
ACTA ARITHMETICA

143.1 (2010)

The two faces of the twisted Kummer surface

by

Adam Logan (Montréal, QC)

1. Introduction. Let C be a curve of genus 2 defined by an equation of
the form y2 = f(x) over a number field F . In studying the arithmetic of C,
it is necessary to consider the Jacobian Jac(C) of C, an abelian variety of di-
mension 2. However, this variety is rather difficult to compute with directly
(it is most naturally embedded into projective space as the intersection of
72 quadrics in P15). Accordingly, one often considers the quotient of Jac(C)
by the involution −1 that takes the class of a divisor D to the class of −D.
This quotient, the Kummer surface of C, can be embedded as a quartic
surface in P3 with 16 nodes; this is the largest number of isolated singu-
larities possible for a quartic surface in P3. The minimal desingularization
of the quotient can also be embedded as the intersection of three quadrics
in P5.

To determine the rank of the Jacobian over F by the method of 2-
descent, it is necessary to study certain twists of Jac(C)—these are varieties
isomorphic to Jac(C) over F̄ (the algebraic closure of F ), but not necessarily
over F itself. These are twists by Galois cocycles with values in the set
of translations by 2-torsion points. Since translation by a 2-torsion point
commutes with multiplication by −1 on Jac(C), the same cocycles define
twists of Jac(C)/±1 (or equivalently, multiplication by −1 is still defined
on the twists; the quotient of the twist is isomorphic to the twist of the
quotient). The minimal desingularizations of these twists of Jac(C)/±1 can
again be embedded as the intersection of three quadrics in P5. In previous
work [7], Ronald van Luijk and I studied the geometry and arithmetic of
these twists using this embedding: we determined the Néron–Severi group
in the generic case, studied the configuration of lines, analyzed some elliptic
fibrations, and proved that some of these surfaces have no rational points
by means of the Brauer–Manin obstruction.
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In this paper, we study the twists of Jac(C)/±1 further, considering not
only the embedding in P5 but also the map to P3 and the quartic surface
which is its image. The main arithmetical result follows:

Theorem 1.1. Let f = x6−3x5+3x4−3x2−x−1, let Af = Q[x]/(f(x)),
let C be the curve y2 = f(x), and let δ ∈ Af be the image of x5−7x4 +4x3 +
3x2 +x. Then the Brauer–Manin obstruction blocks the existence of rational
points on Vf,δ, a twist of the Kummer surface of C defined in Section 3.
The minimal desingularization of Vf,δ is defined by the polynomials

3x2
1 + 3x1x2 − 4x1x3 − 19x1x4 − 26x1x5 − 7x1x6 − 2x2

2 − 19x2x3

− 26x2x4 − 7x2x5 + 54x2x6 − 13x2
3 − 7x3x4 + 54x3x5 + 125x3x6

+ 27x2
4 + 125x4x5 + 112x4x6 + 56x2

5 − 105x5x6 − 261x2
6,

x2
1 − 8x1x3 − 8x1x4 + 10x1x5 + 62x1x6 − 4x2

2 − 8x2x3 + 10x2x4

+ 62x2x5 + 134x2x6 + 5x2
3 + 62x3x4 + 134x3x5 + 184x3x6

+ 67x2
4 + 184x4x5 + 164x4x6 + 82x2

5 + 128x5x6 + 183x2
6,

5x2
1 + 17x1x2 + 34x1x3 + 3x1x4 − 74x1x5 − 191x1x6 + 17x2

2 + 3x2x3

− 74x2x4 − 191x2x5 − 222x2x6 − 37x2
3 − 191x3x4 − 222x3x5

− 33x3x6 − 111x2
4 − 33x4x5 + 382x4x6 + 191x2

5 + 601x5x6 − 137x2
6.

