
ACTA ARITHMETICA

142.4 (2010)

Complexity of infinite sequences with zero entropy

by

Christian Mauduit (Marseille) and
Carlos Gustavo Moreira (Rio de Janeiro)

1. Introduction and notations. In the whole paper we denote by q
a fixed integer greater than or equal to 2, by A the finite alphabet A =
{0, 1, . . . , q−1}, by A∗ =

⋃
k≥0A

k the set of finite words on the alphabet A,
and by AN the set of infinite words (or infinite sequences of letters) on A.

For any positive integer n we denote by πn the projection from AN to An

defined by πn(w) = w1 . . . wn if w = w1w2 . . . with wi ∈ A for any positive
integer i.

If S is a finite set, we denote by |S| the number of elements of S.
If w ∈ AN we denote by L(w) the set of finite factors of w:

L(w) = {u ∈ A∗ : ∃ (u′, u′′) ∈ A∗ ×AN, w = u′uu′′}
and, for any nonnegative integer n, we write Ln(w) = L(w) ∩An.

If x is a real number, we denote

bxc = sup{n ∈ Z : n ≤ x}, dxe = inf{n ∈ Z : x ≤ n}.
Definition 1.1. The complexity function of w ∈ AN is defined for any

nonnegative integer n by pw(n) = |Ln(w)|.
The complexity function gives information about the statistical proper-

ties of an infinite sequence of letters. In this sense, it constitutes a possible
way to measure the random behaviour of the infinite sequence (see [Que] and
[PF], and see [MS1] and [MS2] for connections between measure of normality
and other measures of pseudorandomness).

Obviously 1 ≤ pw(n) ≤ qn for any positive integer n and it is easy to
check that the sequence (pw(n))n∈N is bounded if and only if w is ultimately
periodic. A basic result from [CH] shows that if there exists a positive in-
teger n such that pw(n) ≤ n, then (pw(n))n∈N is bounded. It follows that
non-ultimately periodic sequences w with lowest complexity are such that
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pw(n) = n + 1 for any positive integer n. Such sequences, called sturmian
sequences, have been extensively studied since their introduction by G. A.
Hedlund and M. Morse in [HM1] and [HM2] (see [Lot, Chapter 2] and [PF]).

It is interesting to notice that if w represents the q-adic expansion (resp.
the continued fraction expansion) of the irrational number ρ ∈ ]0, 1[, then
the combinatorial property of w being a sturmian sequence implies the arith-
metic property of ρ being a transcendental number (see [FM] (resp. [ADQZ])
and see [AB2] (resp. [AB1]) for a generalization to the case where w has a
sublinear complexity).

It is easy to prove the following lemma:

Lemma 1.2. For any w ∈ AN and any (n, n′) ∈ N2 we have Ln+n′(w) ⊂
Ln(w)Ln′(w) and so pw(n+ n′) ≤ pw(n)pw(n′).

Consequence 1. Lemma 1.2 implies that for any w ∈ AN, the sequence
(n−1 logq pw(n))n≥1 converges. We denote E(w) = limn→∞ n

−1 logq pw(n).

It can be shown (see for example [Kůr]) that E(w) log q is the topological
entropy of the symbolic dynamical system (X(w), T ) where T is the one-
sided shift on AN and X(w) = orbT (w) is the closure of the orbit of w
under the action of T in AN (AN is equipped with the product topology of
the discrete topology on A, i.e. the topology induced for example by the
distance d(w,w′) = exp(−min{n ∈ N : wn 6= w′n})).

Consequence 2. Another easy consequence of Lemma 1.2 is that if
there exists an integer n0 such that pw(n0) < qn0 , then pw(n) = o(qn).

This simple remark shows that there are necessary conditions to verify
for a nondecreasing sequence of integers (p(n))n∈N to be the complexity
function of some w ∈ AN (see for instance [Fer]). But the characterization
of all complexity functions (i.e. necessary and sufficient conditions for a
nondecreasing sequence of integers (p(n))n∈N to be the complexity function
of some w ∈ AN) remains an open problem.

