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1. Introduction. For r, s ∈ N = {1, 2, . . .} with s ≥ 2r+ 1, let (bi,j) be
an r×s matrix whose elements are integers. Suppose that bi,1 + · · ·+bi,s = 0
(1 ≤ i ≤ r). Suppose further that among the columns of the matrix, there
exist r linearly independent columns such that, if any of the r columns are
removed, the remaining n − 1 columns of the matrix can be divided into
two sets so that among the columns of each set there are r linearly inde-
pendent columns. For k ∈ N, denote by D([1, k]) the maximal cardinality
of an integer set A ⊆ [1, k] such that the equations bi,1x1 + · · ·+ bi,sxs = 0
(1 ≤ i ≤ r) are never satisfied simultaneously by distinct elements x1, . . . , xs
∈ A. Using techniques similar to his work on sets free of three-term arith-
metic progressions (see [4]), Roth [5] showed that

D([1, k])� k/(log log k)1/r
2
.

In this paper, we will build upon the methods in [2] to study an analogous
question in function fields.

Let Fq[t] denote the ring of polynomials over the finite field Fq. For
N ∈ N, let SN denote the subset of Fq[t] containing all polynomials of
degree strictly less than N . For R,S ∈ N with S ≥ 2R+ 1, let Y = (ai,j) be
an R×S matrix with elements in Fq. Suppose that Y satisfies the following
two conditions.

Condition 1. ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R).

Condition 2. Y has L columns with L ≥ R such that:

• any R of these L columns are linearly independent,
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• after removing any L − R + 1 of these L columns from Y , we can
find two disjoint sets of R linearly independent columns among the
remaining S − L+R− 1 columns,
• without loss of generality, we may assume that these L columns are

the first L columns of Y .

Consider the system of equations
(1.1) ai,1x1 + · · ·+ ai,SxS = 0 (1 ≤ i ≤ R).
Let DY (SN ) denote the maximal cardinality of a set A ⊆ SN for which the
equations in (1.1) are never satisfied simultaneously by distinct elements
x1, . . . , xS ∈ A. We write |V | for the cardinality of a set V . In this paper, we
employ a variant of the Hardy–Littlewood circle method for Fq[t] to prove
the following result.

Theorem 1.1. Assume that Y satisfies Conditions 1 and 2. There exists
an effectively computable constant C = C(Y ) > 0 such that for N ∈ N,

DY (SN ) ≤ qN
(
C

N

)(L−R+1)/R

.

We note that the assumptions in Condition 2 are more general than the
corresponding assumptions in [5]. Thus, in the special case when L = R, we
can derive from Theorem 1.1 a function field analogue of Roth’s theorem.
In addition, on rewriting the upper bound we obtain in Theorem 1.1 as

DY (SN )� |SN |
(logq |SN |)(L−R+1)/R

,

we observe that this result is much sharper than its integer analogue. Our
improvement comes from a better estimate of an exponential sum in Fq[t]
than in Z (see Lemma 2.4).

One can also obtain from Theorem 1.1 some information about irre-
ducible polynomials. Let PN denote the set of all monic irreducible poly-
nomials in Fq[t] of degree strictly less than N , and let AN denote a subset
of PN . By the prime number theorem for Fq[t] (see [3, Theorem 2.2]), we
have |PN | � qN/N. If L+ 1 > 2R, Theorem 1.1 implies that there exists a
positive constant E(Y ) such that whenever

|AN |
|PN |

≥ E(Y )
N (L−2R+1)/R

,

then (1.1) has a solution with distinct elements x1, . . . , xS ∈ AN .
We conclude this section by introducing the Fourier analysis of Fq[t]. Let

K = Fq(t) be the field of fractions of Fq[t], and let K∞ = Fq((1/t)) be the
completion of K at ∞. We may write each element α ∈ K∞ in the shape
α =

∑
i≤v ait

i for some v ∈ Z and ai = ai(α) ∈ Fq (i ≤ v). If av 6= 0, we
define ordα = v. We adopt the convention that ord 0 = −∞. Also, it is
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often convenient to refer to a−1 as being the residue of α, denoted by resα.
Consider the compact additive subgroup T of K∞ defined by T = {α ∈
K∞ | ordα < 0}. Given any Haar measure dα on K∞, we normalize it in
such a manner that