The results of this article do not have any direct relevance to 2-descent,
because the element of the Brauer group used is nontrivial only for quotients
of twists of the Jacobian that are known not to have rational points. On the
other hand, we give an example of a Brauer–Manin obstruction in an arith-
metically “generic” situation in which the degree of the field of definition of
generators of the Néron–Severi group is as large as possible. This is quite
unusual and interesting.

In addition, I expect that this advance in understanding the divisors
and linear systems on twists of Jac(C)/±1 will allow further constructions
of Brauer–Manin obstructions using other elements of the Brauer group,
including some that are important for 2-descent. This would allow con-
structing curves of genus 2 of which infinitely many twists have nontrivial
Tate–Shafarevich group, as in [7, Theorem 1.1].

It is likely that there are infinitely many δi ∈ Af that are distinct in
A∗f/((A

∗
f )2Q∗) for which the Brauer–Manin obstruction blocks the existence

of rational points on the twist of Jac(C)/±1 by δi. This question is discussed
in Remark 6.4 at the end of the paper.

2. Quadratic forms. In this section we discuss some general properties
of quadratic forms and quadric hypersurfaces. Our standing convention will
be that all such forms and hypersurfaces are nonsingular.



The two faces of the twisted Kummer surface 3

We begin with the well-known classification of quadratic forms over a
number field. Since every quadratic form may be diagonalized by a linear
change of coordinates, it suffices to consider only diagonal quadratic forms.

Definition 2.1. Let F be a number field, let p be a place of F , and
let a1, . . . , an be a sequence of elements of F or Fp. The Hasse symbol
(a1, . . . , an)p is the product of Hilbert symbols

∏
i≤j(ai, aj)p.

Proposition 2.2 ([9, Theorem 63.20]). Diagonal quadratic forms∑n
i=1 aix

2
i over a local field Fp are classified by the following invariants:

n,
∏
ai up to squares, the Hasse symbol (a1, . . . , an)p, and, if p is a real

place, the number of positive ai.

Proposition 2.3 ([9, Theorem 66.4, Remark 66.5]). Over a global
field F , diagonal quadratic forms

∑n
i=1 aix

2
i are classified by the invari-

ants n,
∏
ai up to squares, the (a1, . . . , an)p for all nonarchimedean p, and,

for each real place p∞,j, the number of ai that are positive at p∞,j. The
product of the (a1, . . . , an)p is 1.

One distinction between quadratic forms and quadric hypersurfaces is
that the isomorphism class of the first may be affected by scaling, whereas
that of the second is not. We show, however, that this problem does not
arise in an important special case.

Proposition 2.4. Let n be even and let f(x1, . . . , xn) be a quadratic
form over a nonreal local field Fp with determinant (−1)n/2 up to squares.
Then f is equivalent to cf for all c 6= 0 ∈ Fp.

Proof. We may suppose f to be a diagonal form
∑

i aix
2
i ; the determi-

nant is then
∏
i ai. Since n is even, the determinant is the same up to squares

for f and cf , so it suffices to show that (a1, . . . , an)p = (ca1, . . . , can)p. Ex-
panding this out, we have

(ca1, . . . , can)p =
∏
i≤j

(cai, caj)p =
∏

(ai, aj)p(c, aj)p(ai, c)p(c, c)p

= (a1, . . . , an)p

∏
i

((c, ai)n+1
p (c, c)n(n+1)/2

p )

= (a1, . . . , an)p

(
c,
∏

ai

)
p
(c, c)n(n+1)/2

p .

If 4 |n, then
∏
ai is a square, so (c,

∏
ai)p = 1, and n(n + 1)/2 is even, so

(c, c)n(n+1)/2
p = 1. If n ≡ 2 (mod 4), then −

∏
ai is a square, so (c,

∏
ai)p =

(c,−1)p, and (c, c)n(n+1)/2
p = (c, c)p, so the product of the last two factors is

(c,−c)p = 1.

Corollary 2.5. Let n be even and let f(x1, . . . , xn) be a quadratic form
over a global field F with determinant (−1)n/2 up to squares. Then f is
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equivalent to cf for all c 6= 0 ∈ F that are positive at every real place at
which the signature of f is nonzero.