Nevertheless, let us mention that J. Cassaigne gave a complete answer
to this question in the special case where p is linear ([Cas2]) and that some
partial results concerning the case where p is sublinear can be found in [Ale]
and [Cas1].

If we weaken the question by asking only which are the possible orders
of magnitude for complexity functions, the problem still remains open, but
it follows from an unpublished result due to J. Goyon [Goy] that for any
k ≥ 1 and any (α1, . . . , αk) in (1,+∞) × Rk−1, there exists w ∈ AN such
that pw(n) has order of magnitude nα1(log n)α2 · · · (log · · · log n)αk (see also
[Cas2] for the case 1 < α1 < 2).



Complexity of infinite sequences 333

There are many references concerning the construction of infinite se-
quences w with low complexity, i.e. such that pw(n) = O(nk) for some
k ≥ 1 (see [All] or [Fer] for a survey concerning these constructions). But, as
pointed out in [Cas3], “not many examples are known which have intermedi-
ate complexity, i.e. for which E(w) = 0 but log pw(n)/log n is unbounded”.
In [Cas3] J. Cassaigne constructed a large family of infinite sequences with
intermediate complexity and proved the following result:

Theorem 1.3. Let τ : R+ → R+ be a function such that:

(i) limt→+∞ τ(t)/log t = +∞,
(ii) τ is differentiable, except possibly at 0,
(iii) limt→+∞ τ

′(t)ta = 0 for some a > 0,
(iv) τ ′ is decreasing.

Then there exists w ∈ {0, 1}N such that log pw(n) ∼n→+∞ τ(n). Moreover,
w can be taken to be uniformly recurrent.

This construction is rich enough to include examples such that τ(n) = nα

(0 < α < 1), τ(n) = (log(n + 1))α (α > 1) or τ(n) = nα+β cos(log(n+1)γ)

(α > 0, |β| < α and γ ∈ R).
In the same spirit, our work provides, for any given function f satisfying

some reasonable conditions, a huge set of infinite words w such that pw is
close to f (Proposition 4.8).

2. Results

Definition 2.1. We say that a function f from N to R+ satisfies con-
ditions (C0) if

(i) f(n+ 1) > f(n) ≥ n+ 1 for any n ∈ N,
(ii) ∃n0 ∈ N, n ≥ n0 ⇒ f(2n) ≤ f(n)2 and f(n+ 1) ≤ f(1)f(n),
(iii) the sequence (n−1 logq f(n))n≥1 converges to zero.

Examples 2.2. Let us give two typical examples of functions satisfying
conditions (C0). In the rest of the paper, we will apply our results to these
two examples in order to help the reader understand them and to get a
precise idea about the order of magnitude of our estimates.

Example A: For each α ≥ 1, the function f is defined by f(0) = 1,
f(n) = n + q − 1 for 1 ≤ n < n0 and f(n) = nα for n ≥ n0, with n0 =
sup(2, 1/(q1/α − 1)).

Example B: For each 0 < α < 1, the function f is defined by f(0) = 1,
f(n) = n + q − 1 for 1 ≤ n < n0 and f(n) = qn

α
for n ≥ n0, with

n0 = inf{n ∈ N : q(n+1)α − qnα ≥ 1 and qn
α ≥ n+ q}.

Our work concerns the study of infinite sequences w the complexity
function of which is bounded by a given function f satisfying conditions (C0).
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More precisely, our goal is to estimate the number of words of length
n on the alphabet A that are factors of an infinite word with a complex-
ity function less than f . The sturmian case (f(n) = n + 1) was studied by
F. Mignosi in [Mig], who proved an explicit formula conjectured by S. Du-
lucq and D. Gouyou-Beauchamps in [DG]: the number of words of length n
on the alphabet {0, 1} that are factors of a sturmian infinite word is exactly
1+
∑n

i=1(n−i+1)Φ(i), where Φ is the Euler function (this is asymptotically
equivalent to n3/π2). This formula can also be found in [KLB], but it seems
that the first proof appears in an earlier paper by E. Lipatov [Lip]. A geo-
metric proof is due to J. Berstel and M. Pocchiola [BP] and a combinatorial
proof was given by A. de Luca and F. Mignosi [LM] (see [Lot]). Some partial
generalizations concerning the case f(n) = kn + 1 (for k ≥ 2) were given
by F. Mignosi and L. Zamboni [MZ]. In the case of positive entropy (i.e.
limn→∞ n

−1 logq f(n) > 0), some sharp estimates can be obtained by using
a different method. This will be the subject of a future work.

