(2,F`) leaves only
one possibility (cf. [8, p. 280, Prop. 15 and p. 282, 2.6]): For every g ∈ G we
have

(6) P (u`(g)) ≡ 0 mod `,

where P is the polynomial P (u) = u(u− 1)(u− 2)(u− 4)(u2 − 3u+ 1) and
u`(g) = (tr ρ`(g))2/det ρ`(g). Suppose that L r L∗ is infinite, so that (6)
holds for infinitely many ` ∈ L. Then for p /∈ S and infinitely many ` 6= p
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we have
P (u`(σp)) ≡ 0 mod `.

But u`(σp) = a(p)2/p, so p6P (u`(σp)) is a rational integer, and since it
is congruent to 0 for infinitely many ` it is equal to 0. In other words,
Q(a(p)) = 0, where Q(x) = x2(x2−p)(x2−2p)(x2−4p)(x4−3px2 +p2). By
inspection, the only rational root of Q(x) = 0 is x = 0, so a(p) = 0 for all
p /∈ S. As we saw already in the proof of Theorem 1, this is impossible. (If
we fix an odd prime `0, then by the Chebotarev density theorem there are
infinitely many p /∈ S ∪ {`0} such that ρ`0(σp) = 1, and for such p we have
a(p) ≡ 2 mod `0.) We conclude that Lr L∗ is finite.

Lemma 5. Let ` be a prime ≥ 5. If ρ`(G) contains SL(2,F`) then ρ`(G)
= GL(2,Z`).

Proof. If ` ≥ 5 and X is a closed subgroup of GL(2,Z`) such that the
reduction of X modulo ` contains SL(2,F`) then X contains SL(2,Z`) ([7,
p. IV-23, Lemma 3], or see [4, p. 229]). In the case X = ρ`(G) our assumption
LT1 then gives ρ`(G) = GL(2,Z`).

The proof of Theorem 2 is completed by the next lemma.

Lemma 6. The following are equivalent:

(i) Λsurj has density 1.
(ii) There exists a prime `0 such that ρ`0(G) is open in GL(2,Z`0).
(iii) Π has density 0.

Proof. That (i) implies (ii) is trivial, and that (ii) implies (iii) follows
from the Chebotarev density theorem (cf. [9, p. 150, Theorem 10], which
is much stronger than what is needed here). Now suppose that Π has den-
sity 0. In view of Lemma 4 it will suffice to see that L∗ ⊂ Λsurj. In fact, by
Lemma 5 we need only show that if ` ∈ L∗ then ρ`(G) is not contained in
the normalizer of a Cartan subgroup C of GL(2,F`). If on the contrary such
a containment does hold, then ρ−1

` (C) is a subgroup H of index 2 in G such
that ρ`(H) is abelian. It follows in particular that ρ`|H is not absolutely
irreducible. This contradicts the definition of L in the case where Π has
density 0.
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and Glenn Stevens, whose knowledgeable comments were collectively a much
better talk than the one that was delivered. Further orientation was provided
by Matt Emerton, Ralph Greenberg, and Kiran Kedlaya, whom it is also
a pleasure to thank. Finally, I owe Robert Pollack a separate and special



Compatible families of elliptic type 9

expression of gratitude for pointing out a serious error—pertaining precisely
to condition (4) in [3]—in an earlier version of this note.

References

[1] J.-M. Fontaine and B. Mazur, Geometric Galois representations, in: Elliptic Curves,
Modular Forms, & Fermat’s Last Theorem, J. Coates and S.-T. Yau (eds.), Int. Press,
Cambridge, MA, 1997, 190–227.

[2] R. Greenberg, Iwasawa theory for p-adic representations, in: Algebraic Number
Theory—in honor of K. Iwasawa, Adv. Stud. Pure Math. 17, Academic Press, 1989,
97–137.

[3] M. Kisin, The Fontaine–Mazur conjecture for GL2, J. Amer. Math. Soc. 22 (2009),
641–690.

[4] S. Lang, Elliptic Functions, Grad. Texts in Math. 112, Springer, 1987.
[5] S. Lang and H. Trotter, Frobenius Distributions in GL2-Extensions, Lecture Notes

in Math. 504, Springer, 1976.
[6] B. Perrin-Riou (with an appendix by L. Illusie), Représentations p-adiques ordinaires,

in: Périodes p-adiques, Astérisque 223 (1994), 185–220.
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