Proof. This follows by combining Proposition 2.3 with Proposition 2.4.

Remark 2.6. Let F be a global field. Then we may associate an element
of Br2(F ) to every quadric hypersurface in Pn−1 defined by an equation
with determinant (−1)n/2 up to squares: namely, we diagonalize an equation
defining the hypersurface to obtain

∑n
i=1 aix

2
i and choose the element whose

local invariant at p is 1/2 at exactly those places where (a1, . . . , an)p = −1.
Proposition 2.4 shows that this element does not depend on the choice of
defining equation.

Now we discuss varieties. First we recall some results on linear subspaces
of quadric hypersurfaces over an algebraically closed field. Following [10, Def-
inition 1.1], we define a generator of a quadric hypersurface of dimension k
to be a linear subspace of dimension bk/2c.

Proposition 2.7 ([10, Theorem 1.2, Remark 1.4(ii), Lemma 1.5]). Let
Q be a smooth quadric hypersurface of even dimension 2l over an alge-
braically closed field F̄ of characteristic not 2. On Q, the variety of gener-
ators (viewed as a subvariety of the Grassmannian, for example) has two
irreducible components, each nonsingular of dimension

(
l+1
2

)
. Every linear

subspace of dimension l− 1 is contained in exactly one generator from each
component.

In the case l = 2, we may describe the families of lines and planes
concretely when Q is the Grassmannian G of lines in P3 in its Plücker
embedding. (We will take G to be the quadric hypersurface in P5 defined
by the polynomial Qg = x0x5 − x1x4 + x2x3. Readers who prefer sign and
order conventions for minors other than those implied by this equation may
make the few changes that will be necessary.) In this case, [3, Section 17.2]
states that every line in the 5-dimensional family of lines on G parametrizes
a family of lines in P3 that contains a fixed point and is contained in a given
plane. One of the two families of planes parametrizes the lines in P3 that
contain a fixed point; the other, those lying in a fixed plane.

For completeness, we sketch proofs of these well-known results. In light
of Proposition 2.7 above, to prove the statement on the families of planes
it suffices to verify that the lines containing [0 : 0 : 0 : 1] and those con-
tained in the plane y0 = 0 constitute planes. For the first, the three Plücker
coordinates not involving y3 are 0, so we get a plane; for the second, the
three involving y0 are 0, and again we obtain a plane. Clearly, the same
statements will hold for any point and any plane in P3. But then a line in G
is the intersection of the two planes containing it, so the description of lines
that we have given is evident.
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Definition 2.8. For a point P and a plane H in P3 such that P lies
on H, let lP,H be the family of lines in P3 that contain P and are contained
in H. (From the above, these lines determine a line in G.) Let π1 be the
map from the variety of lines on G to P3 that takes lP,H to P , and let π2 be
the map from the variety of lines on G to the dual P3 that takes lP,H to H.

Lemma 2.9. Let Q be a smooth quadric hypersurface in P2n−1 over an
algebraically closed field F̄ of characteristic not equal to 2. Then the family
of n− 2-planes on Q is irreducible.

Proof. Let A be this family and let P̌2n−1 be the dual of P2n−1. Con-
sider the incidence correspondence I ⊂ A× P̌2n−1 consisting of n− 2-planes
lying in the hyperplane. Let U be the open subset of I lying above points of
P̌2n−1 corresponding to hyperplanes whose intersection with Q is smooth.
On U , the fibers of the projection to the second factor are irreducible
([10, Theorem 1.2(a)]); since the image of the projection is an open subset
of P̌2n−1, hence irreducible, it follows that U is irreducible. So it suffices to
show that I is the closure of U .

Choose a point (O,H) not in U , so that H ∩Q is singular and O is an
n− 2-plane in H ∩Q. As in [10, Lemma 1.3(b)], choose coordinates so that
Q is defined by

∑n
i=1 xiyi = 0 and O is defined by x1 = · · · = xn = y1 = 0.