Throughout this paper, f is a function from N to R+ satisfying condi-
tions (C0).

Set

W (f) = {w ∈ AN : pw(n) ≤ f(n), ∀n ∈ N} and Ln(f) =
⋃

w∈W (f)

Ln(w).

The aim of Sections 3 and 4 is to give upper bounds and lower bounds
for |Ln(f)|. We will exhibit (Theorems 3.1 and 4.1), for any given function
f satisfying conditions (C0), functions ϕ and ψ of approximately the same
order of magnitude such that for n large enough,

qψ(n) ≤ |Ln(f)| ≤ qϕ(n).

In particular, these functions ϕ and ψ will satisfy

lim
n→+∞

1
n
ψ(n) = lim

n→+∞

1
n
ϕ(n) = 0.

3. Upper bounds for |Ln(f)|. For any nonnegative integers k and N
we have

LkN (f) =
⋃

w∈W (f)

LkN (w) ⊂
⋃

w∈W (f)

LkN (w) by Lemma 1.2.

But ⋃
w∈W (f)

LkN (w) =
⋃
w∈AN

|Ln(w)|≤f(n), ∀n∈N

LkN (w) ⊂
⋃
w∈AN

|LN (w)|≤f(N)

LkN (w)

⊂
⋃

S⊂AN
|S|≤f(N)

Sk =
⋃

S⊂AN
|S|=f(N)

Sk,
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so that

|LkN (f)| ≤
∑
S⊂AN
|S|=f(N)

f(N)k = f(N)k
(
qN

f(N)

)
≤ f(N)kqNf(N).

We will now choose the parameter k so as to optimize this upper bound.
Suppose thatN ≥N0, where f(N0)>q, and take k=bNf(N)/logq f(N)c

to obtain
|LkN (f)| ≤ q2Nf(N).

It is easy to verify that if f satisfies (C0) then (bNf(N)/logq f(N)c)N≥N0 is
nondecreasing, so (NbNf(N)/logq f(N)c)N≥N0 is strictly increasing.

Let F (N) = NbNf(N)/logq f(N)c for any integer N , and F ∗(n) =
min{m ∈ N : F (m) ≥ n} for any n ∈ N.

If we still denote by F an (arbitrary) continuous and strictly increasing
extension of F from R+ to R+, it follows that F ∗(n) ≤ F−1(n) + 1 for any
n ∈ N.

Given an integer n, let N = F ∗(n). We have F (N − 1) < n ≤ F (N).
It follows from the previous estimate that

|Ln(f)| ≤ |LF (N)(f)| ≤ q2Nf(N) = qϕ(n)

with

(1) ϕ(n) = 2F ∗(n)f(F ∗(n)).

As limN→∞N
−1 logq f(N) = 0, we remark that, for any integer n such that

F ∗(n) ≥ n0 + 1, we have

ϕ(n)
n
≤ ϕ(F (N))
F (N − 1)

=
2Nf(N)
F (N − 1)

≤ 2qNf(N − 1)

(N − 1)
⌊ (N−1)f(N−1)

logq f(N−1)

⌋ = O

(
logq f(N − 1)

N − 1

)
= o(1).

Finally, we have proved the following theorem:

Theorem 3.1. |Ln(f)| ≤ qϕ(n) where ϕ is defined by (1).

