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Gauss sums for prime powers in p-adic fields
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S. GURAK (San Diego, CA)

1. Introduction. Let K be a field of degree n over @, the field of
rational p-adic numbers, say with residue degree f and ramification index e.
Let T denote the maximal unramified subfield of K. The trace and norm
maps for K/Q, will be denoted Tr = Tr K/, and N = N q,, respectively.
Let O = Ok and Or denote the rings of integers of K and T, and fix a
uniformizant I to generate the prime ideal P of O. It is known [1] that
11 satisfies an Eisenstein polynomial of degree e over T with II¢ = pu for
some unit v of K (when K/Q, is tamely ramified, II may be chosen so that
u € Or [1, pp. 68-69]). The differential exponent d of K/Q, is the largest
non-negative integer r such that Tr P~ is contained in Z,, the ring of p-adic
integers. The ideal P is known as the different of K/Q, and it is also the
relative different of K/T. It is known that d > e — 1 with d = e — 1 if and
only if K/Q, is tamely ramified; otherwise K/Q, is wildly ramified and p|e.
Furthermore, for any integer r,

(1) Tt P’ =p"Z, and Trgr P"=p" Or,

where ' = [(r + d)/e]. (Here [z] denotes the largest integer < x.)
Next consider any subextension k/Q, of K/Q, with prime ideal p and
group of units Uy. Let

v v, U ={ueUi|u=1 (modp)} (i>0)

denote the usual filtration of U,. When k = Q,, I simply write UIEZ) for U&

Now fix ¢ = p", a power of a prime p, and let x be a numerical character
defined modulo ¢ of conductor f(x) = p°. Any such character xy modulo ¢
extends to Z, in the natural way; namely, x(u) = x(a) where @ denotes
the residue class of u modulo ¢, and similarly for the root of unity ¢ =
exp(2mit/q). In addition, for v in Q,, say uniquely expressed as v = u/p' for
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u € Zy and integer t > 0, let (¢ denote the p”**-root of unity exp(2mia/p™*)
where @ is the residue class of v modulo p"**. Then (¢} P = Cq-

For a positive integer v > re — d satisfying
(2) N c U,
one may form the Gauss sum
(3) Gr(x)= D, x(N(a)¢r

ag(0/P)*

Condition (2) ensures that Gp~(x) is well-defined.

The sum G p+(x) lies in the cyclotomic field Q((y(,—1)). For any integer
v with ged(v,q(p — 1)) = 1, if 0, denotes the automorphism induced by
mapping (y(,—1) to ¢ (l;/(pq)’ then one easily finds
(4) Gpr(X") = X" (V)ou(Gpr(X))-

The above relation allows one to evaluate the Gauss sums (3) for prim-
itive characters in terms of the Gauss sums of a normalized generator x of
the group of numerical characters defined modulo ¢ = p” when p is odd with
r > 1. Such a character x is normalized if

x(1+p°) = Cp_sl for r = 2s even,
5 1
(5) X<1 +p° + (2?—;>st> :Cp_sil for r = 2s+ 1 odd.
A similar situation holds when p = 2. In this case, a character x is normalized
if

1 +25) =Gt ifr=2s5>2,
(6) Y(1+25 422 =¢t ifr=25+1,5>2,
25+
x(5) =-1 if r = 3.

In the classical case K = Q,, Mauclaire [I3, [I4] showed that for any
normalized character x modulo ¢ and v > r > 1,

G (X) = p72¢,CE,

where
0 if r > 2 is even,
1—p if > 3 and p is odd,
" 1 if r>5and p =2,

—x(—=1) ifr=3andp=2.
My main goal here is to obtain an analog of Mauclaire’s result in the general
setting. Indeed, I will show that Gp~(x) has the general form

(7) Gpa(x) = pl 0Dy
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for v > re —d > 1, except for a few exceptional small values r. Here k can
be explicitly determined and is such that G'p+(x) is seen to lie in Q((y(p—1))-
Alternatively G'p~(x) may be expressed in terms of classical quadratic Gauss
sums.

In addition, for any numerical character n modulo g one may form the
Kloosterman sum

8)  Kmd)= Y W@t (d e (2/q2)).

ae(0/P)*

One finds the customary relationship
(9) K(n,d) = Z X(d)Gq(x)Gpr (xn),

the sum taken over all numerical characters modulo ¢g. Here G4(x) is just
the ordinary Gauss sum for x over Z/qZ. In the classical case K = Q,,
Salie [16] explicitly determined the Kloosterman sums K (1,d) and K(¢,d),
where ¢ is the quadratic character modulo ¢, for ¢ = p” with p odd and
r > 1. I note that the form (7) for Gp~(x) above is particularly convenient
to allow one to explicitly compute the Kloosterman sums K(n,d) when
r > 1 for characters n of order dividing p — 1. This evaluation appears in
[9] and is similar to the author’s previous determination of the values of
multi-dimensional Kloosterman sums [§].

Lastly, I should note that Ron Evans [7] recently obtained a result of
the form (7) for totally and tamely ramified global extensions where K is an
algebraic extension of QQ, the rational field. The methods employed here may
be extended to evaluate Gauss sums defined over residue rings of algebraic
integers in a general setting. This determination will appear elsewhere.

The paper is organized as follows. This introductory section fixes nota-
tion and states the overall goals of the paper. In Section 2, I give criteria
to determine the least v for which condition (2) holds (chiefly, Lemma 1)
and then discuss the Davenport—Hasse Theorem for Gauss sums over finite
fields and its consequences for the Weil L-functions attached to families of
such Gauss sums. In Section 3, I first mention a useful divisibility result
concerning traces of certain powers of the uniformizant, before giving some
elementary results about the Gauss sums G p~(x). I conclude with a discus-
sion of the situation when ¢ = p is odd, and show that for this case the
evaluation of G p~(x) is reduced to that of a classical Gauss sum modulo p.
In Sections 4 and 5 the main results of the paper are proved (chiefly, Theo-
rems 1 and 2). Section 4 treats the case of p odd, while Section 5 does so for
p = 2. Both sections make tedious technical computations, with Section 5
requiring some elementary results about certain 2-adic exponential sums in
unramified extensions of Q5. In the last section, I describe the L-functions
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associated to certain families of the Gauss sums (3), and give their evaluation
using the main results of Sections 4 and 5.

2. Preliminaries. In this section, I first give criteria to determine when
condition (2) holds, then conclude with the statement of the Davenport—
Hasse Theorem for Gauss sums over finite fields.

Finding the least positive integer v for which (2) holds is intimately
connected to the higher ramification properties of K/Q,. When K/Q, is
a normal extension this can be best answered in terms of Herbrand’s o
function, or more precisely its inverse 1 [2, Chap. 11]. Here I take a more
basic approach using the p-adic logarithm function to determine such a -,
which holds generally for any finite extension K/Q,.

To proceed, I note that for an odd prime p, the p-adic logarithm and
exponential functions given by

(10) 1Og(1 +pu) _ i(_l)j-i—l(pé%)j and Pt — i (p;')j
= =0

are analytic on Z, and satisfy the identity elos(4pu) — 1 4 py for u € L.
Fix a primitive root g for ¢ and let R be the p-adic unit R = (1/p) log g?~*.

One defines the exponential function
(11) 2 =gt =Bt (1 e7,)

which maps Z, isomorphically onto Uél). With respect to the filtration of

the principal units, the image z(p”‘lzp) is Up) for any positive integer .
The inverse map for (11) is
(12) t=(Rp) Mogz (z€Up).