Then H is defined by
∑
cixi + d1y1 = 0. For H ∩ Q to be singular is

equivalent to c1 = 0 or d1 = 0. Clearly, in either case there is an open curve
in U lying above O whose closure contains the point (O,H), which shows
that (O,H) in fact lies in Ū . It follows that I is irreducible and hence that
A is irreducible.

We will use this lemma and the next two propositions to understand the
generators of a quadric hypersurface of even dimension over a general field.
Suppose that Q is defined over a smaller field F , and let us consider the
generators of Q over F .

Proposition 2.10. Let Q be a quadric hypersurface over F in P2n−1.
Then Q contains an F -rational n−1-plane if and only if Q is F -isomorphic
to the variety defined by

∑n
i=1 xixn+i = 0.

Proof. If Q contains an F -rational n− 1-plane P , we may suppose that
P is defined by the vanishing of the linear forms l1, . . . , ln. We may write the
equation of Q as

∑n
i=1 limi, where the mi are linear forms (not uniquely).

If the li and mi all vanished at a common point, then Q would be singular
there; hence the li and mi constitute a basis of OPn(1), and we may change
coordinates by putting xi = li, xn+i = mi. The converse is easy.

Proposition 2.11. The field of definition of the families of generators
of Q is F (

√
(−1)n detM), where M is the matrix corresponding to Q.
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Remark 2.12. The proof that follows is modeled on that of [2, Lem-
ma 2.5] for the case n = 2, and is included for lack of a suitable reference
(the statement is well-known). We will only use the result in the case n = 3,
in which it is proved in [3, Lemma 17.1.1].

Proof of Proposition 2.11. First, the result is easy to prove for n = 1:
it says that the polynomial ax2 + 2bxy + cy2 factors over F (

√
b2 − ac). In

general, since there are two families of generators, the field of definition will
be at worst a quadratic extension of F . We will denote this extension by
F (
√
g) (allowing the possibility that g is a square if the families are already

defined over F ).
Let F (An−2) be the function field of the Fano scheme of n − 2-planes

on Q. Suppose that we can show that the field of definition of the families of
generators over F (An−2) is F (An−2)(

√
(−1)n detM). Since F (An−2)(

√
g)

is also the field of definition of the families of generators over F (An−2), it is
isomorphic to F (An−2)(

√
(−1)n detM). We just showed in Lemma 2.9 that

F (An−2) is geometrically integral, so F is algebraically closed in F (An−2).
It follows that F (

√
g) ∼= F (

√
(−1)n detM).

Thus we may assume that there is an n − 2-plane on Q defined over F
(since there is certainly one defined over F (An−2)). Let G1, G2 be the gener-
ators containing O, and F1, F2 the F̄ -irreducible components of the variety
of generators. If G1 is defined over some field L, then so is F1, for otherwise
some element of Gal(L̄/L) would take F1 to F2 while fixing the point cor-
responding to G1. This is impossible, since F1 ∩ F2 is empty. It therefore
suffices to show that the field of definition of G1 and G2 is F (

√
(−1)n detM).

Let l1, . . . , ln+1 be a basis for the linear forms vanishing on O, and extend
them to a basis of O(1) with forms m1, . . . ,mn−1. Since Q contains O, its
defining equation is of the form

∑n−1
i=1 gi(l1, . . . , ln+1)mi + q(l1, . . . , ln+1),

where the gi are linear and q is quadratic. An n − 1-plane containing O
contains a point (a1, . . . , an+1, b1, . . . , bn−1) with not all ai = 0; for the
n − 1-plane spanned by such a point and O to lie on Q is equivalent to
gi(a1, . . . , an+1) = 0 for all i and q(a1, . . . , an+1) = 0 and so depends only
on the ai.