Examples 3.2. For f defined in Example A, we have

F (N) = N

⌊
Nα+1

α logqN

⌋
=

Nα+2

α logqN
+O(N),

so that

F−1(n) =
(

α

α+ 2

)1/(α+2)

n1/(α+2)(logq n)1/(α+2) +O(n1/(α+2))
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and

f(F ∗(n)) =
(

α

α+ 2

)α/(α+2)

nα/(α+2)(logq n)α/(α+2)

+O(nα/(α+2)(logq n)(α−1)/(α+2))

(since F ∗(n) = F−1(n) +O(1)), so that

ϕ(n) = 2
(

α

α+ 2

)(α+1)/(α+2)

n(α+1)/(α+2)(logq n)(α+1)/(α+2)

+O(n(α+1)/(α+2)(logq n)α/(α+2)).

For f defined in Example B, we have

F (N) = NbN1−αqN
αc = N2−αqN

α
+O(N),

so that

F−1(n) = (logq n)1/α − 2− α
α2

(logq n)1/α−1 logq logq n

+O((logq n)1/α−2(logq logq n)2),

and
f(F ∗(n)) = n(logq n)−(2−α)/α +O(n(logq n)−2/α(logq logq n)2)

+O(n(logq n)2−3/α)

= (1 + o(1))n(logq n)−(2−α)/α

(since F ∗(n) = F−1(n) +O(1)), so that

ϕ(n) =
2n

(logq n)(1−α)/α
+O

(
n(logq logq n)2

(logq n)1/α

)
=

(2 + o(1))n
(logq n)(1−α)/α

.

4. Lower bounds for |Ln(f)|. The main goal of this section is to give
lower bounds for |Ln(f)| when f satisfies conditions (C0). To do this, we
will construct, for any fixed η0 > 0, a large family W of infinite words
w with complexity function pw close to f and then give lower bounds for
|
⋃
w∈W Ln(w)|. We will end up with the following theorem:

Theorem 4.1. For any fixed η0 > 0 there exists an integer N0 such that
for any n ≥ N0,

|Ln(f)| > exp
((

1
8
− η0

)
n

G−1(4n)
log

n

G−1(4n)

)
,

where G(x) = 2xg(x) and g is a function satisfying conditions (C0) such
that for any integer n ≥ N0,

min
(
G((2 + η0)n log2 n), G((2 + η0)n)2

)
≤ f(n).
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4.1. Construction of a large family W of infinite words. Let
(ak)k≥1 be the sequence of integers defined by a1 = 1, a2 = 3 and for k ≥ 2,

ak+1 =
⌈(

2 +
1

log2 ak

)
ak

⌉
,

and (bk)k≥1 be the sequence of integers defined by bk = ak+1 − 2ak.

Lemma 4.2. For any k ≥ 3 we have 2k < ak < 2k+1.

Proof. An easy computation shows that a3 = 9, a4 = 20, a5 = 43 and
a6 = 90. As ak+1 ≥ 2ak for any k ≥ 1, it follows that ak > 2k for any k ≥ 3.

For the upper bound, we can proceed as follows:
For any k ≥ 3 we have ak+1 < 2ak + ak

k2 log2 2
+ 1 so that for any k ≥ 3,

ak+1

ak
< 2 +

1
k2 log2 2

+
1
2k
.

It follows that for any k ≥ 5 we have

ak+1/2k+1

ak/2k
< 1 +

1
2k2 log2 2

+
1

2k+1
< 1 +

3
2k2

<
1− 2

k+2

1− 2
k+1

,

so that for k ≥ 6 we have

ak+1

2k+1
<

90
64

k∏
i=6

1− 2
i+2

1− 2
i+1

<
90
64

∞∏
i=6

1− 2
i+2

1− 2
i+1

=
90
64
· 7

5
=

63
32
,

proving that ak < 2k+1 for any k ≥ 7.

Remark 4.3. The sequence (ak/2k)k≥1 is increasing, so Lemma 4.2
yields limn→∞ ak/2k = a with a ∈ ]1, 2[.

Remark 4.4. For any k ≥ 1 we have 2ak < ak+1 ≤ 3ak and for any fixed
η1 > 0 we can easily compute explicitly k1 ∈ N such that for any k ≥ k1 we
have ak+1 < da2k+1e ≤ (2 + η1)ak.

