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On Jacobi sums in Q(ζp)

by

Bruno Anglès (Caen) and Filippo A. E. Nuccio (Roma)

Let p be a prime number, p ≥ 5. Iwasawa has shown that the p-adic
properties of Jacobi sums for Q(ζp) are linked to Vandiver’s Conjecture
(see [5]). In this paper, we follow Iwasawa’s ideas and study the p-adic
properties of the subgroup J of Q(ζp)∗ generated by Jacobi sums.

Let A be the p-Sylow subgroup of the class group of Q(ζp). If E denotes
the group of units of Q(ζp), then if Vandiver’s Conjecture is true for p, by
Kummer theory and class field theory, there is a canonical surjective map

Gal(Q(ζp)(
p√
E)/Q(ζp))→ A−/pA−.

Note that J is, for the “minus” part, the analogue of the group of cyclotomic
units. We introduce a submodule W of Q(ζp)∗ which was already considered
by Iwasawa [6]. This module can be thought of, for the minus part, as the
analogue of the group of units. We observe that J ⊂W and if the Iwasawa–
Leopoldt Conjecture is true for p then W (Q(ζp)∗)p = J(Q(ζp)∗)p. We prove
that if pA− = {0} then (Corollary 4.8) there is a canonical surjective map

Gal(Q(ζp)(
p√
W )/Q(ζp))→ A+/pA+.

The last part of our paper is devoted to the study of the jacobian of the
Fermat curve Xp + Y p = 1 over F` where ` is a prime number, ` 6= p.
It is well-known that Jacobi sums play an important role in the study of
that jacobian. Following ideas developed by Greenberg [4], we prove that
Vandiver’s Conjecture is equivalent to some properties of that jacobian (for
a precise statement see Corollary 5.3).

1. Notations. Let p be a prime number, p ≥ 5. Let ζp ∈ µp \ {1}, and
let L = Q(ζp). Set O = Z[ζp] and E = O∗. Let ∆ = Gal(L/Q) and let
∆̂ = Hom(∆,Z∗p). Let I be the group of fractional ideals of L which are
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prime to p, and let P be the group of principal ideals in I. Let A be the
p-Sylow subgroup of the ideal class group of L.

Set π = ζp − 1, K = Qp(ζp), U = 1 + π2Zp[ζp]. Observe that if A ∈ P,
then there exists α ∈ L∗ ∩ U such that A = αO. If H is a subgroup of U,
we will denote the closure of H in U by H. Let ω ∈ ∆̂ be the Teichmüller
character, i.e.

∀σ ∈ ∆, σ(ζp) = ζω(σ)
p .

For ρ ∈ ∆̂, we set

eρ =
1

p− 1

∑
δ∈∆

ρ−1(δ)δ ∈ Zp[∆].

If M is a Zp[∆]-module, for ρ ∈ ∆̂, we set

M(ρ) = eρM.

For ψ ∈ ∆̂, ψ odd, recall that

B1,ψ =
1
p

p−1∑
a=1

aψ(a).

Set

θ =
1
p

p−1∑
a=1

aσ−1
a ∈ Q[∆],

where σa ∈ ∆ is such that σa(ζp) = ζap . Observe that we have the following
equality in C[∆]:

θ =
N

2
+

∑
ψ∈ b∆,ψ odd

B1,ψ−1eψ,

where N =
∑

δ∈∆ δ.
If M is a Z[∆]-module, we set

M− = {m ∈M : σ−1(m) = −m}, M+ = {m ∈M : σ−1(m) = m}.
If M is an abelian group of finite type, we set

M [p] = {m ∈M : pm = 0}, dpM = dimFpM/pM.

2. Background on Jacobi sums. Let Cl(L) be the ideal class group
of L. Then Cl(L) ' I/P. Note that we have a natural Z[∆]-morphism (see
[6, pp. 102–103])

φ : (AnnZ[∆]Cl(L))− → HomZ[∆](Cl(L), E+/(E+)2).

For the convenience of the reader, we recall the construction of φ. Let x ∈
(AnnZ[∆]Cl(L))− and A ∈ I. We have Ax = γaO, where γa ∈ L∗ ∩ U. Now,

γa = εaγ
−1
a
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for some εa ∈ E+∩U. One can prove that we obtain a well-defined morphism
of Z[∆]-modules φ(x) : Cl(L)→ E+/(E+)2, class of A 7→ class of εa. In this
section, we will study the kernel of the morphism φ.

Let W be the set of elements f ∈ HomZ[∆](I, L∗) such that:

• f(I) ⊂ U,
• there exists β(f) ∈ Z[∆] such that f(αO) = αβ(f) for all α ∈ L∗ ∩ U .

One can prove that if f ∈ W then β(f) is unique, the map β :W → Z[∆]
is an injective Z[∆]-morphism and β(W) ⊂ AnnZ[∆](Cl(L)) (see [2]). If B
denotes the group of Hecke characters of type (A0) that have values in Q(ζp)
(see [6]), then one can prove that B is isomorphic to W.

Lemma 2.1. Kerφ = β(W−).

Proof. We just prove the inclusion Kerφ ⊂ β(W−). Let x ∈ Kerφ. Let
A ∈ I. Then there exists a unique γa ∈ L∗ ∩ U such that γaγa = 1 and

Ax = γaO.