The gi must be linearly independent, because Q is singular on their
common zero locus. Hence we may change coordinates so as to replace
l1, . . . , ln+1 by g1, . . . , gn−1 followed by two of the li. We have only made
linear changes of coordinates, so the class of the determinant in F ∗/(F ∗)2

has not changed. On the other hand, in these new coordinates the first n−1
coordinates of the points we are looking for are 0, so by the case n = 1 the
field of definition of the two points is F (

√
−D), where D is the determinant

of the matrix obtained from that of Q in the new coordinates by deleting
all columns and rows except those corresponding to the two li.
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Calculating the determinant of the matrix of Q in this new basis by
expanding n − 1 times alternately along the top row and left column, we
see that its determinant is equal to (−1)n−1D, so the field of definition is
F (
√

(−1)n detM), where M is the matrix of Q.

Suppose further that n = 3, so that dimQ = 4, and that F is a local field
or a global field. In this case, we have three elements of Br2(F ): that defined
by the local invariants of Q (which we call b1) and those classifying the
Severi–Brauer varieties which are the bases of the families of planes (denoted
b2, b3). These are of order 2 because they are trivialized by a quadratic
extension in which all primes where Q is not isomorphic to Qg are ramified
or inert.

Proposition 2.13. The three elements b1, b2, b3 of Br2(F ) defined above
are all equal.

Proof. Observe that Qg = x0x5−x1x4 +x2x3 is isomorphic to x2
0 +x2

1 +
x2

2−x2
3−x2

4−x2
5 and hence that its local invariants are all 1. Therefore, the

element b1 is nontrivial exactly at those places where Q is not isomorphic
to Qg; which, by Proposition 2.10, are exactly the places at which the two
families of planes on Q do not have a rational point, which are the places
where b2 and b3 are nontrivial.

It can still be proved that b2 = b3 for an arbitrary field F of characteristic
not equal to 2, but I see no way to define an analogue of b1, nor any reason
why b2, b3 should belong to Br2(F ) (a priori they only belong to Br4(F )).

3. The Kummer surface. The purpose of this section is to describe
the embedding of the twisted Kummer surface by three quadrics in P5. For
more details the reader is referred to [7, Section 2].

Definition 3.1. Let f be a squarefree polynomial of degree 6 over a
field F . We denote the algebra F [x]/(f) by Af . Let δ ∈ A∗f . Fix coordinates
x0, . . . , x5 on P5(F ), so that F [x0, . . . , x5] is the coordinate ring of P5, and
let g be the element

∑5
i=0 x

i ⊗ xi ∈ Af ⊗F F [x0, . . . , x5] (we think of g as a
“generic element of Af”). We may then uniquely write g2δ =

∑5
i=0 x

i ⊗Ci.
It is clear that the Ci are homogeneous polynomials of degree 2.

Definition 3.2. Given f, δ as above, let Vf,δ be the subscheme of P5

defined by C3, C4, C5. We call Vf,δ the twist of Vf,1 by δ.

Observe that Vf,δ and Vf,δα2 are isomorphic by a linear change of coor-
dinates induced by multiplication by α on Af . In particular, if F is alge-
braically closed, then the isomorphism class of Vf,δ does not depend on δ.
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Theorem 3.3 ([3, Section 16.3]). Let f be as above and let C be the
curve of genus 2 defined by y2 = f . The minimal desingularization of the
quotient of Jac(C) by ±1 is isomorphic to Vf,1 over F .

We now recall some results from [7] on the Picard group of Vf,δ. In this
section let F be a field of characteristic not equal to 2, let f ∈ F [x] be a
squarefree polynomial of degree 6, and let δ be a unit in F [x]/(f).

Theorem 3.4 ([7, Lemma 2.10, Propositions 2.11 and 2.30]). The va-
riety Vf,δ contains 32 lines. Generically, their classes generate the Néron–
Severi group of Vf,δ. The lines can be indexed by pairs of complementary
subsets S, S̄ of {1, . . . , 6} in such a way that LS intersects LS′ if and only if
S or S̄ differs from S′ in exactly one element.