Let g be a function satisfying conditions (C0), and K0 be a fixed large
constant which will be chosen later (depending on the η0 of Theorem 4.1).
Define the sequence (mk)k≥K0 by mK0 = 2 and, for k ≥ K0,

mk+1 = min
(
m2
k,

⌈
g(da2k+1e)

mk

⌉
mk

)
.

Remark 4.5. The sequence (mk)k≥1 is well defined because mk ≥ 2 for
any k ≥ K0.

Lemma 4.6. There exists an integer K1 ≥ K0 such that

mk+1 =
⌈
g(da2k+1e)

mk

⌉
mk for any k ≥ K1.
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Proof. Let us first remark that, if we suppose that mk+1 = m2
k for any

k ≥ K0, then it would follow, on the one hand, that

mk = m2k−K0

K0
= λa2

k+1
for any k ≥ K0,

with λ = 21/(a2k0+1) > 1, and on the other hand,

mk ≤
⌈
g(da2k+1e)

mk

⌉
for any k ≥ K0,

which would imply altogether that

g(da2k+1e) > mk(mk − 1) ≥ 1
2
m2
k =

1
2
λa2

k+2
>

1
2
λda2

k+1e,

which would contradict the hypothesis limn→∞ n
−1 logq g(n) = 0.

This proves the existence of an integer K1 such that

mK1+1 =
⌈
g(da2K1+1e)

mK1

⌉
mK1 , i.e.

⌈
g(da2K1+1e)

mK1

⌉
≤ mK1 .

It is now easy to prove by induction on k that⌈
g(da2k+1e)

mk

⌉
≤ mk for any k ≥ K1.

As for any (x, n) ∈ R × Z the inequality dxe ≤ n is equivalent to x ≤ n, it
is equivalent to prove that

g(da2k+1e) ≤ m2
k for any k ≥ K1.

Indeed, the latter is true for k = K1 and if we suppose that g(da2k+1e)
≤ m2

k, i.e. mk+1 = dg(da2k+1e)/mkemk, then

g(da2k+2e) ≤ g(2da2k+1e) ≤ (g(2da2k+1e))2 by condition (C0)(ii)

≤
(⌈

g(da2k+1e)
mk

⌉
mk

)2

= m2
k+1.

The lemma below shows that the sequences (mk)k≥K0 and (g(da2ke))k≥K0

have the same order of magnitude:

Lemma 4.7.

(i) For any integer k ≥ K0 we have mk ≤ 2g(da2ke).
(ii) For any integer k ≥ K1 + 1 we have mk ≥ g(da2ke).
Proof. (i) The inequality is true for k = K0, and if we suppose that

mk ≤ 2g(da2ke), it follows that

mk+1 ≤
⌈
g(da2k+1e)

mk

⌉
mk ≤ 2g(da2k+1e),

because g(da2k+1e)/mk ≥ g(da2ke)/mk ≥ 1/2 (recall that if x ≥ 1/2, then
dxe ≤ 2x).
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(ii) If k ≥ K1, we have

mk+1 =
⌈
g(da2k+1e)

mk

⌉
mk ≥ g(da2k+1e).

Starting from M(K0) = {0aK0 , 0aK0
−11} we define by induction for each

k ≥ K0 a set M(k) of mk words of length ak as follows:
If M(k) has already been constructed, we choose for each α ∈ M(k) a

set X(α) ⊂M(k) with |X(α)| = mk+1/mk. Then we set

M(k + 1) = {α0bkβ : α ∈M(k), β ∈ X(α)}.
We denote byM(k) the union, over all possible choices of the sets X(α), of
the sets M(k), and by W the set of infinite words w on the alphabet A such
that πak(w) ∈M(k) for any integer k ≥ K0.