Let f : I → L∗, A 7→ γa. It is not difficult to see that f ∈ HomZ[∆](I, L∗)
and f(I) ⊂ U. Now, if α ∈ L∗ ∩ U, we have

f(αO) = αxu

for some u ∈ E. Since x ∈ Z[∆]− and α, f(αO) ∈ U, we must have u = 1.
Therefore f ∈ W− and x = β(f).

Now, we recall some basic properties of Gauss and Jacobi sums (we refer
the reader to [12, Sec. 6.1]).

Let P be a prime ideal in I and let ` be the prime number such that
` ∈ P. We fix ζ` ∈ µ` \ {1}. Set FP = O/P . Let χP : F∗P → µp be such that

∀α ∈ F∗P , χP (α) ≡ α(1−NP )/p (mod P ),

where NP = |O/P |. For a ∈ Z/pZ, we set

τa(P ) = −
∑
α∈FP

χaP (α)ζ
TrFP /F` (α)

` .

We also set τ(P ) = τ1(P ). For a, b ∈ Z/pZ, we set

ja,b(P ) = −
∑
α∈FP

χaP (α)χbP (1− α).

Then:

• if a+ b ≡ 0 (mod p), we have:

(i) if a 6≡ 0 (mod p), then ja,b(P ) = 1,
(ii) if a ≡ 0 (mod p), then ja,b(P ) = 2−NP,
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• if a+ b 6≡ 0 (mod p), we have

ja,b(P ) =
τa(P )τb(P )
τa+b(P )

.

Observe that τ(P ) ≡ 1 (mod π), and therefore (see [5, Theorem 1])

∀a, b ∈ Z/pZ, ja,b(P ) ∈ U.
Let Ω be the compositum of the fields Q(ζ`) where ` runs through the
prime numbers distinct from p. The map P 7→ τ(P ) induces by linearity a
Z[∆]-morphism

τ : I → Ω(ζp)∗.

Let G be the Z[∆]-submodule of HomZ[∆](I, Ω(ζp)∗) generated by τ. We set

J = G ∩HomZ[∆](I, L∗).
Let S be the Stickelberger ideal of L, i.e. S = Z[∆]θ ∩ Z[∆]. Then one can
prove the following facts (see [2]):

• J ⊂ W,
• the map β : W → Z[∆] induces an isomorphism J ' S of Z[∆]-

modules.

Lemma 2.2. Let N ∈ HomZ[∆](IL, L∗) be the ideal norm map. Then, as
a Z-module,

J = NZ⊕
(p−1)/2⊕
n=1

j1,nZ.

Proof. Recall that, for 1 ≤ n ≤ p− 2 and a prime P in I, we have

j1,n(P ) = −
∑
α∈FP

χP (α)χnP (1− α) =
τ(P )τn(P )
τn+1(P )

.

Thus, for 1 ≤ n ≤ p− 2,

j1,n = τ1+σn−σ1+n =
ττn
τn+1

,

where τσa = τa for a ∈ F∗p. Observe that

∀a ∈ F∗p, τaτ−a = N .
Thus N ∈ J . Since J ' S, J is a Z-module of rank (p + 1)/2. It is not
difficult to show that (see [5, Lemma 2])

J = τpZ⊕
(p−1)/2⊕
a=1

τ−aτ
aZ.

Observe also that, for 2 ≤ n ≤ p− 2, we have

j1,p−n = j1,n−1.
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Let V be the Z-submodule of J generated by N and the j1,n, 1 ≤ n ≤
(p− 1)/2. Then j1,n ∈ V for 1 ≤ n ≤ p− 2. Furthermore,

p−2∏
n=1

j1,n =
τp

N
.

Therefore τp ∈ V. Since τ−1τ
1 = N , τ−1τ

1 ∈ V. Now, let 2 ≤ r ≤ (p− 1)/2
and assume that we have proved that τ−(r−1)τ

r−1 ∈ V. We have

j1,r−1 =
ττr−1

τr
=
N ττ−1

1−r

N τ−1
−r

.

Thus
τ−r = j−1

1,r−1τ1−rτ
−1 and τ−rτ

r = j−1
1,r−1τ−(r−1)τ

r−1.

Hence τ−rτ r ∈ V and the lemma follows.

Lemma 2.3. Let ` be a prime number, ` 6= p. Let P be a prime ideal of
O above ` and let a ∈ {1, . . . , p − 2}. Then Q(j1,a(P )) = L if and only if
` ≡ 1 (mod p) and a2 + a+ 1 6≡ 0 (mod p) if p ≡ 1 (mod 3).

Proof. Since j1,a(P ) ≡ 1 (mod π2) and j1,a(P )j1,a(P )σ−1 = `f where f
is the order of ` in (Z/pZ)∗, we have

∀σ ∈ ∆, j1,a(P )σ = j1,a(P ) ⇔ j1,a(P )σO = j1,a(P )O.
Recall that

∀σ ∈ ∆, j1,a(P )σO = j1,a(P )O ⇔ P (σ−1)(1+σa−σ1+a)θ = O.
Since j1,a(P )σ` = j1,a(P ), we can assume ` ≡ 1 (mod p). Let σ ∈ ∆. We
have to consider the following equation in C[∆]:

(σ − 1)(1 + σa − σ1+a)θ = 0.

This is equivalent to

∀ψ ∈ ∆̂, ψ odd, (ψ(σ)− 1)(1 + ψ(a)− ψ(1 + a)) = 0.