	
T 1 dα = 1. We now extend the measure to KR

∞ by the
standard product measure. Thus, if M is the subset of KR

∞ defined by

M = {α = (α1, . . . , αR) ∈ KR
∞ | ordαi < −N (1 ≤ i ≤ R)},

then the measure of M, written mes(M), is equal to q−NR.
We are now equipped to define the exponential function on Fq[t]. Suppose

that the characteristic of Fq is p. Let e(z) denote e2πiz, and let tr : Fq → Fp
denote the familiar trace map. There is a non-trivial additive character
eq : Fq → C× defined for each a ∈ Fq by taking eq(a) = e(tr(a)/p). This
character induces a map e : K∞ → C× by defining, for each element α ∈ K∞,
the value of e(α) to be eq(resα). The orthogonality relation underlying the
Fourier analysis of Fq[t], established in [1, Lemma 1], takes the shape

�

T
e(hα) dα =

{
1 when h = 0,
0 when h ∈ Fq[t] \ {0}.

Therefore, for (h1, . . . , hR) ∈ Fq[t]R and α = (α1, . . . , αR) ∈ KR
∞, we have

�

TR

e(h1α1 + · · ·+ hRαR) dα =
R∏
i=1

�

T
e(hiαi) dαi(1.2)

=
{

1 when hj = 0 (1 ≤ j ≤ R),
0 otherwise.

2. Proof of Theorem 1.1. For R,S ∈ N with S ≥ 2R + 1, let
Y = (ai,j) ∈ FR×Sq satisfy Conditions 1 and 2. For N ∈ N, let DY (SN )
be defined as in Section 1. Write dY (N) = DY (SN )/qN . For convenience,
in what follows, we will write D(SN ) in place of DY (SN ) and d(N) in
place of dY (N). Hence, to prove Theorem 1.1, it is equivalent to show that
d(N) ≤ (C/N)(L−R+1)/R.

For a set A ⊆ SN , let T (A) = TY (A) denote the number of solutions
of (1.1) with xi ∈ A (1 ≤ i ≤ S). Let 1A be the characteristic function
of A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. For 1 ≤ j ≤ S and
α = (α1, . . . , αR) ∈ KR

∞, define

Fj(α) =
∑
x∈A

e((a1,jα1 + · · ·+ aR,jαR)x).

By (1.2), we see that

T (A) =
�

TR

F1 · · ·FS(α) dα.
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We will estimate T (A) by dividing TR into two parts: the major arc M
defined by

M = {(α1, . . . , αR) ∈ KR
∞ | ordαi < −N (1 ≤ i ≤ R)}

and the minor arc m = TR \M. We have

(2.1) T (A) =
�

M

F1 · · ·FS(α) dα +
�

m

F1 · · ·FS(α) dα.

Before proving Theorem 1.1, we will need to obtain bounds on T (A) and
the contributions of the major and minor arcs.

Lemma 2.1. Suppose that Y ∈ FR×Sq satisfies Condition 2. Suppose also
that A ⊆ SN is a set for which the equations in (1.1) are never satisfied
simultaneously by distinct elements x1, . . . , xS ∈ A. Then

T (A) ≤ C1|A|S−R−1,

where C1 = C1(Y ) =
(
S
2

)
.

Proof. We have

T (A) = |{x ∈ AS | Y x = 0}|.
Since A ⊆ SN is such that the equations in (1.1) are never satisfied simul-
taneously by distinct elements x1, . . . , xS ∈ A, whenever Y x = 0 for some
x ∈ AS , there exist distinct elements i, j ∈ {1, . . . , S} with xi = xj . Fix one
of the C1 choices of {i, j}. Let Y1 be the matrix obtained from Y by deleting
columns i, j. We consider two cases.

Case 1: {i, j} ∩ {1, . . . , L} = ∅. We denote by rkY1 the rank of the
matrix Y1. By Condition 2, we have rkY1 = R. It follows that

|{x ∈ AS | xi = xj and Y x = 0}| ≤ |A|S−R−1.

Case 2: {i, j} ∩ {1, . . . , L} 6= ∅. Without loss of generality, we may
assume that i ∈ {1, . . . , L}. By Condition 2, we can find two disjoint subsets
I1 and I2 of {1, . . . , S} \ {i}, each with cardinality R, such that the columns
of Y indexed by either set are linearly independent. Since I1 ∩ I2 = ∅, we
may assume that j 6∈ I1. Then {i, j} ∩ I1 = ∅. Hence, rkY1 = R, which
implies that

|{x ∈ AS | xi = xj and Y x = 0}| ≤ |A|S−R−1.