4.2. Complexity of elements of W . The goal of this subsection is to
show the following proposition:

Proposition 4.8. For any fixed η0 > 0 there exists an integer n0 such
that for any n ≥ n0 and for any w ∈W ,

1
2
g

((
1
2
− η0

)
n

)
< pw(n) < min

(
G((2 + η0)n log2 n), G((2 + η0)n)2

)
.

Proof. It is easy to bound pw from below:
If ak ≤ n < ak+1, we have

pw(n) ≥ mk by construction

≥ g(da2ke) by Lemma 4.7(ii)
≥ g(ak).

It follows from Remark 4.4 that if n ≥ ak1 we have pw(n) ≥ 1
2g
((

1
2 − η1

)
n
)
.

We now have to give upper bounds for pw.

Lemma 4.9. Let τ be the function defined on the interval [e2,+∞) by
τ(x) = x/(log x)2. The function τ is strictly increasing and, for any fixed
η2 > 0, we can explicitly compute n2 ∈ N such that for any n ≥ n2,

(2) τ−1(n) ≤ (1 + η2)n log2 n.

Proof. The study of the derivative of τ shows easily that τ is strictly
increasing on [e2,+∞). The inequality (2) is thus equivalent to

n ≤ τ((1 + η2)n log2 n),

which is equivalent to(
1 +

log(1 + η2)
log n

+ 2
log logn

log n

)2

≤ 1 + η2,

which clearly holds for n large enough.
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For any fixed η3 > 0, fix η1 and η2 respectively in Remark 4.4 and Lem-
ma 4.9 such that (2 + η1)(1 + η2) ≤ 2 + η3, and denote n3 = max(bk1+1, n2).

To bound pw from above, define, for any integer n ≥ n3, k0(n) to be the
smallest integer such that bk0(n) ≥ n.

Lemma 4.10. For any n ≥ n3, we have da2k0(n)e ≤ (2 + η3)n log2 n.

Proof. By definition of k0(n) we have

bk0(n)−1 < n ≤ bk0(n),

and by definition of (bk)k≥1,

τ(ak0(n)−1) ≤ bk0(n)−1 < τ(ak0(n)−1) + 1.

It follows from Lemma 4.9 that

ak0(n)−1 < τ−1(n) ≤ (1 + η2)n log2 n

and from Remark 4.4 that

da2k0(n)e ≤ (2 + η1)ak0(n)−1 < (2 + η3)n log2 n.

Let us now use the fact that every factor of length n ≥ n3 in w must be
a factor of some element of M(k0(n)) preceded or followed by a sequence of
zeros.

This means that for n ≥ n3 we have

pw(n) ≤ (n− 1 + ak0(n))mk0(n) + 1 ≤ (n+ ak0(n))mk0(n)

< 2(n+ (2 + η3)n log2 n)g((2 + η3)n log2 n).

If we now fix η4 > 0 such that η4 > η3, there exists an integer n4 ≥ n3 such
that for n ≥ n4,

pw(n) < G((2 + η4)n log2 n).

Let us now give another upper bound for pw that will give a better result
when g is growing very fast.

Every factor of length n in w must be a factor of some element ofM(k+1)
(where ak ≤ n < ak+1) preceded or followed by a sequence of zeros, or a
factor of M(k+1) followed by br zeros (for some k+1 ≤ r ≤ k0(n)) followed
by another factor of M(k + 1).

This gives the estimate (valid for n ≥ n3)

pw(n) ≤ (n+ ak+1)mk+1 + (k0(n)− k)nm2
k+1

≤ 4ng(da2k+1e) + 4(k0(n)− k)n · g(da2k+1e)2

≤ 4ng((2 + η1)n) + 4 log2((2 + η3)n log2 n)n · g((2 + η1)n)2.

This shows that there exists an integer n5 ≥ n3 such that for n ≥ n5 we
have

pw(n) < G((2 + η1)n)2.
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To finish the proof of Proposition 4.8, it is enough, for any fixed η0, to
take in the previous arguments η1 < η0, η4 < η0 and n0 = max(ak1 , n4, n5).

Remark 4.11. The above upper bound for k0(n)− k is a simple appli-
cation of Lemmas 4.2 and 4.10. It is easy to improve it by showing that

k0(n)− k = 2
log logn

log 2
+O(1).