Assume that ω3(σ) 6= 1. Then

1 + ω3(a)− ω3(1 + a) = 0.

This implies a2 + a ≡ 0 (mod p), which is a contradiction. Thus ω3(σ) = 1.
Suppose that σ 6= 1. We get 1 + ω(a) = ω(1 + a), which is equivalent to

a2 + a+ 1 ≡ 0 (mod p).

Conversely, one can see that if p ≡ 1 (mod 3), a2 + a+ 1 ≡ 0 (mod p), and
ω3(σ) = 1, then

∀ψ ∈ ∆̂, ψ odd, (ψ(σ)− 1)(1 + ψ(a)− ψ(1 + a)) = 0.

The lemma follows.
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For x ∈ Zp, let [x] ∈ {0, . . . , p− 1} be such that x ≡ [x] (mod p). We set

η =
(p−2∏
n=1

j
[n−1]
1,n

)1−σ−1

∈ J −.

Lemma 2.4.

(a) Let ψ ∈ ∆̂, ψ 6= ω, ψ odd. Then

eψ

(p−2∑
n=1

(1 + σn − σ1+n)[n−1]
)
∈ Z∗peψ.

(b) We have

1
p
eω

(p−2∑
n=1

(1 + σn − σ1+n)[n−1]
)
∈ Z∗peω.

Proof. (a) Write ψ = ωk, k odd, k ∈ {3, . . . , p− 2}. We have
p−2∑
n=2

(1 + ψ(n)− ψ(1 + n))[n−1] ≡
p−1∑
n=1

1 + nk − (1 + n)k

n
≡ k (mod p).

This implies (a).
(b) We have

∀a ∈ F∗p, ω(a) ≡ ap (mod p2).

Thus

1
p

p−2∑
n=1

(1 + ω(n)− ω(1 + n))[n−1] ≡ −
p−1∑
n=1

p−1∑
k=1

p!
(p− k)!k!p

nk−1 (mod p),

and we get

1
p

p−2∑
n=1

(1 + ω(n)− ω(1 + n))[n−1] ≡ −1 (mod p).

This implies (b).

Lemma 2.5. Let ` be a prime number, ` 6= p. Let V` be the Z[∆]-
submodule of L∗/(L∗)p generated by {f(P ) : f ∈ J } where P is some prime
of I above `. Let ψ ∈ ∆̂, ψ odd and ψ 6= ω. Then

V`(ψ) = Fpeψη(P ).

Proof. Let E = L(ζ`). Then
L∗

(L∗)p
(ψ) ↪→ E∗

(E∗)p
(ψ).

Now, in E∗

(E∗)p (ψ), we have V`(ψ) = Fpeψτ(P ). It remains to apply Lemma
2.4.



Jacobi sums in Q(ζp) 205

Finally, we record the following lemma:

Lemma 2.6. We have

(J − : Z[∆]η) = 2(p−3)/2 1
p

∏
ψ∈ b∆,ψ odd

(p−2∑
n=1

(1 + ψ(n)− ψ(1 + n))[n−1]
)
.

Furthermore (J − : Z[∆]η) 6≡ 0 (mod p).

Proof. Set J̃ − = (1− σ−1)J ⊂ J −. Then (see [12, Sec. 6.4]):

(J − : J̃ −) = 2(p−3)/2.

Now, by the same kind of argument as in [12, Sec. 6.4], we get

(J̃ − : Z[∆]η) =
1
p

∏
ψ∈ b∆,ψ odd

(p−2∑
n=1

(1 + ψ(n)− ψ(1 + n))[n−1]
)
.

It remains to apply Lemma 2.4 to conclude the proof.

3. Jacobi sums and the ideal class group of Q(ζp). Recall that
the Iwasawa–Leopoldt Conjecture ([9, p. 258]) asserts that A is a cyclic
Zp[∆]-module. This conjecture is equivalent to:

∀ψ ∈ ∆̂, ψ odd, ψ 6= ω, A(ψ) ' Zp/B1,ψ−1Zp.
It is well-known (see [12, Theorem 10.9]) that

∀ψ ∈ ∆̂, ψ odd, ψ 6= ω, A(ωψ−1) = {0} ⇒ A(ψ) ' Zp/B1,ψ−1Zp.
In this section, we will study the links between Jacobi sums and the structure
of A−.

We fix ψ ∈ ∆̂, ψ odd and ψ 6= ω. We set

m(ψ) = vp(B1,ψ−1).

Recall that, by [12, Sec. 13.6], we have |A(ψ)| = pm(ψ). Let pk(ψ) be the
exponent of the group A(ψ). Then

B1,ψ−1 ≡ 0 (mod pk(ψ)).

Lemma 3.1. Let P be a prime ideal in I above a prime number `. Then

eψη(P )O = 0 in I/Ip ⇔ ψ(`) 6= 1 or B1,ψ−1 ≡ 0 (mod p).

Proof. First note that, if ρ ∈ ∆̂, then eρP = 0 in I/Ip if and only if
ρ(`) 6= 1. By the Stickelberger Theorem, we have

η(P )O =
(p−2∑
n=1

(1 + σn − σ1+n)[n−1]
)

(1− σ−1)θP.

Recall that eψθ = B1,ψ−1eψ. The lemma follows.
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Lemma 3.2. Let f ∈ W−. Then f lies in Wp if and only if f(P ) ∈ (L∗)p

for all prime ideals P ∈ I.

