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1. Introduction. Given an integer a ≥ 2, it was recently observed in
[7] that the regular continued fraction

(1.1) C(a) = a+
1

a2 +
1

a4 +
1

. . . +
1

a2n +
1
. . .

,

denoted subsequently as usual by [a, a2, a4, . . . , a2n
, . . .], is transcendental.

This is a consequence of Roth’s theorem and follows directly from a result of
Davenport and Roth [5] concerning the growth of denominators of conver-
gents to an algebraic number. Quite surprisingly, the author of the present
note was not able to pick up the scent of this simple example in the older
literature though a function field analogue previously appeared in [12]. In-
deed, viewed as a Laurent series in F2((1/x)), the continued fraction C(x)
has the remarkable property of being a cubic element over the field F2(x).
More precisely, it is the unique root in F2((1/x)) of the polynomial

t3 + xt2 + 1.

This follows from a simple computation using the fact that squaring here
has a very transparent effect: if f(x) = [a1(x), a2(x), . . .] ∈ F2((1/x)) then
f(x)2 = [a1(x2), a2(x2), . . .].

Curiously, the fact that C(x) is algebraic over F2(x) with degree larger
than 2 suggests that many other evaluations of C should be transcendental.
For instance, for any field K of zero characteristic the continued fraction
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C(x), viewed as an element of K((1/x)), is transcendental over K(x). This is
a consequence of the function field analogue in zero characteristic of Roth’s
theorem obtained in [11]. Notice also that the continued fraction C(q) con-
verges for every complex number q with |q| > 1. As a direct application of a
classical result of Mahler [9] (see Theorem M in Section 4 below), we extend
the result of [7] mentioned above as follows.

Theorem 1.1. Let q be an algebraic number with |q| > 1. Then the real
number C(q) is transcendental.

As we will see, the situation is more intriguing when C is evaluated at
complex numbers lying in the open unit disc. Indeed, when q is a non-zero
complex number of modulus less than 1, the continued fraction C(q) is no
longer convergent. This follows from the classical Stern–Stolz theorem (see
for instance [8, p. 94]). However, the Stern–Stolz theorem tells us that C(q)
is almost convergent in the sense that both

(1.2) lim
n→∞
n even

[q, q2, q4, . . . , q2
n
] and lim

n→∞
n odd

[q, q2, q4, . . . , q2
n
]

do exist for every complex number q with 0 < |q| < 1. The authors of
[7] discovered a nice relation between these limits and the Stern diatomic
sequence (see Theorem DS below). We now briefly recall this connexion.

The Stern diatomic sequence, numbered as A002487 in Sloane’s list, is
a remarkable sequence of positive integers that has been studied by various
authors (see for instance the references in [6]). It is defined by the following
recurrence relation:

a2n = an, a2n+1 = an + an−1, ∀n ≥ 1,

with a0 = a1 = 1. The Stern sequence is also related to the Fibonacci se-
quence. Indeed the maximum of the Stern sequence between two consecutive
powers of 2, say between 2n−2 and 2n−1, is the nth Fibonacci number Fn.
This maximum is attained twice at the indices

αn :=
1
3

(2n + (−1)n+1) and βn :=
1
3

(5 · 2n−2 + (−1)n).

In [6] the authors introduced a polynomial analogue of the Stern se-
quence. These polynomials are defined by the recurrence relation

a(2n;x) = a(n;x2), a(2n+ 1;x) = xa(n;x2) + a(n+ 1;x),

with a(0;x) = a(1;x) = 1. The polynomial a(n;x) is termed the nth Stern
polynomial. In [7], the same authors studied the subsequence of Stern poly-
nomials with index αn and with index βn. For every positive integer n, they
define the two polynomials

fn(x) := a(αn;x) and fn(x) := a(βn;x).
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These polynomials can be thought of as polynomial analogues or q-analogues
(replacing x by q) of the Fibonacci numbers. Also, the authors proved that
the sequences of polynomials (f2n(x))n≥1 and (f2n+1(x))n≥2 converge to the
same formal power series

F (x) = 1 + x+ x2 + x5 + x6 + x8 + x9 + x10 + x21 + x22 + x24 + · · · ,

and the sequences of polynomials (f2n+1(x))n≥1 and (f2n(x))n≥2 converge
to the same formal power series

G(x) = 1 + x+ x3 + x4 + x5 + x11 + x12 + x13 + x16 + x17 + x19 + · · · .