Corollary 4.12. If g satisfies conditions (C0), η0 and n0 are as in the
statement of Proposition 4.8, and K0 satisfies bK0 > n0, then pw(n) ≤ f(n)
for any w ∈W and n ≥ 1.

Proof. We have two cases:
If n ≤ bK0 , by construction a factor of size n of a word w ∈W has at most

one letter equal to 1 and all other letters equal to 0, so pw(n) ≤ n+1 ≤ f(n).
If n > bK0 , we have k0(n) > K0, and since bK0 > n0, it follows that

pw(n) < min
(
G((2 + η0)n log2 n), G((2 + η0)n)2

)
≤ f(n).

4.3. Lower bounds for
∣∣⋃

w∈W Ln(w)
∣∣. For any k ≥ K0, let

(3) r(k) = dlog2mke.
For every integer n ≥ aK0+r(K0), let k be the unique integer satisfying

ak−1+r(k−1) ≤ n < ak+r(k)

and let s be defined by
ak+s ≤ n < ak+s+1

(we have r(k − 1)− 1 ≤ s ≤ r(k)− 1).
We will now construct subsets of W as follows. Enumerate the set M(k)

obtained in Section 4.1 as M(k) = {α1(k), . . . , αmk(k)}. We can assume
that for k′ ≥ k we have αj+1(k′) ∈ X(αj(k′)) for each 1 ≤ j ≤ mk′ (we put
αmk′+1 := α1) and

M(k′ + 1) = {α1(k′ + 1), . . . , αmk′+1
(k′ + 1)}

where we enumerate the elements of M(k′ + 1) in such a way that

α1(k′ + 1) = α1(k′)0bk′α2(k′),

α2(k′ + 1) = α3(k′)0bk′α4(k′),
...

αb(mk′+1)/2c(k
′ + 1) =

{
αmk′−1(k′)0bk′αmk′ (k

′) for mk′ even,
αmk′ (k

′)0bk′α1(k′) for mk′ odd.

This construction gives

α1(k + s) = α1(k)0bkα2(k)0bk+1 . . . 0bk+1α2s−1(k)0bkα2s(k)

where α1(k), . . . , α2s(k) appear in this order as factors of length ak.
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Lemma 4.13.

(i) For every integer n ≥ aK0+r(K0) we have

n < 4ak2s < 4akmk.

(ii) For every integer n ≥ max(ak1+r(k1), aK1+1+r(K1+1)) we have

n >
1
4
G

(
ak

2 + η1

)
.

Proof. (i) We have

n < ak+s+1 by construction

< 2k+s+2 by Lemma 4.2

< 2s+2ak by Lemma 4.2.

The second inequality results from the fact that

2s ≤ 2r(k)−1 = 2dlog2mke−1 < mk.

(ii) We have, for any k ≥ K1 + 2,

n ≥ ak−1+r(k−1) from the definition of k

> 2k−1+r(k−1) by Lemma 4.2

>
1
2
ak−12r(k−1) by Lemma 4.2

≥ 1
2
ak−1mk−1 from the definition of r

≥ 1
2
ak−1g(da2k−1e) by Lemma 4.7(ii)

≥ 1
2
ak−1g(ak−1).

It follows from Remark 4.4 that if k ≥ max(k1 + 1,K1 + 2), we have

n >
1
2
ak−1g(ak−1) >

1
4
· 2ak

2 + η1
g

(
ak

2 + η1

)
=

1
4
G

(
ak

2 + η1

)
.

We have 2s ≤ 2r(k)−1 < mk, and if we denote by W0 the set of all infinite
words obtained by this construction, we have∣∣∣ ⋃

w∈W0

Ln(w)
∣∣∣ ≥ A2s

mk
=

mk!
(mk − 2s)!

.

For any fixed η5 > 0 there is k5 such that for any k ≥ k5,

mk!
(mk − 2s)!