We usually write LS rather than L{S,S̄}. For example, L1 intersects L12

but not L24 or L123. On the other hand, L123 does intersect L45, because
the complement of {1, 2, 3} is {4, 5, 6}, which differs from {4, 5} only in
containing 6.

Definition 3.5. Let NS = NSf,δ be the subgroup of the Néron–Severi
group of Vf,δ generated by the classes of lines.

For a description of the Galois action on the 32 lines and on the Néron–
Severi group, see [7], in particular Lemma 2.38, Proposition 2.39, and the
following discussion.

Definition 3.6. Let F , f , δ be as above. Let K be the splitting field of
f and let εi be the natural embeddings of Af into K. Then δi = εi(δ).

Theorem 3.7.

(i) Suppose that f and δ are generic: in other words, suppose that the
Galois group of f is S6 and that the extension F (

√
δi/δj)/F has

degree 32. Then H0(F,NS) ∼= Z, generated by a class that intersects
every line once.

(ii) Suppose that f is generic and that δ is generic except for having
square norm from F [x]/(f) to F . Then there are two orbits E ,O of
lines under the action of Galois and H0(F,NS) ∼= Z⊕ Z.

Proof. The first statement of (ii) is a special case of [7, Lemma 2.37].
In light of this, the statements on Néron–Severi groups are easily verified
by computer calculation [6]. The generator in (i) is the hyperplane class
of Vf,δ.

In the case of δ having square norm, we will write i(D) for a rational
divisor or divisor class D to mean (D · l1, D · l2), where l1 is a line in the
orbit E and l2 a line in O. Sometimes we will refer to i(D) as the type of D.
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Observe that if i(D) = (a, b) and σ is an element of Gal(F̄ /F ) that fixes D
and exchanges E and O, then i(Dσ) = (b, a).

Definition 3.8. The hyperplane class of [7], which intersects every line
once, will be denoted H.

Proposition 3.9. Suppose that N(δ) is a square and that f and δ are
otherwise generic. Then H0(F,NS) is generated by divisors of types (1, 1)
and (2, 0).

Proof. The divisor H is of type (1, 1). On the other hand, the divisor
D∅ = 2L∅+

∑6
i=1 Li has intersection −2 ·2+6 with L∅, while its intersection

with Li is 2 − 2 = 0. Its intersection with Lij is 2, because Lij meets Li
and Lj , and it does not meet Lijk. Therefore its intersection with a line
depends only on whether the line belongs to E or to O; its type is therefore
(2, 0). Since the lines generate the Néron–Severi group over F̄ , the class of
this divisor is defined over the field of definition of E . In general, this field
of definition is F (

√
N(δ)), but it is F here because N(δ) is a square.

To complete the proof, we show that there is no divisor of type (1, 0). In-
deed, such a divisor would be linearly equivalent to D∅/2. Its self-intersection
would be (−22 · 2− 6 · 2 + 2 · 6 · 2)/4 = 1. However, the Riemann–Roch the-
orem for surfaces ([5, Theorem V.1.6]) shows that the self-intersection of
every divisor on a K3 surface is even.

We are only interested in Vf,δ that are everywhere locally solvable. This
condition implies that every divisor class in H0(F,NS) is represented by an
F -rational divisor.

Now we consider the Brauer group. Recall from [12, Corollary 2.3.9] that
ker(BrV → BrV )/im(BrF → BrV ) is isomorphic to H1(F,PicV ). Also,
the natural inclusion of NS into PicV induces a homomorphism H1(F,NS)
→ H1(F,PicV ).

Theorem 3.10. In the generic case, H1(F,NS) has order 2. The unique
nontrivial element is in the kernel of the restriction map

H1(F,NS)→ H1(F (
√
N(δ)),NS).

Proof. This is a straightforward calculation using Magma [1]. See [6] for
details.