The following result obtained in [7] links the values of the functions F
and G with the unusual continued fractions defined in (1.2).

Theorem DS. For every algebraic number q with 0 < |q| < 1, we have

Cev(q) := lim
n→∞
n even

[q, q2, q4, . . . , q2
n
] =

qF (q3)
G(q6)

,

Cod(q) := lim
n→∞
n odd

[q, q2, q4, . . . , q2
n
] =

G(q3)
q2F (q6)

.

These authors also derived many functional equations satisfied by F
and/or G. We will combine such relations with more involved material
about Mahler’s method that is contained in the monograph of K. Nish-
ioka [10] (Theorems N1 and N2 in Section 3 below) to prove the following
result.

Theorem 1.2. Let q be an algebraic number with 0 < |q| < 1. Then
Cev(q) and Cod(q) are both transcendental.

Note that C(1) is well-defined and algebraic, for we easily get C(1) =
(1+
√

5)/2. It would be interesting to determine more precisely the behavior
of the continued fraction C(q) when q runs along the unit circle.

The authors of [7] also asked about transcendence results concerning
the functions F and G but they did not obtain anything conclusive. They
mentioned a paper of Loxton and van der Poorten dealing with the so-called
Mahler method, but observed that the main theorem in that paper cannot
be applied to F and G. In a subsequent paper [4] Coons proved that both
functions F (x) and G(x) are transcendental over Q(x). This follows from
a simple application of a classical theorem of Fatou. In the same vein as
Theorem 1.2, we will prove the following stronger result.

Theorem 1.3. Let q be an algebraic number with 0 < |q| < 1. Then
F (q) and G(q) are transcendental numbers.
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Our paper is organized as follows. Before proving our main results, we
observe in Section 2 that F and G turn out to be examples of so-called
2-automatic functions. This connection with the theory of finite automata
leads to some useful observations. The proof of Theorem 1.3 is given in
Section 3 while Section 4 is devoted to the proofs of Theorems 1.1 and 1.2.

2. Functional equations, finite automata and transcendence over
function fields. Among the various functional equations derived in [7] one
finds the following ones (equations (5.3) and (5.4) in that paper):

F (x) = G(x2) + xF (x4),(2.1)
G(x) = xF (x2) +G(x4).(2.2)

The sets of integers appearing as exponents of the power series F and G
seem to enjoy some regularity inherited from equations (2.1) and (2.2). Let
us denote by

(2.3)
Φ := {0, 1, 2, 5, 6, 8, 9, 10, 21, 22, . . .},
Γ := {0, 1, 3, 4, 5, 11, 12, 13, 16, 17, . . .}

these sets of integers. The authors of [7] claimed that these sets are exam-
ples of so-called “self-generating sequences of integers”. More precisely, they
stated without proof that Φ and Γ are the minimal sets of non-negative
integers such that 0 and 1 belong to Φ ∩ Γ and

Φ ⊇ (4Φ+ 1) ∪ 2Γ, Γ ⊇ (2Φ+ 1) ∪ 4Γ.

We describe now a different, and perhaps more natural, way to describe
the sets Φ and Γ . This involves the theory of finite automata. Actually, Φ
and Γ turn out to be 2-automatic sets of integers (also sometimes called
2-recognizable or 2-regular). This means that there exists a finite automaton
that accepts exactly the finite words corresponding to the binary expansions
of the integers that belong to Φ; the same holds for Γ . This notion of auto-
matic sequence is of great importance in theoretical computer science and
combinatorics on words. We refer the reader to the monograph of Allouche
and Shallit [2] for precise definitions and more material on this topic.

Proposition 2.1. Both sets Φ and Γ are recognizable by a finite 2-
automaton.