≥ ((mk!)1/mk)2
s ≥ (mk/e)2

s ≥ m(1−η5)2s

k .
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Then, for any k ≥ max(k1 + 1,K1 + 2, k5),

mk!
(mk − 2s)!

≥ exp((1− η5)2s logmk)

> exp
(

(1− η5)
n

4ak
log

n

4ak

)
by Lemma 4.13(i)

> exp
(

1− η5

4(2+η1)
· n

G−1(4n)
log

n

4(2+η1)G−1(4n)

)
by Lemma 4.13(ii).

Now for any fixed η0 > 0 and any η1 > 0 fixed as in Subsection 4.2 (in par-
ticular η1 < η0) choose η5 such that η5 < 4η0(2+η1)−η1/2. Then 1/8−η0 <
(1− η5)/(4(2 + η1)) and we conclude that there exists an integer N0 =
max(ak1+r(k1), aK1+1+r(K1+1), ak5−1+r(k5−1), n0) such that, for any n ≥ N0,∣∣∣ ⋃
w∈W

Ln(w)
∣∣∣ ≥ ∣∣∣ ⋃

w∈W0

Ln(w)
∣∣∣ > exp

((
1
8
− η0

)
n

G−1(4n)
log

n

G−1(4n)

)
.

Examples 4.14. For f defined in Example A, we can take, for N ≥
e2α/(α−1),

G(N) =
Nα

(2 + η0)α log2αN
,

so that

G−1(4n) =
41/α(2 + η0)

α2
n1/α log2 n+O(n1/α log n log logn).

If we combine this with the result obtained in Section 3, we conclude that
there are positive constants c1(α) and c2(α) such that, for n large enough,

exp
(
c1(α)

n(α−1)/α

log n

)
< |Ln(f)| < exp(c2(α)n(α+1)/(α+2)(log n)(α+1)/(α+2))

(indeed, we can take any c1(α) < 4−1/αα(α − 1)/16 and any c2(α) >

2(log q)1/(α+2)
(

α
α+2

)(α+1)/(α+2)).

For f defined in Example B, we can take, for N ≥ (2 + η0)
(

2
α log q

)1/α,

G(N) = qN
α/(2(2+η0)α)

so that

G−1(4n) =
(

2
log q

)1/α

(2 + η0)(log n)1/α +O((log n)(1−α)/α).

Combining this with the result obtained in Section 3, we conclude that
there are constants c1(α) and c2(α), 0 < c1(α) < c2(α), such that, for n
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large enough,

exp
(
c1(α)

n

(log n)(1−α)/α

)
< |Ln(f)| < exp

(
c2(α)

n

(log n)(1−α)/α

)
(indeed, we can take any c1(α)< 1

16((log q)/2)1/α and any c2(α)>2(log q)1/α).

4.4. An open question. Our method does not work for sequences with
sublinear complexity. A natural open problem is to give sharp estimates for
|Ln(f)| when f is a linear function.

To state more precise questions, let us give some definitions. Let
g0(x) = x, g1(x) = x + 1, and, for k > 0 and x > 0 large, gk+1(x) =
exp(gk(log x)) and g−k(x) = g−1

k (x). We say that an increasing function f
from R+ to R+ is morally polynomial if there is k ≥ 0 such that g−k(x) ≤
f(x) ≤ gk(f(x)) for every x sufficiently large, and that f is morally expo-
nential if log f is morally polynomial. We have the following questions:

(i) Is it true that `(n) = |Ln(f)| is morally polynomial for any linear
function f?

(ii) Does there exist A > 0 such that `(n) = |Ln(f)| is morally exponen-
tial for f(n) = An?

Clearly we cannot have positive answers to both of these questions. On
the other hand, it is not clear whether we will have a positive answer to
one of them, since there are functions which are neither morally polynomial
nor morally exponential (e.g. increasing functions f such that f ◦ f = exp).
However, any logarithmico-exponential function f (in the sense of Hardy)
satisfying x ≤ f(x) ≤ qx for every large x is morally polynomial or morally
exponential (see Section 4.1 of [Har]).
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