Let F ′ = F (
√
N(δ)). By the inflation-restriction sequence, the nontrivial

element of H1(F,NS) is in the image of the inflation map

H1(F ′/F,NSF
′
)→ H1(F,NS).

Since Gal(F ′/F ) is cyclic, the group H1(F ′/F,NSF
′
) is identified with

(kerN : NSF
′ → NSF )/((σ − 1)NSF

′
), where σ generates Gal(F ′/F ). If we

choose a class D in NSF
′

representing the nontrivial element of the quotient,
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we see ([13, Lemma 1]) that the nontrivial element of the Brauer group is rep-
resented by an Azumaya algebra which is the quaternion algebra (N(δ), f),
where f is a function on V whose divisor is the norm from F ′ to F of a
divisor of the class D defined over F ′.

In particular, let D be a divisor on V ⊗ F ′ with i(D) = (1,−1). Then
NF ′/F (D) is principal but D is not. Of course, D is not effective, but D +H
may be; if we can find an effective divisor E of type (2, 0), then E+Eσ−2H =
NF ′/F (E−H) is principal. This means that E−H represents the nontrivial
element of the quotient as described above. Letting fE be a function whose
divisor is N(E −H), we see that the Brauer element is represented by the
quaternion algebra (N(δ), fE).

In fact, the divisor E+Eσ is linearly equivalent to twice the hyperplane
class on Vf,δ, so it is defined by some quadratic form q ∈ OP5(2). (Here we
use the fact that Vf,δ is projectively normal, which is true because it is a
nonsingular, and hence normal, complete intersection of positive dimension
([5, Exercise 2.8.4(b)]).) The nontrivial Brauer element is then represented
by (N(δ), q/l2), where l is any nonzero element of OP5(1).

Proposition 3.11. Let Q be a quartic surface in P3 such that there is
a birational equivalence φ : V → Q that contracts the lines in O and takes
the lines in E to conics on Q. Then the inverse image by φ of a hyperplane
section of Q is a divisor of type (2, 0) on V . Conversely, the map from V to
projective space given by the complete linear system of divisors of type (2, 0)
has image a quartic surface in P3, takes lines in E to conics, and contracts
lines in O.

Proof. The first statement is clear. For the second, we first note that
this linear system has no base points. Indeed, it contains the divisors D1 =
2L∅+

∑
Li, D2 = 2L12+L1+L2+

∑
L12i, and D3 = 2L34+L3+L4+

∑
L34i;

no component is shared among these three. Suppose that P is a point on all
three of these divisors. Then P /∈ L∅, because L∅ ∩D2 is supported on the
points of intersection of L1 and L2 with L∅, and these points do not lie on
D3 because no component of D3 meets L1 or L2. Also, P /∈ L1 ∪ L2 for the
same reason, and P /∈

⋃6
i=3 Li because no component of D2 meets any of

these lines. We have exhausted all points of D1, so this is a contradiction.
It follows that the degree of the image is the self-intersection of a divisor

of type (2, 0), which in the proof of Proposition 3.9 we showed to be 4. By
Riemann–Roch the dimension of this linear system is 3, so the image is a
surface in P3. Since such a divisor intersects a line in E twice, the images
of lines in E are curves of degree 2, which are plane conics. Lines in O are
contracted, because these divisors intersect them with degree 0.

Remark 3.12. Let F be the field of definition of V and F ′ that of E
and O. The quartic surface Q on which E is a hyperplane section is not
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defined over F , but only over F ′. Therefore Eσ is not a hyperplane section
of Q, but of Qσ, and there is no reason to expect that it will be linearly
equivalent to E. In fact, Q is isomorphic to Qσ over F ′, but not by a map
induced by a linear automorphism of the ambient P3.