It follows from Proposition 2.1 in [6] that the coefficients of the power
series F and G only take the values 0 and 1. There thus exist two binary
sequences (fn)n≥0 and (gn)n≥0 such that we can rewrite F and G as F (x) =∑

n≥0 fnx
n and G(x) =

∑
n≥0 gnx

n. Thus, for every prime number p, we
can reduce these power series modulo p and define

Fp(x) :=
∑
n≥0

fnx
n ∈ Fp((x)) and Gp(x) :=

∑
n≥0

gnx
n ∈ Fp((x)).
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With this notation, we get the following result.

Theorem 2.2. Both functions F2(x) and G2(x) are algebraic over F2(x).
If p ≥ 3 is a prime number, then Fp(x) and Gp(x) are transcendental over
Fp(x).

Note that Theorem 2.2 strengthens Theorem 4.1 of [4], for it directly
implies that F and G are transcendental over Q(x). Furthermore, it offers a
first ready-made result concerning the transcendence of values of F and G.
Indeed, since F2 and G2 are algebraic irrational Laurent series over F2(x),
Theorem 7 in [1] implies that for every integer b ≥ 2, both real numbers
F (1/b) and G(1/b) are transcendental.

Proposition 2.1 now follows from Theorem 2.2 and Christol’s theorem:

Proof of Proposition 2.1. By Theorem 2.2, F2(x) and G2(x) are algebraic
over F2(x). Then it follows from a classical theorem of Christol (see [2,
Theorem 12.2.5]) that the sets of integers appearing as exponents of the
power series F2 and G2 are recognizable by finite 2-automata. Since these
exponents are the same as those of F and G, this ends the proof.

We end this section with the proof of Theorem 2.2.

Proof of Theorem 2.2. The main point is to consider the following func-
tional equations obtained in Proposition 5.1 of [7]:

F (x) = (1 + x+ x2)F (x4)− x4F (x16),(2.4)
xG(x) = (1 + x+ x2)G(x4)−G(x16).(2.5)

Now, we can use a classical trick when working in positive characteristic,
say p. In that case, taking pth powers of elements in the field of Laurent
power series Fp((x)) leads to very simple expressions. Indeed, we recall that
for any f(x) ∈ Fp((x)) we have the following fundamental equality:

(2.6) f(x)p = f(xp).

Thus, reducing (2.4) and (2.5) modulo 2, we infer from (2.6) that

F2(x) = (1 + x+ x2)F2(x)4 + x4F2(x)16,

xG2(x) = (1 + x+ x2)G2(x)4 −G2(x)16.

Consequently, F2 and G2 are algebraic functions over F2(X), as claimed.
On the other hand, it is easy to infer from (2.4) and (2.5) that F and

G are not rational functions: this follows from some easy considerations in-
volving the degree of rational functions; it also follows from other simple
observations as shown in [4] where the transcendence of both F and G is
derived. Then, combining Christol’s theorem and a classical theorem of Cob-
ham (see [2, Theorem 11.2.1]), we deduce that Fp and Gp are transcendental
over Fp(X) for every prime number p 6= 2. Note that the idea to combine
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Christol’s and Cobham’s theorems in such a way dates back to [3]. This
concludes the proof.

3. Proof of Theorem 1.3. All the material we will need for proving
Theorem 1.3 can be found in the monograph of K. Nishioka [10], which
serves as a reference about Mahler’s method.

Actually, we will derive Theorem 1.3 from the following result concerning
algebraic independence of values of the function G at algebraic points.

Proposition 3.1. Let q be a complex number such that 0 < |q| < 1.
Then the complex numbers G(q) and G(q4) are algebraically independent.

Before proving Proposition 3.1, we recall some results about Mahler’s
method. We will need in particular the following two results from [10]. The-
orem N1 below corresponds to a particular case of Theorem 4.2.1 in [10].

Theorem N1. Let m and d be two integers not smaller than 2 and let
f1, . . . , fm be analytic functions that converge in the complex open unit disc.
Suppose that f1, . . . , fm satisfy the following system of functional equations:

f1(zd)
...

fm(zd)

 = A(z)


f1(z)

...
fm(z)

 ,

where A(z) is an m × m matrix with entries in Q(z). If q is a non-zero
algebraic number with |q| < 1 and such that, for every positive integer k, qdk

is not a pole of A(z), then

trans.degQQ(f1(q), . . . , fm(q)) ≥ trans.degQ(z)Q(z)(f1(z), . . . , fm(z)).