For p = 2, the 2-adic logarithm and exponential functions given by

(13) log(1 + 4u) = i(—l)j_lw and ' = i M
=1 J =0 7

are analytic on Zs and satisfy the identity e°8(1+4%) = 1 4 4u. Let R be the
2-adic unit R = ilog 5. The exponential function

(14) 2z =5 =Mt (t € Zy)

maps Zs isomorphically onto U2(2) and has inverse t = (4R)™!logz. With

respect to the filtration of Us, the image 2(2771Zs) equals U2(7+1) for any

positive integer . Both the logarithmic and exponential functions have nat-
ural extensions to any algebraic extension of Q.
Now, for any « € O set

(15) f(x) =Nz —a)=2"+az" ' 4+ +a,,
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a monic polynomial in Z,[X] of degree n, say with zeros oy = o, g, ...,
including multiplicities, lying in @Q,, a fixed algebraic closure of @, and with
splitting field M C Q,. The coefficients of f (z) can be expressed in terms
of the symmetric power sums S; = > | & (j > 0) by Newton’s identities
(16) a,-:—%(Si+a15i_1+---+ai_181) (1 SZSH),
S, +a1S;i_1+ -+ apSi_, =0 fori>n.

The following lemma specifies conditions when N(1 + ) =1 (mod p*)
for o € P.

LEMMA 1. If a € P then the series S = S1 — %Sz + %53 — .-+ converges
to log N(1+ «) in Q, with
Nl+a)=1—-ai+ay—---+ (—1)"ap.

In addition, for any positive integer A (with A > 1 when p = 2),
S =0 (mod p*) if and only if N(1+a)=1 (mod pt).

Proof. First observe that ord, S, /v — oo as v — oo for a € P so the
series S7 — %Sz + %5’3 — -+ converges in Q,. To determine its sum S, let B be
the prime ideal of M. The «; (1 <i < n) are all conjugates of one another,
so lie in B since o € P. Thus N(1+ a) = 1 (mod p), and consequently
log N(1 + «) =0 (mod p). Moreover,

logl+a;)=a; —a?/2+a3/3—--- (1<i<n),
where log also denotes the extension of the logarithmic function to M/Q),.
Then log N(1 4+ o) = 37 log(1 4+ ;) = S; — 582 + 253 — -+ from the
usual properties of the logarithmic function. That N(14+«a) =1—aj +ag —
-+ (—1)"a, follows immediately from (15). The second statement readily

follows from the isomorphisms given in (11) and (14) when S = 0 (mod p)
(or S =0 (mod 4) if p = 2).

To determine when condition (2) holds one has

LEMMA 2. Let v be the smallest positive integer for which NUI({) - U(b)
where b > 1 (b > 2 when p = 2). Then NUI(Q_I) U(b 2 if v > 1. If
be —d>1+¢/(p—1) then v = be —d.

Proof. If v > 1 then NU,, (=1 Z U from the choice of ~. NOW

DU ~ O)P ~ 7/pL+- - -+L/pZ (f copies). Thus NUY ™ /NUY
a non-trivial subgroup of Upl)/Ulgb) of exponent p. But U 1)/U,gb ~ 7 /p*~ 1Z

SO NUI(g_l)/NU(V) o~ U,gb_l)/UZgb) is of order p. Hence NU[(g b= U,Sb Y. To
prove the second statement I first observe that S = log N (1+«) is congruent
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to S; modulo p’ in Lemma 1 for o € P**~9~! when be —d > 1+¢/(p — 1).
Indeed, for v > 1,
be—d—1> _° > eord, v
p—1 v—1
implies v(be—d—1) > be —d—1+eord, v or v(be —d—1)+d > be+eord, v.
Thus (1/v)S, = 0 (mod p°) for v > 1, and hence S = S; (mod p°) for
a € P41 In view of Lemma 1 and (1) it follows that NUI(?e_d_l) Z U,S”)

but NU[(?efd) C Ulgb) so v = be —d. The proof of the lemma is now complete.

I remark that when K /Q,, is a normal extension, the least positive integer
v for which (2) holds can be found from the relations between norms of
unit groups and the 1 function mentioned earlier (chiefly Theorem 9 in [2]
p. 129]). Indeed, 7 is seen to equal ¥(b— 1) +1 = be — d as soon as b exceeds
the length of the chain of higher ramification groups. The details are left to
the reader.

To conclude this section, I mention the Davenport—-Hasse Theorem for
Gauss sums in this setting for unramified extensions, together with its con-
sequences for the Weil L-functions attached to families of such Gauss sums
[4, 5, [18]. Let T, denote the unramified extension of T of degree m and set
K,, = KT,,, Oy, = Ok,, and Py, = PO,,. Here I take y =1 and ¢ = p in
(3) with K =T and assume x is non-trivial to obtain the Gauss sum

(17) Gr) = >, x(Na)g*
ae(0/P)*

for the finite field O/P with p/ elements. For any m > 1 one similarly
obtains

Tr e
(18) Gp,(x) = Z X(Nk,,./0,%)Cp fom/
a€(Om/Pm)*

the corresponding Gauss sums (3) for the finite field O,,/P,,. The Daven-
port-Hasse Theorem [3] expresses Gp,, (x) in terms of Gp(x), namely

(19) Gp,(x) = (-1)""'Gp(x)™

The L-function associated to such sums is

(20) Lix.t) =exp( Y G, C0t" fm).

m>1

By the series expansion —In(1 —z) = > -, 2" /m, the Davenport-Hasse
relation (19) readily yields the explicit classical evaluation

(21) L(x,t) =1+ Gp(x)t,

in terms of the Gauss sum Gp(x).
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3. Some elementary results about Gpy(x). In this section, I give
some elementary results concerning the Gauss sums (3) and then conclude
with a discussion of the evaluation of G p~(x) when r = 1. Before starting,
I mention the following two useful results which will be needed in the sub-
sequent sections. The first concerns traces of powers of the uniformizant I7;
the second evaluates sums of the form /P (qﬂ T for any o € P,

LEMMA 3. For anyt >0, Trg/r I1*=4=1 £ 0 (mod p'O7).

Proof. From the definition of the inverse different [I, p. 86] of K /T,

Pil={reK| Trg/ryx € Op for all y € O}.
Now suppose to the contrary that Trp 7 I1**=4=1 = 0 (mod p'Or). Then
for any y € O, say y = o + 2111 + - - - + 21 [1¢" with z; € O,
TrK/T yﬂtefdfl =1 TrK/T Htefdfl_i_. . '+xe—1 TI"K/T H(t+1)e*d72 c ptOT,
which would imply that p~tI7*¢=9-1 = ! [T-%1 € P=% a contradiction.

The second result concerns the sums > /P qur o for any o € P74,

PROPOSITION 1. For any o € P~ with positive integer v > re — d —
ordp

Traxr __ pf’y ifa € PTeid;
> =

2€0) P 0 otherwise.

Proof. First note that the condition v > re — d — ordp a guarantees
that the sum is well-defined for any choice of o in P~%. Now the mapping
w: O/PY" — Z/qZ given by w(x) = Traz (mod ¢) is an additive group
homomorphism with image Imw = ¢Z if and only if ordpa > re — d. If

Imw # gZ then
Tr
> G =lkere] s Y (=0,
€0/ PY yElmw
where ker w denotes the kernel of w. The statement of the proposition now

follows.

The next results concern the Gauss sums Gp~(x) given in (3). Setting
v = max(e/(p — 1), re — d), one first finds the following reduction formula:

PROPOSITION 2. For any v > 70, Gp(x) = p/ 077G pro ().