Proof. Let f ∈ W− be such that f(P ) ∈ (L∗)p for all prime ideals P ∈ I.
Let A ∈ I. Then there exists γa ∈ L∗∩U such that γaγa = 1 and f(A) = γpa.
Observe that β(f) ∈ p(Z[∆])−. Let g : I → L∗, A 7→ γa. Then one can verify
that f = gp and g ∈ W−.

Let m ≥ 1 be such that pm > |A|. Set n = |Cl(L)|/|A|. Let em(ψ) ∈
Z[∆]− be such that

em(ψ) ≡ eψ (mod pm).

Set
βψ = 2npk(ψ)em(ψ) ∈ Z[∆]−.

Since npk(ψ)em(ψ) ∈ (AnnZ[∆]Cl(L))−, by Lemma 2.1 there exists a unique
element fψ ∈ W− such that β(fψ) = βψ. Recall that

(AnnZp[∆]A)(ψ) = pk(ψ)Zpeψ.

Therefore, for 0 ≤ k ≤ m, W−

(W−)pk
(ψ) is cyclic of order pk generated by the

image of fψ. We set

W = {f(A) : A ∈ I, f ∈ W}, J = {f(A) : A ∈ I, f ∈ J }.
Observe that J is a Z[∆]-submodule of W, and it is called the module of
Jacobi sums of Q(ζp). Note that, by Lemma 3.2 and the fact that WWp (ψ) 6=
{0} (recall that ψ is odd and ψ 6= ω), we have

W (L∗)p

(L∗)p
(ψ) 6= {0}.

Theorem 3.3. The map fψ induces an isomorphism of groups

A(ψ) ' W (L∗)p
k(ψ)

(L∗)pk(ψ)
(ψ).

Proof. First observe that m ≥ k(ψ) + 1. Let P be a prime in I. Then

fψ(P )O = P βψ .

Let ρ ∈ ∆̂, ρ 6= ψ. Then

em(ρ)em(ψ) ≡ 0 (mod pm).

Therefore, there exists γ ∈ L∗ ∩ U such that:

P (1−σ−1)nem(ρ)em(ψ) =
(

γ

σ−1(γ)

)p
O.

But (1− σ−1)em(ψ) = 2em(ψ). Thus, there exists α ∈ L∗ ∩U, ασ−1(α) = 1,
and

fψ(P )em(ρ) = αp
k(ψ)+1

.
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Therefore, eρfψ(I) = 0 in L∗/(L∗)p
k(ψ)+1

. It is clear that fψ induces a mor-
phism

I
(I)pmP

(ψ)→ L∗

(L∗)pk(ψ)
(ψ).

Now, let P be a prime in I such that eψfψ(P ) = 0 in L∗

(L∗)p
k(ψ) (ψ). Then,

by the above remark, we get fψ(P ) = 0 in L∗/(L∗)p
k(ψ)

. Thus, there exists
γ ∈ L∗ ∩ U such that

P βψ = γp
k(ψ)O.

Thus P 2nem(ψ) = γO. This implies

eψP = 0 in
I

(I)pmP
(ψ).

Thus our map is injective. Now, observe that the image of the map induced

by fψ is W (L∗)p
k(ψ)

(L∗)p
k(ψ) (ψ) and that A(ψ) ' I

(I)pmP (ψ). The theorem follows.

Recall that

η =
(p−2∏
n=1

j
[n−1]
1,n

)1−σ−1

∈ J −.

Set

z = (1− σ−1)
p−2∑
n=1

(1 + σn − σ1+n)[n−1] ∈ Z[∆]−.

We have β(η) = zθ.

Corollary 3.4.

(1) The map η induces an isomorphism of groups

A(ψ) ' J(L∗)p
m(ψ)

(L∗)pm(ψ)
(ψ).

(2) J(L∗)p

(L∗)p (ψ) 6= {0} if and only if A(ψ) is Zp-cyclic.

Proof. (1) Let P be a prime in I. Then one can show that

fψ(P )zθ = η(P )2np
k(ψ)em(ψ).

The first assertion follows from Theorem 3.3.
(2) Note that A(ψ) is Zp-cyclic ⇔ m(ψ) = k(ψ). Thus, if A(ψ) is Zp-

cyclic, then
J(L∗)p

(L∗)p
(ψ) =

W (L∗)p

(L∗)p
(ψ) 6= {0}.

By the proof of (1), if k(ψ) < m(ψ) and if P is a prime in I, then η(P )em(ψ)

∈ (L∗)p. Therefore, we get (2).
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4. The p-adic behavior of Jacobi sums. Let M be a subgroup of
L∗/(L∗)p. We say that M is unramified if L( p

√
M)/L is an unramified ex-

tension. Note that Kummer’s Lemma asserts that ([12, Theorem 5.36])

∀ρ ∈ ∆̂, ρ even, ρ 6= 1,
E

Ep
(ρ) is unramified ⇒ B1,ρω−1 ≡ 0 (mod p).

It is natural to ask if this implication is in fact an equivalence (see [1], [3]).
We will say that the converse of Kummer’s Lemma is true for the character
ρ if

E

Ep
(ρ) is unramified ⇔ B1,ρω−1 ≡ 0 (mod p).