In the case where m = 2 in Theorem N1, the following result appears
to be very useful to prove that the functions f1 and f2 are algebraically
independent over Q(z). It corresponds to Theorem 5.2 in [10].

Theorem N2. Use the notation of Theorem N1 with m = 2. For every
positive integer n, let g(n)

11 (z), g(n)
12 (z), g(n)

21 (z) and g(n)
22 (z) be the polynomials

defined by g
(n)
11 (z) g

(n)
12 (z)

g
(n)
21 (z) g

(n)
22 (z)

 := A(zdn−1
)A(zdn−2

) . . . A(zd)A(z).

If at least one of the functions f1 and f2 is transcendental over C(z), and if
f1 and f2 are algebraically dependent over C(z), then there exists a positive
integer n0 such that at least one of the following conditions holds:

(i) g
(n)
12 (z) = 0 for every n = kn0, k = 1, 2, . . . ;
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(ii) g
(n)
21 (z) = 0 for every n = kn0, k = 1, 2, . . . ;

(iii) there exist a positive integer e and relatively prime polynomials a(z)
and b(z) in C[z] such that

b(z)
a(z)

=
b(z4n

)g(n)
11 (ze) + a(z4n

)g(n)
21 (ze)

b(z4n)g(n)
12 (ze) + a(z4n)g(n)

22 (ze)
for every n = kn0, k = 1, 2, . . . .

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Our starting point is equation (2.5) that we
recall below:

(3.1) zG(z) = (1 + z + z2)G(z4)−G(z16).

Set f1(z) := G(z) and let f2 be the analytic function defined by f2(z) :=
G(z4). Then we infer from (3.1) that f1 and f2 satisfy the following system
of functional equations:

(3.2)

(
f1(z4)
f2(z4)

)
= A(z)

(
f1(z)
f2(z)

)
,

where

A(z) :=

(
0 1
−z 1 + z + z2

)
.

Now we easily infer from Theorem N1 with m = 2 and d = 4 that, if the
functions f1 and f2 are algebraically independent over the field C(z), then
the complex numbers f1(q) and f2(q) are algebraically independent for every
complex number such that 0 < |q| < 1, as claimed.

To end the proof of Proposition 3.1, it remains to prove that f1 and
f2 are algebraically independent functions over C(z). To do so, we will use
Theorem N2. For every positive integer n, we define the polynomials g(n)

11 (z),
g
(n)
12 (z), g(n)

21 (z) and g
(n)
22 (z) by

An(z) :=

 g
(n)
11 (z) g

(n)
12 (z)

g
(n)
21 (z) g

(n)
22 (z)

 := A(z4n−1
)A(z4n−2

) . . . A(z4)A(z).

From now on, we assume that f1 and f2 are algebraically dependent and we
aim at deriving a contradiction. Since we already observed that f1 = G is a
transcendental function over Q(z) and thus over C(z) (the coefficients of G
are integers), we infer that at least one of the conditions (i), (ii) and (iii) of
Theorem N2 holds.

We first prove that (i) and (ii) both lead to a contradiction. Indeed, we
can easily deduce from their formulation the following recurrence relations
linking the polynomials gn

ij(z):
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g
(n+1)
11 (z) = g

(n)
21 (z), g

(n+1)
12 (z) = g

(n)
22 (z),(3.3)

g
(n+1)
21 (z) = −z4g

(n)
11 (z) + (1 + z4n

+ z24n
)g(n)

21 (z),(3.4)

g
(n+1)
22 (z) = −z4g

(n)
12 (z) + (1 + z4n

+ z24n
)g(n)

22 (z).(3.5)

From these relations we can show by induction that, for every positive inte-
ger n,

deg g(n+1)
21 (z) = 2 · 4n + deg g(n)

21 (z), deg g(n+1)
22 (z) = 2 · 4n + deg g(n)

22 (z).