Proof. Write each « € (O/P?)* uniquely as a = (1 + [17°6) for § €
(O/P7)* and § €O/ P77, First observe that NUI(Q’O) - UIY) from Lemma 1,
since for a € P we have S =log N(1+ «) =0 (mod ¢). Indeed, for v > 1,

v—1 re—d e
0,

Yo + —ord, v
v v v v

v

Y0
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since 79 > re —d and v > e/(p—1) > (eord,v)/(v —1). So vyo +d >
re 4+ eord, v, and consequently (1/v)S, =0 (mod ¢). Hence S = 0 (mod ¢q)
as asserted. Thus, one has Nao = NG - N(1 + II"°§) = NG (mod ¢) and
Tra =Tr 3 (mod q), so

Gr(x)= > x(Na)f™
acO/PY

= ) Yo XV =p 0G0 (x).
50/ P71=70 BE(O/P0)*

When x is imprimitive one finds that G p~(x) vanishes much as in the
classical case K = Q.

PROPOSITION 3. If re —d > 1+ e/(p—1) with x imprimitive, then
Gpr(x) =0 fory = 0.

Proof. By Proposition 2 one may assume 7 = 79 = re — d. Each a €
(O/P)* may be uniquely expressed as o = B(1 + II"*~%715) for 3 €
(O/Pr*=4=1* and § € O/P. But NUI((Te_d_l) - UIE’"‘” from Lemma 2
so N(1 + I1m*=%71§) = 1 (mod p"~'). Now Na = N3 (mod p"~') and
X(Na) = x(INB) since x is imprimitive. Hence

re—d—1
Gro(x)= >, x(NB > ¢ =0

Be(O/pre=d=1)= 5€0/P
by Proposition 1 as BIT"¢~%1 £ 0 (mod IT7~9).
More generally, one finds

PROPOSITION 4. Ifre —d > 1+4¢/(p— 1) with x of conductor p°, then
for v =,
0 if NUTe=4=D ¢ )
Gl =40 N S el
pfO=(re=d)/2)  piperwise.
Proof. One may assume v = 9 = re — d again by Proposition 2. If
N Uf(ge*dfl) - U;,gb) then the argument in the proof of Proposition 3 shows
that Gpv(x) = 0. Thus it suffices to consider the cases NUI(;e_d_l) Z Ung),
so necessarily x is primitive and NUI(ge_d_l) = U,S“‘l) as U,S’”‘”/U,Y) is

cyclic of prime order. Now consider

Grr()P = > x(Ne)i™ . x(Np)g; ™

ae(0/Pr)* BE(O/PY)*

DI LD DR

A€(O/PY)* Be(O/P7)*
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which by Proposition 1 equals

Z x(NA)( Z C;Frﬁ(k—l)_ Z C(’]Trﬁ(A—l)>
AE(O/PY)* Be0/PY pepP/PY
=pl7 —p/O-1) Z X(NA).
xeuQ oy

But NUY Y /NUD =D /Ul so 3 sepr-1pe X(VA) = 0, and thus
|G p+(x)|? = p/7. The proof of the proposition is now complete.

I remark that the condition re —d > 1+ ¢/(p — 1) cannot generally be
relaxed in the last two propositions, as shown by the example below.

ExaMPLE 1. Consider K = Q3(3'/3) with IT = 3!/3 where e =3, f =1
and d = 5. Any element a of O has the form o = zg+x1 T +x2I1? for x; € Zs
with Na = x% + 337:1)’ +9x§ —9z0x129 and Tra = 3xy. Forr =2, re—d =1
but e/(p —1) = 1.5 so 79 = 2. One may choose {£1,+1 + I1,+1 — I} to
represent (O/P?)*, so

Tr(—1 Tr(141T Tr(—1+11
Gp2() = XM +x(=1)6" Y+ x(@)6™ T 4 x (26
Tr(1-1T Tr(—1—1T
+x(=2)6" T 4 x (g
for any numerical character y modulo 9. For the quadratic character y
modulo 9, one finds G p2(x) = 3iv/3; whereas G p2(x) = 0 for any primitive
character xy modulo 9.

To conclude this section I mention a consequence of the Davenport—Hasse
relation (19) that reduces the evaluation of the Gauss sums (3) when ¢ = p
is odd to that of a classical Gauss sum Gp(x) = >, (z/pz)- X()¢y for any
character x defined modulo p. Specifically, one finds

PROPOSITION 5. For any character x defined modulo p of order o(x)
and v > 0, the Gauss sum

> x(Na)gre

ae(0/P7)*
—pfO=b if o(x)|e but pte,
_ )/ —p07Y if po(x) | e,
0 if o(x) te but ple,

(—1) 1 07V (e)Gp(x) if o(x) te and pte.
Proof. First write each a € (O/P)* uniquely as a = 7 for § € (O/P)*
~ (Or/pOr)* and 7 € U [((1 ) JU (7), where we may take the representatives for
(O/P)* from (Or/pOr)*. Then
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Y x(Ne)gr = > x(NB) ) x(Nm)FT

a€(0] P BE(Or /pOT)* reudP juy

or

(22) S X (Npyg, ) Y. G
Be(Or/pOr)* reu P Uy

since Tr UI(<1) C U,gl) from (1). When ple, K/Q, is wildly ramified with
Tr O C pZ, so (22) becomes

pfO=1) Y X(Npyg,B) = {pﬁ —pf07D i o(x) [e,
. : 0 if o(x) 1 e,
BE(Or /pOr)

since Np/q, : (Or/pOr)* — (Zp/pZy)* ~ (Z/pZ)* is onto with kernel of
size (p/ —1)/(p—1). When p{e, K/Q, is tamely ramified with
v Br _ eTr Jé]
Z ];F B :pf(v I)Cp T/Qp
reu) /Uy

since Tr 7 = Tr B (mod p) for 7 € Uf((l) from (1). Thus (22) becomes

_ e eTrp pﬁ
PO N (N, B

Be(Or/pOr)*
—1)ce e Tr B
=p/ 0% e) Y X*(Nrg, B
Be(Or/pOT)*
= — (=17 I (e)Gp(x)
in view of (19). Since Gp(x¢) = —1 when o(x) | e, this last expression has

the value as stated in the proposition for the cases with p 1 e. This concludes
the proof of the proposition.

4. The case of p odd. My primary goal here is to show that Gp~(x)
has the form (7) when p is odd. I assume ¢ = p" is odd for r = 2s or
2s + 1, and with s > d/e so that 79 = re —d > es’, where s’ = sor s+ 1
according as r is even or odd. Writing each aw € O/P7 for v > 7y uniquely
as o = z(1 +wp®) for z € O/P% and w € O/P7~¢ one finds for any
numerical character y modulo ¢ normalized as in (5) that

Gr(x)= ) > x(V2)X(N (L4 wp™))¢r=tet Tree
2€0/ Pes’ weO/Pr—es’

_ Z x(N2) [’Il‘rz . Z C]’)I;rw(z—l)

2€0/ pes’ weO/Pr—es’
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since Y(N(1 4 wp®)) = (p_ST””_ As ZweO/PV*ESI ;;rw(z_l) = pl0=e) or 0

according as z = 1 (mod P*~%) or not from Proposition 1, the above ex-
pression becomes

(23) Gpr(x) =p'07) > X(N(2))¢)"*.
2=1 (mod Pes—d)in O/ Pes’

To proceed further, it will be necessary to evaluate x(N(z)) in the ex-
pression above. To this end, set § = 2d/e or 2d/e + 1 according as p > 3 or
p=3.