In this section, we will study this question with the help of Jacobi sums.
Let F/L be the maximal abelian p-extension of L which is unramified

outside p. Set X = Gal(F/L). We have an exact sequence of Zp[∆]-modules
([12, Corollary 13.6])

0→ U/E → X → A→ 0.

Let ρ ∈ ∆̂ and observe that:

• if ρ = 1, ω then X (ρ) ' Zp,
• if ρ is even, ρ 6= 1, then X (ρ) ' TorZp X (ρ),
• if ρ is odd, ρ 6= ω, then X (ρ) ' Zp ⊕ TorZp X (ρ).

Lemma 4.1. Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Then

dp TorZp X (ψ) = dpA(ωψ−1).

Proof. This is a consequence of the proof of Leopoldt’s reflection theorem
([12, Theorem 10.9]). For the convenience of the reader, we give the proof.

Let H be the Galois group of the maximal abelian extension of L which
is unramified outside p and of exponent p. Then H is a Zp[∆]-module and
we have:

• H(1) ' Fp and corresponds to L(ζp2)/L,
• H(ω) ' Fp and corresponds to L( p

√
p)/L,

• if ρ is even, ρ 6= 1, then dpH(ρ) = dpTorZpX (ρ),
• if ρ is odd, ρ 6= ω, then dpH(ρ) = 1 + dpTorZpX (ρ).

Let V be the Z[∆]-submodule of L∗/(L∗)p which corresponds to H, i.e.
H = Gal(L( p

√
V )/L). Let M be the Z[∆]-submodule of L∗/(L∗)p generated

by E and 1− ζp. We have an exact sequence

0→M → V → A[p]→ 0.

Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. By Kummer theory we have

1 + dp TorZp X (ψ) = dpV (ωψ−1),
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and, by the above exact sequence,

dpV (ωψ−1) = 1 + dpA(ωψ−1).

The lemma follows.

Lemma 4.2. Let ρ ∈ ∆̂, ρ even and ρ 6= 1. If E
Ep (ρ) is ramified then

dpA(ρ) = dpA(ωρ−1).

Proof. We keep the notations of the proof of Lemma 4.1. Let V unr ⊂ V
correspond via Kummer theory to A/pA. Then

V unr(ρ) ' A

pA
(ωρ−1).

But E
Ep (ρ) is ramified if and only if V unr(ρ) ↪→ A[p](ρ). Now recall that

dpA(ρ) ≤ dpA(ωρ−1). The lemma follows.

Lemma 4.3. There exists a unique Z[∆]-morphism ϕ : K∗ → Zp[∆] such
that

∀x ∈ K∗, ϕ(x)ζp = Logp(x).

Furthermore,
Imϕ =

⊕
ρ=1,ω

pZpeρ ⊕
⊕
ρ6=1,ω

Zpeρ.

Proof. Let λ ∈ K∗ be such that λp−1 = −p. Then

K∗ = λZ × µp−1 × µp × U.
Recall that:

• the kernel of Logp on K∗ is equal to λZ × µp−1 × µp,
• Logp(U) = π2Zp[ζp].

For ρ ∈ ∆̂, set

τ(ρ) =
p−1∑
a=1

ρ(a)ζp ∈ Zp[ζp].

Then eρζp = τ(ρ−1). But recall that Zp[ζp] = Zp[∆]ζp. Thus

eρZp[ζp] = Zpτ(ρ−1).

If ρ = ωk, k ∈ {0, . . . , p− 2}, we have

vp(τ(ρ−1)) =
k

p− 1
.

Therefore
π2Zp[ζp] =

⊕
ρ=1,ω

pZpτ(ρ−1)⊕
⊕
ρ 6=1,ω

Zpτ(ρ−1).

The lemma follows.
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Let P be a prime in I. We fix a generator rP ∈ F∗P such that

χP (rP ) = ζp.

For x ∈ F∗P , let Ind(P, x) ∈ {0, . . . , NP − 2} be such that

x = r
Ind(P,x)
P .

We recall the following theorem (see also [10] for a statement similar but
weaker than part (2) below):

Theorem 4.4.

(1) ϕ(1− ζp) =
∑

ρ∈ b∆, ρ 6=1, ρ even
−(p− 1)−1Lp(1, ρ)eρ.

(2) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Write ψ = ωk, k ∈ {2, . . . , p− 2}. Then

eψϕ(η(P )) ≡ 2k Ind
(
P,

p−1∏
a=1

(
1− ζ−ap
1− ζp

)ak−1)
eψ (mod p).

Proof. (1) Let ρ ∈ ∆̂, ρ even, ρ 6= 1. By [12, Theorem 5.18], we have

Lp(1, ρ)τ(ρ−1) = −(p− 1)eρ Logp(1− ζp).

Thus the first assertion follows.
(2) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. By a beautiful result of Uehara ([11,

Theorem 1]), we have

eψ Logp(η(P )) ≡ 2k Ind
(
P,

p−1∏
a=1

(
1− ζ−ap
1− ζp

)ak−1)
τ(ψ−1) (mod p).

This implies the second assertion.

Theorem 4.5. Let ψ ∈ ∆̂, ψ 6= ω, ψ odd. We have exact sequences

0→ TorZp X (ψ)→ A(ψ)→W (ψ)/Up
k(ψ)

(ψ)→ 0,

0→ TorZp X (ψ)→ A(ψ)→ J(ψ)/Up
m(ψ)

(ψ)→ 0.