On recalling the definition of C1 and combining Cases 1 and 2, the lemma
follows.

Lemma 2.2. Suppose that Y ∈ FR×Sq and A ⊆ SN . Then
�

M

F1 · · ·FS(α) dα = q−NR|A|S .
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Proof. For 1 ≤ j ≤ S, α = (α1, . . . , αR) ∈M, and x ∈ A ⊆ SN , we have

ord((a1,jα1 + · · ·+ aR,jαR)x) ≤ −1 +N + max
1≤i≤R

ordαi ≤ −2.

Thus,

Fj(α) =
∑
x∈A

e((a1,jα1 + · · ·+ aR,jαR)x) =
∑
x∈A

1 = |A|.

Therefore, our major arc contribution is�

M

F1 · · ·FS(α) dα = mes(M)|A|S = q−NR|A|S .

Lemma 2.3. For Y ∈ FR×Sq and A ⊆ SN , suppose that the columns of Y
indexed by k1, . . . , kR are linearly independent. Then�

TR

|Fk1 · · ·FkR
(α)|2 dα = |A|R.

Proof. Let Z denote the matrix (ai,kj
)1≤i,j≤R ∈ FR×Rq . By (1.2), we have

�

TR

|Fk1 · · ·FkR
(α)|2 dα = |{(x,y) ∈ AR ×AR | Zx = Zy}|.

Since detZ 6= 0, Zx = Zy if and only if x = y. Thus,�

TR

|Fk1 · · ·FkR
(α)|2 dα = |{(x,y) ∈ AR ×AR | x = y}| = |A|R.

Lemma 2.4. Suppose that Y ∈ FR×Sq satisfies Condition 1. Suppose also
that A ⊆ SN is a set for which the equations in (1.1) are never satisfied
simultaneously by distinct elements x1, . . . , xS ∈ A. Then

sup
−N≤ordβ<0

∣∣∣∑
x∈A

e(βx)
∣∣∣ ≤ d(N − 1)qN − |A|.

Proof. For −N ≤ ordβ < 0, let W = W (β) = {y ∈ SN : res(βy) = 0}.
Since −N ≤ ordβ < 0, we can write ordβ = −l and β =

∑
j≤−l bjt

j with
−N ≤ −l ≤ −1, bj ∈ Fq (j ≤ −l), and b−l 6= 0. Then the polynomial
y = cN−1t

N−1 + · · ·+ c0 ∈ SN is in W if and only if

res(βy) = b−lcl−1 + b−l−1cl + · · ·+ b−NcN−1 = 0.

Hence, W ' FN−1
q as a vector space over Fq.

Since −N ≤ ordβ < 0, by [1, Lemma 7], we have∑
ordx<N

e(βx) = 0.

Therefore,

|W |
∣∣∣∑
x∈A

e(βx)
∣∣∣ =

∣∣∣ ∑
y∈W

∑
ordx<N

d(N − 1)e(βx)−
∑
y∈W

∑
ordx<N

1A(x)e(βx)
∣∣∣.
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For y ∈W, since e(βy) = 1 and y ∈ SN , we deduce by a change of variables
that∑

ordx<N

1A(x)e(βx) =
∑

ordx<N

1A(x)e(β(x+ y)) =
∑

ordx<N

1A(x− y)e(βx).

It follows that

|W |
∣∣∣∑
x∈A

e(βx)
∣∣∣ =

∣∣∣ ∑
ordx<N

( ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)
)
e(βx)

∣∣∣
≤

∑
ordx<N

∣∣∣ ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)
∣∣∣

=
∑

ordx<N

∣∣d(N − 1)|W | − |W ∩ (x−A)|
∣∣.

Since ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R) and the equations in (1.1) are never
satisfied simultaneously by distinct x1, . . . , xS ∈ A, the equations in (1.1)
are never satisfied simultaneously by distinct x1, . . . , xS ∈W ∩(x−A). Since
W ' SN−1 as a vector space over Fq and Y ∈ FR×Sq , any invertible Fq-linear
transformation from W to SN−1 maps W ∩ (x−A) to a subset of SN−1 for
which the equations in (1.1) are never satisfied simultaneously by distinct
elements of the subset. This implies that |W ∩ (x − A)| ≤ d(N − 1)|W |.
Therefore

|W |
∣∣∣∑
x∈A

e(βx)
∣∣∣ ≤ ∑

ordx<N

(d(N − 1)|W | − |W ∩ (x−A)|)

= d(N − 1)|W |qN − |W | |A|.