LEMMA 4. For s > d/e and a € P =%, if &' > § then

—Si+is
XIN(L+a)) = ¢ 2

for any numerical character x modulo q normalized as in (5).
Proof. T assert that the condition s’ > ¢ ensures (1/v)S, = 0 (mod q)

for v > 2, so that S = logN(1 + ) = S; — 35 (mod ¢) in Lemma 1.

g4l
Consequently, x(N(1+a)) = ¢, S1+35,

the assertion one requires that

v(se—d)+d>re+eord,v forv>2,

from the normalization (5). To verify

or equivalently that
v—1d ordpyv v-1

(24) s> (s —s) forv>2.

v—2e v—2 v-—2
For the above inequality to hold it suffices to have
v—1d ordyv

(25) s >

fi 2.
v—2e v—2 ory >

For unramified extensions d = 0 so (25) trivially holds for any s’ > 0. Now
assume that K/Q, is ramified. Then (v — 1)/(v — 2) takes on its maximum
value 2 when v = 3; whereas (ord, v)/(v — 2) has maximum 1/(p — 2) when
v = p. Thus for p > 3, 2d/e exceeds the right-hand side of the inequality
(25). For p = 3, the quantity 2d/e 4+ 1 is an upper bound for the right-hand
side of (25). This concludes the proof of the lemma.

I now require that s’ > § in addition to s > d/e in evaluating (23), and
deal with the cases of r even and odd separately.

Case of r even. 1 consider the case of r = 2s even first. In view of the
lemma above, the expression (23) for Gp~(x) becomes
— 1Ty o2
Gpr(x) =p/07¢ N~ @,
aepesfd/Pes
upon writing each z = 1 (mod P**~%) as 1 + « for a € P®~%. To evaluate
the sum above, one has
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PROPOSITION 6. For r = 2s with s > d/e and s > 0,
1y o2
>, G
aepes—d/Pes
pfd/? if d even,

N, Tr Hefdfl
(—1)f1€§1_p)f< 2t K;T u)>pfd/2 if d odd.

(Here (5) denotes the usual Legendre symbol.)

Proof. First write a = p*II~3 for 8 € O/P? and note that as a runs
through the representatives of P¢~¢/P¢ 3 runs through those of O/P?.
Thus

1Tr o2 2 Tr (I179B)2
(26) ot Y gt
aEPes—d/ pes Be0/pd
Writing 8 = IIY3' + b uniquely for 3 € O/P% and b € O/P" for any
d/2 < v < d, one obtains

4Ty ([1746)2 4Ty (I1—9p)2 v—2dy 31
ZC‘;( ):ZC;()ZgTrH b3

BeO/Pd beO/Pv B'e0/pd—v
_ 4 Ty (I1—%b)>?

D D

bepd—v/pv

since

Z qTr ITv-2dp3! {pf(d‘”) if b e pi-v,
] —

ﬁ’EO/Pd_“ 0 otherwise.

Choosing v = d/2 when d is even in this last expression yields the value
pf/2 for (26) as stated in the proposition. Choosing v = (d 4+ 1)/2 when d
is odd yields the value

- 47y (H*db)Q
pf(d 1)/2 Z 2
beP(d—1)/2/p(d+1)/2
=p/=v2 N Cp% Trr/qp Trre/r 1747 up?
BEO/P

for (26) instead, where each b € P(4=1)/2/p(d+1)/2 hag been uniquely written
as b= ITW"D/2y3 for f € O /P to obtain the last equality. The representa-
tives for O/P can be taken to lie in Op/pOrp, so in view of the fact that

A€ (Or/pOr)* if and only if  Npg A € (Zy/pZy)*2,
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the sum

Z Cp% TrT/Qp TrK/T He_d_luﬂg

Beo/ P
B Z <NT/QP5> CTrT/Qp BTre)p o9 /2
= —— |Gp
seOr/por © P
[ Npyg, (Trgyp 167971 /2) N1/0,B\ Trr/q, 8
= ; > — )%

Be€Or /pOT

is an ordinary quadratic Gauss sum over the finite field of pf elements. It
equals

e—d—1
(_1)f—1c(1—p)f <NT/@p (TrK/TH u>)pf/2
8
p
from (19), using the fact that

p—1
Z (J}) C;: — i(p—1)2/4\/]3 and i(p_1)2/4 (;) _ C81*p‘

r=1 p

Case of r odd. 1 now evaluate (23) for r = 2s + 1. Writing each z =

1 (mod P*~4) in (O/P')* uniquely as z = z(1 + p°a) for = € (O/P)*
and a € O/pO, one finds from (23) that
(27)  Gpi() =p'0) >, X(Na)G " S(),

z=1 (mod Pes—4)in O/ Pes
where

Sy = 3 x(N(1+pra)chr.
a€0/pO

From Lemma 1 and the binomial theorem, N (1 + p®a) is congruent to

1 +1
14+ p°Tra+ §p25((Tra)2 —Tra?) = <1 +p° + p72 p?

modulo g. It follows from the normalization (5) that

r(az—a+p°a?
(28) Sy=Y ¢/,

a€0/pO

) Tr(a—p®a?/2)

To evaluate S(z) above, I consider the case of K/Q, tamely ramified
first. Then d = e — 1 and one may assume I1¢ = pu for some unit « in Or.
In addition, any conjugate of IT has the form (,(2u)'/¢ for some eth root
of unity (. lying in the algebraic closure @p. In particular, for any integer
i # 0 (mod €) one has Tryp 1" = 0. Writing z = 1+p*II—?3 for B € O/ PY,
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say 0 =yo+ y1dl + -+ ye—2I1*"? with y; € Op/pOr (0 < i < e — 2), the
expression (28) for S(x) becomes
Z 5 Tr(a®+2all~" (yo+yr IT+--Fye—211°7%).
a€e0/pO

Expressing each a € O/pO uniquely as zg + x1IT + -+ + x. 1 [1°71 with
x; € Op/pOr in the above sum yields

L Ty (2242a11793
(29) S(z)= S G )

20,Z1,...,Ze—1 €07 /PO
Z lTYa:O+TT(zo+:E1H+ A Te_oIT2) dﬁz Trze_ 15

Z0s-eyTe—2 Te—1
TIT/@ Te—1Trg /7 B TrT/Q Te—1Y0
3 3 D P
Since the inner sum » (¢ = e, Cp equals
p/ or 0 according as yp = 0 (mod pOr) or not, one obtains
Z 7Tr$0+Tr(xo+a:1H+ A Te_oll¢™ 2)]7 dﬂ
or
?
Z0;--yLe—2
Z C Tra:0+Tr(:1:0+ e _gll®— 3)]7 dﬁ Z Trze oIT— 1,5
P
X0,y Le—3 Te—2
. . Tra. . .
Now the inner sum is er_Q » ' which equals p! or 0 according as

y1 = 0 modulo pOr or not, so
Z lTrJ:O—l—Tr(xo—i- A xe_z T 3T~ ag
Z0;--Le—3

with yo = y1 = 0 (mod pO7). Continuing in this manner yields a total sum

_ Ly 2 _ Iy / ex?
pf(e 1)Z<p2 ozpf(e I)ZCPZ T/Qp %o
o o

!
o _fe€ _

from (29) with 8 = 0. Thus

f
Gpr(x) = p! OIS (1) = (—1)f ~1pfCmes=1/2)¢n <;> Rl
n (27).
It remains to evaluate S(z) when K/Q, is wildly ramified where d > e.

In this case S(z) becomes 3.0 /,0 CT:TI(I 2 equal to p/® or 0 according as
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=1 (mod P*~%) or not. Thus one obtains
Gpr(x) =p'07) Y (N1 +a))¢rtte
aepes’fd/Pes
from (27) upon writing each z = 1 (mod P*'~%) as 1+ a for o € P*'~?. In
view of Lemma 4, the above expression becomes
1Ty a2
G0 =p0" > G
OéEPeS/_d/PCS
To evaluate the sum above, one has
PROPOSITION 7. Forr =2s+1 with s >d/e > 1 and s’ >,
pf(dfe)/2 or

3 Tra? e—d—1
Z Cq = (_1)f—1pf(d—e)/2 Nryq, (Trgyr 11 ) C(lfp)f
aepes/—d/Pes P 8

according as d = e (mod 2) or not.