Proof. This is a consequence of the method developed by Iwasawa [5].
We briefly recall it.

Let f ∈ W. For n ≥ 2, set Pn = {αO : α ≡ 1 (mod πn)}. Observe that

f(Pn) ⊂ 1 + πnZp[ζp].

Let
X̃ = lim←−I/Pn.

If F̃ is the maximal abelian extension of L which is unramified outside p,
then, by class field theory,

X̃ ' Gal(F̃ /L).
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By [12, Theorem 13.4], the natural surjective map X̃ → X has a finite kernel
of order prime to p. Thus f induces a map

f̄ : X → U.

Furthermore,
f̄(U) = Uβ(f) ⊂ f̄(X ).

Now let ψ ∈ ∆̂, ψ odd, ψ 6= ω. We have a map

f̄ : X (ψ)→ U(ψ).

But
X (ψ) ' Zp ⊕ TorZp X (ψ) and U(ψ) ' Zp.

Thus, if eψβ(f) 6= 0, we get

Ker(f̄ : X (ψ)→ U(ψ)) = TorZp X (ψ).

Therefore, if eψβ(f) 6= 0, we get the following exact sequence induced by f :

0→ TorZp X (ψ)→ A(ψ)→ f̄(X )(ψ)/Uβ(f)(ψ)→ 0.

It remains to apply this construction to fψ and η to get the desired exact
sequences.

Corollary 4.6.

(1) Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. Then

dpA(ψ) = 1 + dpA(ωψ−1) ⇔ B1,ψ−1 ≡ 0 (mod p) and W (ψ) = U(ψ).

(2) Let ρ ∈ ∆̂, ρ even and ρ 6= 1. Assume that B1,ρω−1 ≡ 0 (mod p) and
that W (ωρ−1) = U(ωρ−1). Then the converse of Kummer’s Lemma is true
for the character ρ.

Proof. (1) We apply Theorem 4.5. We identify TorZp X (ψ) with its image
in A(ψ). We can write A(ψ) = B ⊕ C, where C is cyclic of order pk(ψ) and
B ⊂ TorZp X (ψ). Now,

(C : C ∩ TorZp X (ψ)) = (W (ψ) : Up
k(ψ)

(ψ)).

It remains to apply Lemma 4.1 to get the desired result.
(2) We apply the first assertion and Lemma 4.1 to deduce that dpA(ρ) =

dpA(ωρ−1)− 1. It remains to apply Lemma 4.2.

We set
W unr = {α ∈W : α ∈ Up}.

Let ψ ∈ ∆̂, ψ odd, ψ 6= ω. We assume that B1,ψ−1 ≡ 0 (mod p). Write

A(ψ) = Z/pe1Z⊕ · · · ⊕ Z/petZ,
where t = dpA(ψ) and 1 ≤ e1 ≤ · · · ≤ et = k(ψ). Set

n(ψ) = |{i ∈ {1, . . . , t} : ei = k(ψ)}|.
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Corollary 4.7. We have

n(ψ)− 1 ≤ dimFpW
unr(L∗)p/(L∗)p ≤ n(ψ).

Furthermore,

dimFpW
unr(L∗)p/(L∗)p = n(ψ) ⇔ W (ψ) 6= U(ψ).

Proof. By Theorems 4.5 and 3.3, we have

W unr(L∗)p
k(ψ)

/(L∗)p
k(ψ) ' Ker(A(ψ)→W (ψ)/Up

k(ψ)
(ψ)).

The corollary follows.

Corollary 4.8. Assume that pA− = {0}. Then we have an isomor-
phism of groups

Gal(L(
p√
W unr)/L) ' A+/pA+.

Proof. This is a consequence of Kummer theory, Corollary 4.7 and Corol-
lary 4.6.

Note that the above results lead to the following problem (which is a
restatement of the converse of Kummer’s Lemma): do we have ϕ(W−) =
(Imϕ)−? Observe that eωϕ(W−) = eω(Imϕ)−, and since K4(Z) = {0}, we
have A(ω−2) = {0} (see [7]) and therefore eω3ϕ(W−) = eω3(Imϕ)−.

5. Remarks on the jacobian of the Fermat curve over a finite
field. First we fix some notations and recall some basic facts about global
function fields.

Let Fq be a finite field having q elements. Let ` be the characteris-
tic of Fq, ` 6= p. Let Fq be a fixed algebraic closure of Fq and let F̃q =⋃
n≥1, n 6≡0 (mod p) Fqn ⊂ Fq. Let k/Fq be a global function field such that Fq

is algebraically closed in k. We set:

• Dk: the group of divisors of k,
• D0

k: the group of divisors of degree zero of k,
• Pk: the group of principal divisors of k,
• Jk: the jacobian of k; note that

∀n ≥ 1, Jk(Fqn) ' D0
Fqnk/PFqnk,

• gk: the genus of k,
• Lk(Z) ∈ Z[Z]: the numerator of the zeta function of k; we recall that

Lk(Z)
(1− Z)(1− qZ)

=
∏

v place of k

(1− Zdeg v)−1,

furthermore degZ Lk(Z) = 2gk and Lk(1) = |Jk(Fq)|,
• Ck(Fqn) = Jk(Fqn)⊗Z Zp,
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• d̃pJk = dpCk(F̃q); observe that there exists an integer m 6≡ 0 (mod p)
such that Ck(F̃q) = Ck(Fqm).