Thus, if −N ≤ ordβ < 0, we have∣∣∣∑
x∈A

e(βx)
∣∣∣ ≤ d(N − 1)qN − |A|.

Lemma 2.5. Suppose that Y ∈ FR×Sq satisfies Condition 2. Let

Q = Q(Y ) = {B ⊆ {1, . . . , L} | |B| = L−R+ 1}.

For B ∈ Q, let

mB =
{

α ∈ TR
∣∣∣ ord

( R∑
i=1

ai,kαi

)
≥ −N (k ∈ B)

}
.

Then
m ⊆

⋃
B∈Q

mB.

Proof. Let α = (α1, . . . , αR) ∈ m. Select any R columns k1, . . . , kR from
the first L columns of Y , and denote by X = (ai,kj

)1≤i,j≤R ∈ FR×Rq the
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matrix formed by these columns. By Condition 2, we have detX 6= 0. Write
αi =

∑
m≤−1 bi,mt

m (1 ≤ i ≤ R) with bi,m ∈ Fq (1 ≤ i ≤ R,m ≤ −1). Thus,

R∑
i=1

ai,kj
αi =

∑
m≤−1

R∑
i=1

ai,kj
bi,mt

m (1 ≤ j ≤ R).

Suppose for the moment that for all 1 ≤ j ≤ R, we have ord(
∑R

i=1 ai,kj
αi)

< −N . It follows that

(2.2)
R∑
i=1

ai,kj
bi,m = 0 (−N ≤ m ≤ −1, 1 ≤ j ≤ R).

Write bm = (b1,m, . . . , bR,m). Then (2.2) is equivalent to having bmX = 0
(−N ≤ m ≤ −1). Since detX 6= 0, we have bm = 0 (−N ≤ m ≤ −1). Thus,
αi =

∑
m<−N bi,mt

m (1 ≤ i ≤ R), contradicting the fact that α ∈ m. Thus,
ord(

∑R
i=1 ai,kj

αi) ≥ −N for at least one 1 ≤ j ≤ R.
Since we can find an element k such that ord(

∑R
i=1 ai,kαi)≥−N amongst

any R-element subset of {1, . . . , L}, it follows that there are at least L−R+1
values k ∈ {1, . . . , L} with ord(

∑R
i=1 ai,kαi) ≥ −N . That is, there exists

B ⊆ {1, . . . , L} with |B| = L−R+ 1 such that α ∈ mB. This completes the
proof of the lemma.

Lemma 2.6. Suppose that Y ∈ FR×Sq satisfies Conditions 1 and 2. Sup-
pose also that A ⊆ SN is such that the equations in (1.1) are never satisfied
simultaneously by distinct elements x1, . . . , xS ∈ A and |A| = d(N)qN . Then

�

m

|F1 · · ·FS(α)| dα ≤ C2(d(N − 1)− d(N))L−R+1d(N)S−L−1qN(S−R),

where C2 = C2(Y ) =
(

L
L−R+1

)
.

Proof. Let Q = Q(Y ) and mB (B ∈ Q) be as in Lemma 2.5. We have
�

mB

|F1 · · ·FS(α)| dα ≤
(

sup
α∈mB

∏
j∈B
|Fj(α)|

) �

TR

∣∣∣ ∏
j 6∈B

Fj(α)
∣∣∣ dα.

By Condition 2, there are two disjoint R-element subsets U and V of
{1, . . . , S} \ B such that the columns of Y indexed by either set are lin-
early independent. By Lemma 2.3 and the Cauchy–Schwarz inequality,
�

TR

∣∣∣ ∏
j 6∈B

Fj(α)
∣∣∣ dα ≤ |A|S−|B|−2R

�

TR

∣∣∣ ∏
j∈U

Fj(α)
∣∣∣ ∣∣∣ ∏
j∈V

Fj(α)
∣∣∣ dα

≤ |A|S−|B|−2R
( �

TR

∣∣∣ ∏
j∈U

Fj(α)
∣∣∣2dα)1/2( �

TR

∣∣∣ ∏
j∈V

Fj(α)
∣∣∣2dα)1/2

= |A|S−|B|−2R|A|R = |A|S−|B|−R.
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By Lemma 2.4, we see that for j ∈ B,

sup
α∈mB

|Fj(α)| ≤ (d(N − 1)− d(N))qN .