Proof. First express a as a = p*T 1743 for f € O/P%¢ so

1Tra? L1y (prr—ip)?
oGt > gt

agpes’—d/ pes BeO/pd—e

Now write 8 = ITY3' + b uniquely for ' € O/P?¢~ and b € O/P" for
(d—e)/2 <v <d-—e. Arguing as before one obtains the values as stated in
the proposition.

In view of the prior discussion and the propositions above one finds in
general for r > 1 the following:

THEOREM 1. For s >d/e, s > 6 and v > 7o with p odd and x normal-
ized as in (5),

Gprv(x)
pf('y_(re_d)/2) Cg' or

— ~ o NT (T‘I“K THe—d—1u1+s—s’) 3
(—1)7 Lpf(r=(re d)/2)< /Qp / p >ng1 p)ng

according as re = d (mod 2) or not, where 11 = pu for u € O.
The following corollary is the special case when K/Q),, is tamely ramified.

COROLLARY 1. For s >0 and v > vy with p odd, K/Q,, tamely ramified
and x normalized as in (5),
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Gpi(x) =
pf(v—(Te—d)/2)<g if re =d (mod 2),

N, 1+s—s'
(1) gél—p)fpf('y—(re—d)ﬂ)( T/@p(epu )>gg; ifre £ d (mod 2),

where I1¢ = pu for u € Op.

Since d = e — 1 the corollary follows immediately from Theorem 1 for
s > 1 (s > 2 when p = 3). However, the argument Ron Evans used in
[7, Theorem 2.2] extends here to establish the stated result for any s > 0
when K/Q), is tamely ramified including the “pesky” case s = 1. The details
which rely on the facts Trg 7 IT" = 0 for e i and Nrjq, U}Z) = UZS” fori >0
are left to the reader.

5. The case p = 2. My main goal here is to show that G p~(x) has the
form (7) for p = 2. For this purpose, I first require some elementary results
about certain 2-adic sums in the unramified extension 7'/Qs. To begin, let
U denote the group of 2f — 1 roots of unity in 7', the so-called Teichmiiller
subgroup of 7. Any element a of Op has a unique representation o =
> i ti2" with each t; € U U {0}. Furthermore, for any x € U, Trp/g, v =
z+a?+-+227 so
(30) Trr/q, i Trrg, ©  for x € U U{0}.

Lastly, note that for any u#0 (mod 207), the congruence 22 =u (mod 207)

has the unique solution u2"™" modulo 207 which I shall denote as u'/2.

LEMMA 5. Forwv € Or,
Z CTrT/@Q(;ﬂ—H)z) _ {Qf ’if’U =1 (mod QOT),
2 - .
€07 /207 0  otherwise.

Proof. For convenience I write Tr = Trp /g, here and in the proofs of the
next two lemmas. Note that

(31) Z CQT“““ _ { 2f ifa=0 (mod 207),
2€07 /207 0  otherwise.
It follows from (30) that Trz? = Trz (mod 207) for any x € Or. Thus
Tr(z24wvz) Tr(z+vz)
> G = ) G
xEOT/2OT xEOT/2OT
so the result of the lemma follows from Proposition 1.
COROLLARY 2. For u & 207,
Z CTI“T/@Q (uz?+vz) {Qf if u = v? (mod 207),
) =

2€07 /207 0  otherwise.
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Proof. Since u # 0 (mod 207), u is a 27 — 1-st root of unity in O /207
and so is u!/2. Replacing z by x/ul/2 in the summation yields

Tr(uax? +vz) Trz +oz /ul/?
I P D
LUEOT/QOT JJEOT/QOT

The statement of the corollary immediately follows now from Lemma 5.

LEMMA 6. For any odd integer a,

.Z’EOT/QOT

Proof. Since Traz? = a Tr 2?2, it suffices to demonstrate the result when
a = 1. First note that any z = > "2, ¢;2" in O with ¢; € U U {0} satisfies
22 =12 (mod 407) so

(32) Z Troc _ Z C

xGOT/QOT tEUU{O}
from (30). But the incomplete Gauss sum on the right side of (32) is known
[12] (see also [15]) to equal (—1)/=1(1 + 1)/ = (—1)f—12f/2§g.

LEMMA 7. Let o, € Or with a = a+ 2b (mod 407), where a € U and
be UU{0}. Then

Z CTrT/QQ ar®+2fz) _ 64* ﬂT/@z(BQ/Oé+b/a)(_1)f—12f/2<g‘
xEOT/QOT
Proof. Observe first that

—Trp3? ar
Z <4 (ax?+26z) C4 Tr 3%/« Z C4Tr 2.

xGOT/on CEEOT/2OT
But
Tr az? Trat? _ (a+2b)t
o= Y =
€071 /201 teUU{0} teUU{0}

since the set U U {0} is invariant under the Frobenius action 2 — 2. This
last sum is known [12], Prop 7.1] to equal g“”/“(—l)f*@f/?gg. I note that
this result is incorrectly stated in [12], with a minus sign missing (the factor
pa(b/a) should read pa(—b/a) there).

I now return attention to that of computing Gp~(x) in (3), assuming
q = 2" with r = 2s or 2s+1 with s > d/e first. Then vy = re—d > es’ again,
where s’ = s or s+ 1 according as r is even or odd. Writing each ae € O/P7
for v > 7 uniquely as o = z(1 + w2¥) for z € O/P and w € O/P1~¢,
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one finds for any numerical character y modulo ¢ normalized as in (6) that
(33)  Gm)=207 3T NG
z=1(Pes—d)inO/Pes’
using the same argument as in the case of p odd before. To evaluate x(N(z))
here, I set § = max(2d/e,1 + 3d/(2e)) and obtain the following analog of
Lemma 4.
LEMMA 8. For s > d/e and o € P~ if s > § then

—S145(52—-5%)

if 7 1S even,
xmu+a»={%&+& /
Cq if v is odd,

for any numerical character x modulo g normalized as in (6).

Proof. T assert that the condition s’ > ¢ here ensures that (1/v)S, =

0 (mod g) for v > 2 so that N(1+a)=1—a1 +as =1+ 51 — 5(S2 — 57)

(mod ¢) from Lemma 1. Also S? = 0 (mod 22*') and Sy = 0 (mod 25 *1) so
—S1+2(52—52

X(V(1L+a)) = ¢ T

For odd r one obtains x(N(1 + «)) = ¢,
the binomial theorem

(1428 + 22 1)(S1-39)/2 =1 4 g — % (Sy — S%) (mod q)

from the normalization in (6) when r is even.

-5 . .
1+3 5 instead from (6) since by

in this case. To verify the assertion one requires that
v(se—d)+d>re+eordev forv > 2.

As in the proof of Lemma 4, the above inequality will hold if

—-1d d
S/ZV 7—1—01"21/ for v > 2,
v—2e v—2

which is trivially true for unramified extensions. When K/Qs is ramified,
(v —1)/(v —2) takes on its maximum value 2 when v = 3; whereas
(orda v)/(v — 2) has maximum value 1 when v = 4. Thus the last inequality
holds for any s’ > 4.

I remark that the conclusion of this lemma holds for o € Pes—[(d+1)/2]
whenever e is even and r odd, but with s > 2 when e < d < 2e. Indeed,
when d > 2e, Pes—[(d+1)/2] € pes'—d gince es — [(d +1)/2] > es’ — d, so the
remark follows immediately from Lemma 8. For e < d < 2e with s > 2,
s > § and a € pe~(@+1/2] one readily finds that S; = 0 (mod 2°) and
Sy =0 (mod 2572). In addition, (1/v)S, = 0 (mod ¢q) for v > 2 by arguing

similarly as in the proof of Lemma 8 above. Thus x(N (1 + «)) = ¢, ~Si+35e

from the normalization in (6) as before. The same result is seen to hold for
s=2whend=e.
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I now require that s’ > § in addition to s > d/e in evaluating (33), and
deal with the cases of r even and odd separately.