Write

Lk(Z) =
2gk∏
i=1

(1− αiZ).

For simplicity, we assume that vp(αi−1) > 0 for i = 1, . . . , 2gk. In this case,

Ck(F̃q) = Ck(Fq).

Set Pk(Z) =
∏2gk
i=1(Z − (αi − 1)). Let γ be the Frobenius of Fq, and set

Cn(k) = Ck(Fqpn ).

Let C∞(k) =
⋃
n≥0Cn(k), and set

Mk = Hom(Qp/Zp, C∞(k)).

Then Mk is isomorphic to the p-adic Tate module of Jk. Set Λ = Zp[[Z]]
where Z corresponds to γ − 1. Then it is well-known that:

• Mk is a Λ-module of finite type and of torsion,
• as a Zp-module, Mk is isomorphic to Z2gk

p ,
• Mk/ωnMk ' Cn(k), where ωn = (1 + Z)p

n − 1,
• CharΛMk = Pk(Z)Λ,
• the action of Z on Mk is semisimple, i.e. the minimal polynomial of

the action of Z on Mk has only simple roots.

Now, let ` be a prime number, ` 6= p. We fix a prime P of O above ` and
we viewO/P as a subfield of F`, thus Fq = O/P ⊂ F̃` . We identify ζp with its
image in Fq. Let X be an indeterminate over Fq. We set k = F`(X,Y ) where
Xp +Y p = 1, and we set T = Xp. For a, b ∈ Z, let τa,b ∈ Gal(F`k/F`(T )) be
such that

τa,b(X) = ζapX and τa,b(Y ) = ζbpY.

Let a ∈ {1, . . . , p−2}. Let Ha be the subgroup of Gal(F`k/F`(T )) generated
by τ1,[−a−1]. Set

Ea = F`(T,XY a).

If we set U = T and V = XY a, then V p − U(1 − U)a = 0 and of course
Ea = F`(U, V ). We set

E = FqEa, F = Fqk,

and observe that F̃` = F̃q. It is clear that FHa = E. Finally, we set

G = Gal(E/Fq(T )).

Note that gE = (p− 1)/2.



214 B. Anglès and F. A. E. Nuccio

Lemma 5.1. We have

LE(Z) =
∏
σ∈∆

(1− j1,a(P )σZ).

Proof. Let χ ∈ Ĝ be such that χ(g) = ζ−1
p , where g ∈ G is such that

g(XY a) = ζpXY
a. Note that

LE(Z) =
∏
σ∈∆

L(Z, χσ), where L(Z, χ) =
∏

v place of Fq(T )

(1−χ(v)Zdeg v)−1.

Since 2ge = p− 1, we get degZ L(Z, χ) = 1.
For b ∈ Fq \ {0, 1}, we denote the Frobenius of T − b in E/Fq(T ) by

Frobb. We have

Frobb(XY a) = (b(1− b)a)(q−1)/pXY a.

But
L(Z, χ) ≡ 1 +

( ∑
b∈Fq\{0,1}

χ(Frobb)
)
X (mod X2).

Thus
L(Z, χ) = 1 +

( ∑
b∈Fq\{0,1}

χ(Frobb)
)
X.

But we can write

j1,a(P ) = −
p−1∑
i=0

Niζ
−i
p ,

where Ni = |{α ∈ Fq \{0, 1} : (α(1−α)a)(q−1)/p ≡ ζ−ip (mod P )}|. Therefore

j1,a(P ) = −
∑

b∈Fq\{0,1}

χ(Frobb).

The lemma follows.

Theorem 5.2. Let n be the smallest integer (if it exists) such that 3 ≤
n ≤ p− 2, n is odd and eωnj1,a(P ) 6∈ Up. Then

Jk(F̃` )Ha ⊗Z Zp ' (Z/pZ)n.

If such an integer does not exist then:

(1) d̃pJHak = p− 1,
(2) we have

Jk(F̃` )Ha ⊗Z Zp ' (Z/pZ)p−1 ⇔ `p−1 6≡ 1 (mod p2).

Proof. The proof is based on ideas developed by Greenberg [4]. Write
H = Ha. Let P0 be the prime of E above T , P1 the prime of E above T − 1
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and P∞ the prime of E above 1/T . Recall that in DE we have

p(P0 − P∞) = (T ),
p(P1 − P∞) = (T − 1),

P0 − P∞ + a(P1 − P∞) = (XY a).

Thus, by [4, Sec. 2],
JE(Fq)G ' Z/pZ,

and JE(Fq)G is generated by the class of P0 − P∞. Observe also that F/E
is unramified and cyclic of order p. Let us start with the exact sequence

0→ F∗q → F ∗ → PF → 0.

We get
PHF /PE ' Z/pZ,

and PHF /PE is generated by the image of P0 − P∞ in DF . In particular,

PHF /PE ' JE(Fq)G.
Note that we also have

0→ H1(H,PF )→ H2(H,F∗q)→ H2(H,F ∗).

But F/E is unramified and cyclic, therefore every element of F∗q is a norm
in the extension F/E. Thus

H1(H,PF ) ' Z/pZ.
Now, we look at the exact sequence

0→ PF → D0
F → JF (Fq)→ 0.

Since F/E is unramified,

H1(H,D0
F ) = {0}.