We then obtain the following equality:(
deg g(n)

11 (z) deg g(n)
12 (z)

deg g(n)
21 (z) deg g(n)

22 (z)

)
=

(
2
(

4n−1−1
3

)
− 1 2

(
4n−1−1

3

)
2
(

4n−1
3

)
− 1 2

(
4n−1

3

) )
.

Since all degrees increase, we deduce that neither (i) nor (ii) can hold true.
It remains to prove that condition (iii) cannot be satisfied. Let us assume

that (iii) holds. Then there exist a positive integer e and relatively prime
polynomials a(z) and b(z) in C[z] such that

b(z)
a(z)

=
b(z4n

)g(n)
11 (ze) + a(z4n

)g(n)
21 (ze)

b(z4n)g(n)
12 (ze) + a(z4n)g(n)

22 (ze)
for every n = kn0, k = 1, 2, . . . .

We can rewrite this equality as follows:

a(z4n
)

b(z4n)
=

a(z)g(n)
11 (ze)− b(z)g(n)

12 (ze)

−a(z)g(n)
21 (ze) + b(z)g(n)

22 (ze)
for every n = kn0, k = 1, 2, . . . .

By assumption, a(z4n
) and b(z4n

) are relatively prime and there exist poly-
nomials c(n)(z) such that

a(z4n
)c(n)(z) = a(z)g(n)

11 (ze)− b(z)g(n)
12 (ze),(3.6)

b(z4n
)c(n)(z) = −a(z)g(n)

21 (ze) + b(z)g(n)
22 (ze).(3.7)

It follows that c(n)(z) divides the determinant of the matrix An(z), that is,

c(n)(z) | (−1)nz(4n−1)/3.

We infer from (3.6) that

a(1)c(n)(1) = a(1)g(n)
11 (1)− b(1)g(n)

12 (1)

and thus

(3.8) |a(1)| = |a(1)g(n)
11 (1)− b(1)g(n)

12 (1)|.

Also, we infer from (3.7) that

(3.9) |b(1)| = |−a(1)g(n)
21 (1) + b(1)g(n)

22 (1)|.
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On the other hand, we deduce from (3.3)–(3.5) that for every pair of
integers i and j in {1, 2}, we have the following recurrence relation:

g
(n+1)
ij (1) = 3g(n)

ij (1)− g(n−1)
ij (1), ∀n ≥ 2.

The polynomial associated with this recurrence is X2 − 3X + 1. It has two
roots

θ1 =
3 +
√

5
2

and θ2 =
3−
√

5
2
·

Consequently, for every pair of integers i and j in {1, 2} there exist real
coefficients λij and λ′ij such that

g
(n)
ij (1) = λijθ

n
1 + λ′ijθ

n
2

for every integer n ≥ 2. We thus infer from (3.8) that

|a(1)| = |(a(1)λ11 − b(1)λ12)θn
1 + (a(1)λ11 − b(1)λ12)θn

2 |

and from (3.9) that

|b(1)| = |(−a(1)λ21 + b(1)λ22)θn
1 + (−a(1)λ21 + b(1)λ22)θn

2 |.

Since θ1 > 1 and θ2 < 1, we obtain a(1) = b(1) = 0. It follows that the poly-
nomial X − 1 divides both a(z) and b(z). This is a contradiction since a(z)
and b(z) are relatively prime polynomials. This ends the proof of Proposition
3.1.

We are now going to show how Theorem 1.3 follows from Proposition 3.1.

Proof of Theorem 1.3. By Proposition 3.1, we immediately see that G
takes transcendental values at every non-zero algebraic point that belongs
to the complex open unit disc.

It thus remains to prove that the same holds for the function F . In [7,
(5.4)], the authors proved that for every complex number q with |q| < 1,

(3.10) G(q) = qF (q2) +G(q4).

Let q be a non-zero algebraic number with |q| < 1. Set u =
√
q. Thus, u

is also a non-zero algebraic number with modulus less than 1 and we infer
from (3.10) that

F (q) = (G(u)−G(u4))/u.