Case of r even. If r = 2s, then in view of the lemma above, the expres-
sion (33) for Gp~(x) becomes

—es)  n L(Tra?2—(Tra)?
(34) Gp() =20y Y e

aepesfd/Pes

upon writing z = 1 4+ a for a € P54,
Expressing each a as 2°I17¢3 for 3 € O/P% in the sum above, one finds
that

(35) Z q%(Troﬁ—(TrocF) _ Z CQTr (IT=4B)2—(Tr 1-9p)?
agpes—d/pes BeO/Pd
as for the case of p odd.

Now suppose K/Qq is ramified, but tamely so. Then d = e — 1 and one
may assume [/¢ = 2u for some unit v in Op. In particular, for any integer
i #Z 0 (mod e) one has Trg r II'" = 0 just as before in the case of p odd.
Expressing each 8 € O/P? in the form x¢ 4 x1IT + -+ + 2. o172 for
x; € Or /207, one finds that Tr [T~ = 0 and Trg ) (IT=13)? equals

e—2 e—2
—2d+i+j _ —_ €
Trr)r E ziz Il I = E TiTe—g—; Trgcyp I1I7° = % § TiTe 2.
0<i,j<e—2 i=0 =0

Thus (35) becomes
Z C% Trr gy = =0 TiTe—2—i

2 )
Z05---Le—2

which is readily seen to equal 2/%/2 from (31).

Now consider the case where K/Qo is wildly ramified, so e is even. To
evaluate the sum (35) for this case, write any 3 € O/P? uniquely as § =
I°B + b for B/ € O/P?? and b € O/P" with (d +¢€)/2 < v < d. One
obtains

Tr (I4B)°—(Tx I1-75)?
> G
BeO/Pd

Tr (IT~9b)2 —(Tr [T~ 9b)? 2 Tr [1°~24pp!

_ Z & ( )2 —( ) Z 2 8 ’

bEO/P’U /@’eO/Pdf’v
which by Proposition 1 equals
of (d=v) Z C;r(ﬂ—dbﬁ—(TrH—dbP.

bepd—v/pv
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Choosing v = [(d + e + 1)/2] in this last expression, yields the quantity
d—e)/2 Tr (IT~9b)2 —(Tr I1~9b)?
9fl(d—e)/2] Z ¢ ( )2 —( )
be plld—e)/2] / pl(d+e+1)/2]
or equivalently
(36) 2/ld=e)/2] 3 T (11~ (et D/21g)2—(Ty r-[aer /2 g)2

2
B0/ petlld+1)/2]-[d/2]

where each b € Pl@=€)/2l/pld+e+1)/2] has been uniquely expressed as b =
4=9/23 for g e O/ petltd+)/2-[d/2],
To evaluate the sum (36) it will be necessary to consider solutions zy,

T1, ..., Tejp—1 modulo 207 of the following auxiliary system of linear con-
gruences:

U1xo = 21,

U2To + UL = 29,
(37)

Ue/oT0 + Ue /2101 + -+ - + UITe /21 = Ze/2,
where for 1 < i < e/2, u; = 2Trg)p IT=%y5'~5 and z; uniquely satisfies
modulo 207 the congruence
o | Ty H—w—% ~ifrisodd,
! Trye)p 7% + (Trg /7 II=%/2=1)2 if 1 is even,
with w = max(2[d/2] — e, 0).
Note that the system (37) above is triangular with u; #Z 0 (mod 207)

by Lemma 3, and hence always has a unique solution which is readily found
using forward substitution. One may also uniquely express

(38) U1 = wp + 2wy (mod 407),

with wg € U and wy € U U {0}.
The sum in (36) is evaluated next.

PROPOSITION 8. Forr = 2s with s >d/e > 1 and s > 9,
Z T\r(nf[(d+e+1)/2]ﬁ)2_(Tr H*[(d+e+1)/2]6)2
2

BEO/ Peti(d+1)/2]-[d/2]
= of (e l(d+1)/2]=1d/2)/2¢xe.

with
K
4Tr (H_(e+d)’y2 + H_(6+d)/2’y) or

5f— 4+ ATy (I (erdtDa2 4 =(e+dtD/2) — 2 Trg g, (v/ug + w1 /wo),

— |
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according as d is even or odd. Here v = xzg+ 1 + -+ + we/2_1H6/2—1 with
T1,.. ., Tejo—1 uniquely solving the system (37) modulo 2071, u1 = wo +
2wy (mod 407) as in (38) and

V= (TrK/T Hf(d+1)/2)2 + (2 TrK/T H*d*€/2717)2
when d is odd.

Proof. Note that K/Qq is wildly ramified since d > e, so e is even.
I consider the case of d even first. Writing each § € O/20 now as =
xo+ 210l + -+ 2o I for z; € O7 /207, one finds that

Z CQfI‘I. H*(d+e)ﬁ2_(Tr H*(dﬁ’e)/Qﬂ)Q
3€0/20
Z CT‘r(H*(d“)(xo+:c1H+~~+:ce_1H€*1)2+H*<d+e)/2(xo+ac1H+~--+xe_1H6*1))
2

Z0,--sTe—1

_ Z CTr(Hf(cHe)(960-1-561H+~~-+1‘e—2176*2)2+17*<d+e)/2(960+x117+~~+965—217872))
2

L0, Te—2
» CTJrT/@2 (22_y Trycyp T 924 me 1 (200 Trycyp 11— 4 Tr gy I1(e=072)/2))
E 2

Te—1

But the inner sum equals 27 or 0 according as ujzg + Trp/r [1(e=d=2)/2 =

(Trg)r I1¢=9=2)1/2 (mod 207) or not by Corollary 2 (equivalently as u;xg
= z; or not). Hence one gets

f Tr(IT =@+ (zot+ +ae—g [T 3) 2+ 1T~ (@) 2 (g4t xe_511¢73)) TR
2 Z G2 Z G
where
TR = Tryyq, (x2_o Tryeyp 16741
+ @ea (20 Trpeyp II~4% 4 22y Trpeyp 11471 4 Ty Ie7474/2)),
separating out the summation over z._s. Now the inner sum equals 27 or 0
according as uswo+uir1+Tr /7 I(e=d=4/2 = (Trg)r =412 (mod 207)

or not, again by Corollary 1 (equivalently as uszg + ujry = 22 or not).
Continuing in this manner one obtains

QfE/QCTI"(H_(dJFE)($0+$1H+'”+xe/zflne/2_1)2+H_(d+e)/2($0+$1H+'"+$6/271H6/2_1))
2

for the complete sum, where the x; satisfy (37).

It remains to consider the case of d odd. Expressing each 8 € O/P°¢t!
as 0 =xo+ a1l + -+ + x 11¢ for x; € Op /207 one finds that
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Z CT\rn (d+e+1)/82 (T‘I‘H_(d+e+1)/2,8)2

Be0/Petl
% Z CTr I~ ret D) (gotay T+t 21 T 1) 24 Tr I~ @HetD/2 (go gy T+ a1 T671)
2
Z05---Te—1

Trr /gy 22 (Tr gy T4 e (220 Tryejp =014 Tr gy (e~ 1)/2)
P

But the inner sum equals 27 or 0 according as ujzo + Tri/r J(e—d—1)/2
(Trg/7 I1¢=4=1)Y/2 (mod 207) or not by Corollary 1 (equivalently as uizg =

z1 or not). Hence one gets
D DRRCED oA

T1,..3Te—2 Te—1
where
TRy = Tr (I~ (wg + 2y T + - - - + z0_oI1°72)?