Therefore, we have obtained the following exact sequence:

0→ JE(Fq)G → JE(Fq)→ JF (Fq)H → Z/pZ→ 0.

Now, it is not difficult to deduce that, for all n ≥ 1, we have the exact
sequence

0→ Z/pZ→ JE(Fqn)→ JF (Fqn)H → Z/pZ→ 0.

From this, we get the following exact sequence of Zp[G]-modules and Λ-
modules:

0→ME →MH
F → Z/pZ→ 0.

Recall that in our situation, by Lemma 5.1,

PE(Z) =
∏
σ∈∆

(Z − (j1,a(P )σ − 1)).

Furthermore the actions of G and Z commute on MH
F . Now, we have:
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• CharΛMH
F = CharΛME = PE(Z)Λ,

• MH
F ' Zp−1

p as Zp-modules,
• MH

F /ωn ' Cn(F )H .

Observe that
C0(F )H = Jk(F̃` )Ha ⊗Z Zp.

Note also that the minimal polynomial of the action of Z on MH
F is

Irr(j1,a(P )− 1,Qp;Z) := G(Z).

Set N =
∑

δ∈G δ. Then one can see that

NME = NMH
F = {0}.

Thus MH
F is a Zp[G]/NZp[G]-module. Now, we identify Zp[G]/NZp[G] with

Zp[ζp]. Since MH
F ' Zp−1

p , there exists m ∈MH
F such that

MH
F ' Zp[ζp].m,

i.e. MH
F is a free Zp[ζp]-module of rank one. Therefore there exists an element

x ∈ Zp[ζp] such that Zm = xm. Now set

D(Z) =
∏
σ∈∆

(Z − xσ) ∈ Λ.

Then D(Z)MH
F = {0}. Therefore G(Z) divides D(Z) in Λ. Thus there exists

σ ∈ ∆ such that
xσ = j1,a(P )− 1.

But
C0(F )H 'MH

F /ZM
H
F ' Zp[ζp]/xZp[ζp].

Therefore, we get

Jk(F̃` )Ha ⊗Z Zp ' Zp[ζp]/(j1,a(P )− 1)Zp[ζp].
Recall that j1,a(P ) ≡ 1 (mod π2). Thus

vp(j1,a(P )− 1) = vp(Logp(j1,a(P ))).

Now
Logp(j1,a(P )) =

1
2
f Logp(`) +

∑
ψ∈ b∆,ψ odd

eψ Logp(j1,a(P )),

where f is the order of ` in (Z/pZ)∗. Let ψ ∈ ∆̂, ψ = ωn, n odd. If
eψ Logp(j1,a(P )) 6= 0, then

vp(eψ Logp(j1,a(P ))) ≡ n

p− 1
(mod Z),

and furthermore

vp(eψ Logp(j1,a(P ))) >
n

p− 1
⇔ eψj1,a(P ) ∈ Up.
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Note also that
vp(eω Logp(j1,a(P ))) >

1
p− 1

.

The theorem follows.

Observe that the proof of the above theorem implies that we have an
isomorphism of Z[G]-modules

JEa(F̃` ) ' Jk(F̃` )Ha .

Corollary 5.3. Let n ∈ {3, . . . , p − 2}, n odd. Let a ∈ {1, . . . , p − 2}
be such that 1 + an − (1 + a)n 6≡ 0 (mod p). The following assertions are
equivalent:

(1) A(ω1−n) = {0},
(2) there exists a prime number ` 6= p such that d̃pJEa = n, where

Ea = F`(U, V ) and V p − U(1− U)a = 0.

Proof. Observe that (2) implies (1) by Theorems 5.2 and 4.5. Write
ψ = ωn. Let ` be a prime number, ` 6= p. Write

F(`) = O/`O and D` = F∗(`)/(F
∗
(`))

p.

Observe that D` is a Zp[∆]-module. Let Cyc be the group of cyclotomic
units of L. We denote the image of Cyc in D` by Cyc`. Then Theorem 4.4
asserts that eψCyc` = {1} in D` if and only if eψj1,a(P ) ∈ Up, where P is a
prime of O above `. Let

B = L( p
√

Cyc).

We assume that (1) holds. By the Chebotarev density theorem applied to
the extension B/L, there exist infinitely many primes ` such that:

• eρCyc` = {1} for ρ 6= ψ,
• eψCyc` 6= {1}.

It remains to apply Theorem 5.2 and the above remarks to get (2).

Now, let ` be a prime number. Let p be an odd prime number, p 6= `. Let
T be an indeterminate over F` and let Ep/F`(T ) be the imaginary quadratic
extension defined by

Ep = F`(T,X) where X2 −X + T p = 0.

Let n be an odd integer, n ≥ 3. Let Sn(`) denote the set of primes p such
that d̃pJEp = n. By our results above, if p ∈ Sn(`) then A(ω1−n) = {0}.
Observe that if `n 6≡ 1 (mod p) then p 6∈ Sn(`), and therefore Sn(`) is a finite
set. Set S(`) =

⋃
n Sn(`), where n runs through the odd integers. Observe

that if the order of ` modulo p is even then p 6∈ S(`). Therefore, by a classical
result of Hasse (see [8]) there exist infinitely many primes p not in S(`) (in
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fact at least “2/3 of the prime numbers” are not in S(`)). Thus, we ask the
following question: is S(`) infinite?
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