By Proposition 3.1, the quantity on the right-hand side is transcendental,
hence F (q) is transcendental. This concludes the proof.

4. Proofs of Theorems 1.1 and 1.2. Theorem 1.1 is a straightforward
consequence of an old result of Mahler [9] that we recall below.
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Let d ≥ 2 be an integer and let f(z) be an analytic function defined on
the complex open unit disc. Let us assume that

(4.1) f(zd) =
∑m

k=0 ak(z)f(z)k∑m
k=0 bk(z)f(z)k

,

where m < d and ak(z), bk(z) ∈ Z[z]. Let ∆(z) denote the resultant of∑m
k=0 ak(z)uk and

∑m
k=0 bk(z)uk viewed as polynomials in u.

Theorem M. Let q be an algebraic number such that 0 < |q| < 1 and
∆(qdn

) 6= 0 for every non-negative integer n. Then f(q) is transcendental.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We infer from the definition of C (see (1.1)) that
for every algebraic number q with |q| > 1 we have

(4.2) C(q) = q +
1
C(q2)

.

We now define an analytic function f on the open unit disc by setting
f(z) := C(z−1) for 0 < |z| < 1 and f(0) := 0. For every complex number q
with 0 < |q| < 1, (4.2) gives

f(q) =
1
q

+
1

f(q2)
.

This can be rewritten as the following Mahler type equation:

f(z2) =
z

zf(z)− 1
.

Furthermore, f(z) is a transcendental function over Q(z). There are sev-
eral ways to confirm this claim; for instance, it follows from the fact that
f(1/2) = C(2) is a transcendental number (see Proposition 7.1 in [7]). With
the notation of Theorem M we obtain ∆(z) = z and thus ∆(q2

n
) 6= 0 when

q 6= 0. Consequently, Theorem M implies that f(q) is transcendental for
every algebraic number q with 0 < |q| < 1. Hence C(q) is transcendental for
every algebraic number q with |q| > 1, as claimed.

We now prove Theorem 1.2 as a consequence of Proposition 3.1 and a
result from [7].

Proof of Theorem 1.2. By Proposition 6.4 of [7], we know that F (u) 6= 0
and G(u) 6= 0 for every complex number u with |u| < 1. We thus infer from
(3.10) that

(4.3)
F (u2)
G(u4)

=
1
u

(
G(u)
G(u4)

− 1
)

for every algebraic number u with 0 < |u| < 1.
Let q be a non-zero algebraic number with |q| < 1. Set u := q3/2. Thus,

u is also a non-zero algebraic number lying in the open unit disc, and (4.3)
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gives
qF (q3)
G(q6)

=
u2/3F (u2)
G(u4)

=
1
u1/3

(
G(u)
G(u4)

− 1
)
.

Furthermore, by Proposition 3.1, the right-hand side is a transcendental
number. Thus, qF (q3)/G(q6) is transcendental. By Theorem DS, so is Cev(q),
which ends the proof in that case.

We now infer from (3.10) that, for every non-zero complex number u
with |u| < 1,

(4.4)
G(u)
F (u2)

= u

(
1 +

G(u4)
G(u)−G(u4)

)
.

Let q be an algebraic number with 0 < |q| < 1. Set u := q3. Thus, u is also
a non-zero algebraic number lying in the open unit disc, and (4.4) gives

G(q3)
q2F (q6)

=
G(u)

u2/3F (u2)
= u1/3

(
1− G(u4)

G(u)−G(u4)

)
.

Furthermore, by Proposition 3.1, the right-hand side is a transcendental
number. Thus, G(q3)/q2F (q6) is transcendental. By Theorem DS, so is
Cod(q), which ends the proof.

Acknowledgments. The author is supported by the ANR through the
project “DyCoNum”-JCJC06 134288.

References

[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Ex-
pansions in integer bases, Ann. of Math. 165 (2007), 547–565.

[2] J.-P. Allouche and J. O. Shallit, Automatic Sequences: Theory, Applications, Gen-
eralizations, Cambridge Univ. Press, Cambridge, 2003.

[3] G. Christol, T. Kamae, M. Mendès France et G. Rauzy, Suites algébriques, auto-
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