+ I D2 (g 4 ) T + -+ oo IT°72)),
TRz = Trryq, 221 (Trgp I1¢7973)

+ @e—1 (220 Treyp 1142 + 22y Tryeyp I~ 4 Trgep e=a=3/2),
separating out the summation over x._;. Now the inner sum equals 2f
or 0, again by Corollary 1, according as uszo + u1z1 + Trg /7 [1(e=d=3)/2 =
(TrK/T He_d_?’)l/2 (mod 207) or not (equivalently as uszg + uix] = 29 or
not). Continuing in this manner one obtains
2f€/2CTr H (d+8+1)(l’0+ +'7"e/2 1H8/2 1)2+H (d+e+l)/2(l‘0+ +me/2 1H€/2 l))

)

Z CTrT/@Q 2TrK/T(H*d71x3/2+2xe/2(xoﬂf(d+e/2+1)+..,+xe/271H—d72+H7(d+1)/2))
4

Te/2

where the x; satisfy (37). By Lemma 7 the inner sum this time is found to

be
— Trp gy (Trgyp T~ FD/2)2 4 (2 Tr g jp I (44/241)4)2 /1y 4wy )

C4
with w1 = wp + 2w; (mod 407) as in (38).
This completes the proof of the proposition.

(_1)f_12f/2C8f7

Case of r odd. 1 next consider the case r = 2s+ 1 with s > max(1,d/e)
and ' > ¢ (and s > 2 when K/Q is wildly ramified with e < d < 2e).
Writing each z = 1 (mod P®~%) uniquely as z = x(1+2%a) for € (O/P®)*
and a € 0/20, one finds from (33) that

(89)  Gp(x) =270 > X(N2)G S a)
z=1 (mod Pes—d)in O/ Pes
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as before, where
s—1 2
(0) S = 3 x(NQ+za)gla = 3 (e,
ac0/20 a€0/20

The evaluation of S(x) when K/Qs is tamely ramified proceeds just as in
the analogous case when p is odd to yield

G (x) = 208 (1)

when II is chosen so that I1¢ = 2u for some unit u € Op, with

Tro ex? 2 f
S(l) — 2f(€—1) Z C4 /Q2 “0 _ 2f(€—1/2)(_1)f—1 (> Cg,
e
zo

from Lemma 6. The same holds when K/Qy is wildly ramified with d > 2e
to yield S(x) = 27¢ or 0 according as = 1 (mod P*'~%) or not, so (39)
becomes

Gpo(x) = 2707 ST (N(1+ @),
aepes’—d/Pes
In view of Lemma 8, the above expression becomes
1Ty o2
Geo(x) =207 S G
aepes/fd/pes
or equivalently
_ Tr He—d[@ 2
of(v eS)ggl Z ¢, ( )
Be0/pdi-—e
upon expressing o as o = 2°I1°7¢3 for § € O/P%¢. Writing 8 = IT' + b
for 3 € O/P4=¢7? and b € O/P" for any d/2 < v < d — e, one obtains
Tr (11¢~¢ e Tr (176~
Z ¢l 8)? — of(d—e—v) Z ¢ )2
Be0/ pi—e be pd—e—v/pv

as before for the case r = 2s. Choosing v = [(d+1)/2] in this last expression
yields

Ty (1764 _ Tr (17~ [(4+1)/2] g2

Z ¢ r ( B> _ of(ld/2]-e) Z C4r )
Be0/pd—e B0/ petl(d+1)/2]-[d/2]
by arguing as before in the proof of Proposition 8. Thus

(41) Gpr(x) = 2f(v—es’+[d/2])<g Z 44
B0/ pe+lld+1)/2-(d/2]

~[(d+1)/2] g)2
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I assert that (41) holds when e < d < 2e here, too. Indeed, writing = =
1+ 2511~ 4p for p € O/P% in (40) one obtains

Tr(a?4+2all~4 Tr 217¢—4—1d/2] 4/
S(z) = Z C4r(a ofrte Z @ “,

a€0) pe-ld/2) €0/ Pla/2]

where each a € O/20 is uniquely expressed as a = a + IT e=ld/2y! for a €
0/ P42 and o' € O/ P2, But from Proposition 1, the inner sum equals
2/14/2 or 0 according as p € Pl%/2) or not, with
S(z) =2/ Y Tr(a? 4201 %ap)
a€0/ pe-1d/2)
or 0 in (40) accordingly. Summing in (39) over all = of the form 1 +
28 [1-[(d+D2 3" with 3’ € O/ PU4+D/2 yields
G (x) = 2 +14/2)
xS0 X(N(1 20 DA gy T g
3€0/Pld+1)/2]
Tr(a2+2a07—(d+1)/2] 3/

% Z <4 (a®+2 5)‘

ac0/pe=ld/2]

In view of the remark accompanying Lemma 8 one finds that G p~ () has the
form (41) upon putting § = aII(*D/2 1 5/ where o and ' separately run
through the representatives of O/ Peld/2l and O / PUD/2 | regpectively.

To evaluate the sum in (41) when K/Q, is wildly ramified one has

PROPOSITION 9. For r = 2s+ 1 with s > d/e > 1 and s’ > § (s > 2
when e < d < 2e),
Tr (17— 1(d+1)/2] 3)2 _
Z <4r( B)* _ 9f(etl(d+1)/2] [d/2])/2cé-;
geo/pe+[(d+1)/2]—[d/2]

with

2Tr(I1-%32)  or
5f —4+2 Tryyq, (Trgyr 4192 = (Trgejp 247 19)2 fug —wy o)
according as d is even or odd. Here v = xo + 11 + --- + :ce/z_lﬂe/%l

with xo,...,Te/o—1 satisfying the system (37) modulo 201 and w1 = wo +
2wy (mod 407) as in (38).

Proof. 1 consider the case of d even first. Expressing each § € O/20 as
B=xo+ 1Ml + -+ 2 111", we have
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Z el 4967 _ Z Uzotort o1 712

ﬂEO/ZO TQ,.-yLe—1
— Z ot Fae_olle2)2 Tr(I126=4=222 | +22, 1206~ 471)
= , '
X0y Le—2 Te—1
But the inner sum is
Tr 2 Tr e d—2
E :C T/0y (Te—1 Trr )7 U+Te_1ToUT )

Te—1

equal to 2f or 0 according as u1xg = z; (mod 207) or not by Corollary 2.
Hence one gets

f Tr T~ %(xo+ay [T+ +ae_oI1672)2
2 Z @

Z1,..,8e—2€07 /20T

)

where x satisfies the first congruence in (37). Continuing in this manner,
one obtains as before

Z C;[\r H_dBQ _ 2fe/2<-4TI‘H_d’}12
B€0/20
where v = xg+x1 11+ - -+xe/2_1]75/2_1 with zo, ..., 2.9 satisfying (37).
This yields the result stated in view of (41) when d is even.
For d odd, expressing each 8 € O/P¢*t! as 8 = xg + 211l + -+ + x II°

d—1 232
with z; € Op /207, the sum ZﬁeO/PeH CTYH 5 becomes
Z CTrH d— Naod-tae_1 IT671)2 CTr(172e_d_1922—4—2:17€3U()176_d_1)
" )

Z0y---yLe—1 Te
But the inner sum is
Z CTrT/QQ (x2 Trg/p me=3=lytzexour)
2

Te EOT/2OT

equal to 2/ or 0 according as u1xg = z; (mod 207) or not by Corollary 1.
Hence one finds

Z gTrH d— 1,82 f Z CTrH_d_l(330+a:117+...+a;8,117€_1)2
4 )

BEO/PE+1 L1y y3Te—1

where x satisfies the first congruence in (37). Continuing one obtains
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ofe/2 Z C;I‘r T4 Yot dme o T2 Lt o 11/2)2

Te/2

_ 2ef/2€TrH7d71(x0+~~-+ace/271]7€/2*1)2
- 4

« Z CTTT/QQ (wi/z Trye p T~ 1420, g Trpejp 11872797 N (mo o, o 116/271))
4

Te/2

)

—d—1,2 TrT/@ (ulx2 2+2:ze/2 TrK/T He/2—d—1,y)
— 2f6/2@;f“7 gl Z ¢ e e/
Te/2
where v = zo+- - '+$e/2_1ﬂe/2*1 with z; satisfying (37). In view of Lemma 7

one finds then that > e/ pest C;HH_d_lﬁQ equals

of(e+1)/2(_1yf—1¢f Trr/ee(Trym =442 =Ty p /2747 19)2 fus —w1 /wo)
8 54

where u; = wp + 2w; is given in (38).
This concludes the proof of the proposition.