Thus,�

mB

|F1 · · ·FS(α)| dα ≤ (d(N − 1)− d(N))L−R+1d(N)S−L−1qN(S−R).

We have seen in Lemma 2.5 that m ⊆
⋃
B∈Q mB. Since |Q| =

(
L

L−R+1

)
= C2,

we can deduce from the above inequality that�

m

|F1 · · ·FS(α)| dα ≤ C2(d(N − 1)− d(N))L−R+1d(N)S−L−1qN(S−R).

This completes the proof of the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that A ⊆ SN is a set for which the equa-
tions in (1.1) are never satisfied simultaneously by distinct x1, . . . , xS ∈ A
and |A| = d(N)qN . By (2.1), we have∣∣∣ �

M

F1 · · ·FS(α) dα
∣∣∣− ∣∣∣ �

m

F1 · · ·FS(α) dα
∣∣∣ ≤ T (A).

On applying Lemmas 2.1, 2.2, and 2.6, there exist positive constants C1

and C2 such that

d(N)SqN(S−R) − C2(d(N − 1)− d(N))L−R+1d(N)S−L−1qN(S−R)

≤ C1d(N)S−R−1qN(S−R−1).

Thus,

(2.3) d(N)S−C1d(N)S−R−1q−N−C2(d(N−1)−d(N))L−R+1d(N)S−L−1≤0.

Let

C = max{(2C1)R/((R+1)(L−R+1)) sup
N∈N

(Nq−NR/((R+1)(L−R+1))),

(2C2)1/(L−R+1)2(L+1)/R(L−R+ 1)/R, 1}.
We now claim that for all N ∈ N, one has

(2.4) d(N) ≤
(
C

N

)(L−R+1)/R

.

This statement will follow by induction. Since d(N) ≤ 1, (2.4) holds trivially
when N = 1. Let N > 1, and assume that

d(N − 1) ≤
(

C

N − 1

)(L−R+1)/R

.

We consider two cases.
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Case 1: d(N)S − C1d(N)S−R−1q−N ≤ 1
2d(N)S . Then

d(N) ≤ (2C1)1/(R+1)q−N/(R+1).

Since
C ≥ (2C1)R/((R+1)(L−R+1))(Nq−NR/((R+1)(L−R+1))),

we obtain
d(N) ≤ (C/N)(L−R+1)/R.

Case 2: d(N)S − C1d(N)S−R−1q−N > 1
2d(N)S . We may deduce from

(2.3) that
d(N)L+1 < 2C2(d(N − 1)− d(N))L−R+1.

By setting C3 = (2C2

)−1/(L−R+1), we have

(2.5) C3d(N)(L+1)/(L−R+1) + d(N) < d(N − 1).

Let f(x) = (C/x)(L−R+1)/R. By the mean value theorem, there exists
θN ∈ [0, 1] such that

f(N − 1)− f(N) = f ′(N − θN )(−1)

= C(L−R+1)/R(L−R+ 1)R−1(N − θN )−(L+1)/R.

Since C ≥ C−1
3 2(L+1)/R(L−R+ 1)/R, it follows that

f(N − 1)− f(N) ≤ C(L−R+1)/R(L−R+ 1)R−1(N − 1)−(L+1)/R(2.6)

= C(L+1)/RC−1(L−R+ 1)R−1(N − 1)−(L+1)/R

≤ C(L+1)/RC32−(L+1)/R(N − 1)−(L+1)/R

≤ C3C
(L+1)/RN−(L+1)/R.

From the induction hypothesis and (2.6), we obtain

d(N − 1) ≤ f(N − 1) ≤ C3(C/N)
L+1

R + f(N)

= C3(C/N)
L−R+1

R
· L+1
L−R+1 + (C/N)

L−R+1
R .

On recalling (2.5), we have

C3d(N)
L+1

L−R+1 + d(N) < d(N − 1)

≤ C3(C/N)
L−R+1

R
· L+1
L−R+1 + (C/N)

L−R+1
R .

Since C3x
L+1

L−R+1 + x is an increasing function in x, we have

d(N) ≤ (C/N)(L−R+1)/R.

On combining Cases 1 and 2, the inequality (2.4) follows. This completes
the proof of Theorem 1.1.
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