In view of the propositions above and the prior discussion I have shown
for general r > 1 the following

THEOREM 2. Forr =2s or2s+ 1 with s > d/e, s > and any v > o
with x normalized as in (7) (and s > 2 when r is odd with e < d < 2e),
G (x) = 2O~ D
where
o {n+(4—|—(62—1)/2)f—4 ifr=2s+1,
0 if r = 2s,
when K/Qq is tamely ramified. Otherwise, k is explicitly determined as in

Propositions 8 and 9.

I note that x appearing in Propositions 8 and 9 referred to above must
be independent of the choice of uniformizant II, of course. Actually showing
this from the definition of x given here in terms of the system of congruences
(37) seems challenging. It would be desirable to obtain an alternative, more
amenable formulation.

The following corollary concerns the special case of K/Q), tamely rami-
fied.

COROLLARY 3. For s > 0 and v > vy with K/Q, tamely ramified and x
normalized as in (6),

Gp(x) = 2f(v—(re—d)/2)cgcg
with
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0 if = 2s,
k=< n+4(1+(e2—-1)/2)f —4 if r=2s+1>3,
—x(=1)n+4(1+ (2 —-1)/2)f —4 ifr=3.
Since d = e—1 the corollary immediately follows from Theorem 2 except
for ¢ = 4,8 and 16. However, the argument Ron Evans used in [7, Theorem
2.2] extends again here to establish the result when K/Qy is tamely ramified

for any s > 0. The details are left to the reader.
I conclude with two examples illustrating the results above.

EXAMPLE 2. Consider the wildly ramified extension K = Q2((12, 21/ 3)
with f =2, e =6,d = 8 and T = Q2((3), so 6 = 3. One may choose
the uniformizant IT = (i — 1)/2'/3 satistying I16 — 2IT% + 2 = 0 over T
with 176 = 2i. For s = 3 with r = 25 = 6, v9 = re — d = 28. Choosing a
character y modulo 2% normalized as in (6), one expects G pas(x) = 228¢32¢5
from Theorem 2 and Proposition 8 with x = 4 Tr(I1 442 + I~ ") (mod 8),
where v = xg + 21IT + x9I1? with x, 1 and o satisfying z¢g = 0, z1 = 1,
x2 = 0 (mod 207) from (37). In particular with v = IT one finds k =
4 (mod 8). Direct computation confirms G pas(x) = —228¢} as expected.

For s =3 withr =2s+1 =7, 79 = re — d = 34. Choosing a character
x modulo 27 normalized as in (6), one expects G psa(x) = 234({3.¢5 from
Theorem 2 and Proposition 9 with x = 2 Tr IT~8+2, where v = xg + 211 +
xoI1? with xg, 1 and zo satisfying z9 = 0, 21 = 1, 20 = 0 (mod 207)
from (37). Thus, with v = IT one obtains k = 0 (mod 8). Direct computation
confirms that G psa(x) = 234¢3, as expected.

ExAaMPLE 3. Consider the extension K = Qa((16 + (j') which is wildly
ramified with e = 4, d = 11 and T' = Q9, so § = 5.5. One may choose the
uniformizant Il = (16 + C1_61 satisfying IT* — 4IT% + 2 = 0 with IT* = 2(3 +
2v/2). For s = 6 with 7 = 2s = 12, 79 = re — d = 37. Choosing a character
x modulo 2'2 normalized as in (6), one expects Gpsr(x) = 237/2@11096@
from Theorem 2 and Proposition 8 with x = 1 4+ 4 Tr(I1 1642 + [1-8y) —
2(v/u1 +wi/wp) (mod 8), where v = xo+ 21T with o = 21 = 1 (mod 207)
from (37), v = (Tr 1762 + 2Tr II-'y)% and vy = 2T 112 = 99 =
142-1 (mod 407) so wy = wy = 1. In particular, with v = 1+ II, one finds
x = 0 (mod 8). Direct computation confirms that G ps7(x) = 237/2¢1004 as
expected.

For s =5 with r =2s 4+ 1 =11, 79 = re — d = 33. Choosing a character
x modulo 2'! normalized as in (6), one expects G pss(x) = 233/2(4)45C5 from
Theorem 2 and Proposition 9, with x = 1+2(Tr IT~ 1242 — (Tr IT1%9)2 Ju; —
wi/wo) (mod 8), where v = zg + 2111 with o = z; =1 (mod 207) in (37)
and u; = 2Tr IT712(3 +2v/2) = 17 =1 +2- 0 (mod 407), so wy = 0 and
w1 = 1. In particular with v = 1 + II one obtains k = 4 (mod 8). Direct
computation confirms that G pss(x) = —23%/2(510 as expected.
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6. L-functions attached to the Gauss sums. As in Section 2 let T,
denote the unramified extension of T' of degree m, and set K,,, = KT},, O,, =
Ok,, and P, = PO,,. With any numerical character x defined modulo ¢ of
conductor f(x) = p® and positive integer v > re — d satisfying (2), one may
associate an L-function
(42) L(x.t) = exp( Y Gy, (0" /m),

m>1
where ™ N
G0 = > XN
a€(Om/Pp)*

is the corresponding Gauss sum (3) defined for the field K, with the same ~
and ¢. I note that from Proposition 3 it immediately follows that if re —d >
14+e/(p— 1) with b < r then for all v > ~o, L(x,t) = 1. Thus the interesting
case will be for primitive characters y modulo ¢g. For a normalized character
x as in (5) with s and + satisfying the hypotheses of Theorem 1, or as in
(6) with s and ~ satisfying the hypotheses of Theorem 2, one finds upon
comparing the explicit values for G p+(x) and Gpy (x) a Davenport-Hasse
relation

(43) Gpy(x) = (=1 DGp, ()™,

To see this one takes Il again as a uniformizant to generate the prime
ideal P,, of O,,, so u = II°p~! lies in T and for all integers i and j,
Trec,, /1, 11 iy = Try/r 1T iw/. Now any primitive character modulo ¢ can
be expressed as a power ¥ of a normalized character y for some integer v
satisfying ged(v, ¢(p — 1)) = 1, so from (4) it follows that (43) holds for any
primitive character modulo q.

The Davenport—Hasse relation (43) readily yields the following evalua-
tion of L(x,1).

THEOREM 3. With s and v satisfying the hypotheses of Theorem 1 (or
Theorem 2 if p = 2) and for any primitive character x modulo q,

1+Gpy(x)t if re—d is odd,
L(x,t) = {

1 . o .
=G 00t if re —d is even.

I note that the above generalizes the classical observation (21) for the
case y=7r=1with K =1T.
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