4. The quartic Kummer surface. We now introduce another con-
struction of the Kummer surface. Suppose that Q1, Q2 ∈ F [x0, . . . , x5] are
quadratic forms such that the scheme Q1 = Q2 = 0 is nonsingular and
of dimension 3. Let Mi be the symmetric matrix corresponding to Qi for
i = 1, 2, and let d(x) = det(M1 + xM2). Our assumption guarantees that f
is squarefree and of degree 5 or 6.

Remark 4.1. The variety of lines on the scheme Q1 = Q2 = 0 is the
intersection of the varieties of lines on the schemes Q1 = 0 and Q2 = 0.

Suppose that the scheme S1 defined by Q1 = 0 is identified with the
Grassmannian G of lines in P3. A line on S1 then corresponds to a family of
lines in a fixed plane containing a fixed point. The variety of planes on S1

has two components: as we saw above, these correspond to families of lines
containing a fixed point and families of lines lying in a fixed plane. If we fix
a component Pi of the variety of planes on S1, it is clear that each line on S1

is contained in exactly one plane of Pi. We therefore have a map πi from
the variety of lines on Q1 = Q2 = 0 to the base of P , which is isomorphic
to P3. The images of π1 and π2 are dual to each other and both are isomor-
phic to the Kummer surface of the Jacobian of the curve y2 = −d(x). See
[3, Section 17.2] for more details on this.

We now consider the effect of choosing the quadrics C4, C5, defined pre-
viously as coefficients of g2δ, to be Q1, Q2. Let c0, . . . , c5 be the coefficients
of g2 (with δ = 1), and let ι be an automorphism of P5 induced by multiplica-
tion by a square root of δ; then ι induces an isomorphism from the scheme
defined by any subset of the Ci to the corresponding subset of the ci. In
particular, ι induces an isomorphism from the variety of lines of the variety
defined by C4, C5 to that of the variety defined by c4, c5.

Proposition 4.2. The variety of lines on the scheme C4 = C5 = 0 is
geometrically isomorphic to the Jacobian of y2 = d(x). The determinant of
the matrix associated to C5 is −N(δ).

Proof. To prove the first statement, we may assume that δ = 1, because
the base field is algebraically closed. Also, multiplying d(x) by a constant
does not change C4, C5, or the F̄ -isomorphism class of the Jacobian of
y2 = d(x), so we may assume that d is monic. We calculate C4, C5, and
the associated matrices. Using Magma [1] to evaluate the determinant, we
observe that it is equal to −d(−x−a5), where a5 is the x5 coefficient of d(x);
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the result then follows from [3, Theorem 17.0.1], since passing to the alge-
braic closure trivializes the principal homogeneous space. See [6] for details
and forthcoming work of van Luijk et al. for a more enlightening proof.

For the second statement, we first show that the determinant of the
matrix associated to c5 is −1. The coefficient of xixj in c5 is 0 if i + j < 5
and 2 if i + j = 5, so the matrix has 1’s along the diagonal from bottom
left to top right and 0’s above and to the left of this diagonal. Switching
row i with row 7 − i for i = 1, 2, 3 changes the sign of the determinant
and produces an upper triangular matrix with 1’s on the main diagonal; the
determinant of such a matrix is 1. The claim follows.

We obtain the C5 associated to f, δ from that associated to f, 1 by a
change of base on F̄ [x]/(f(x)) that divides elements by a square root of δ;
by definition of norm, the determinant of this base change is

√
N(δ), so the

determinant of the matrix is multiplied by
√
N(δ)

2
= N(δ).

If C5 defines a subscheme of P5 isomorphic over F to G, then let us fix
an F -isomorphism γ. Let lγ be the F -isomorphism induced by γ from the
variety of lines on C5 = 0 to that on G, and define two maps πδ,i = πi ◦ lγ
(i ∈ {1, 2}) from the variety of lines on C5 = 0 to P3 (recall the πi from
Section 2). Let the images of the variety of lines on C4 = C5 = 0 under the
πδ,i be Kδ,1,Kδ,2.

Theorem 4.3. Suppose that C5 = 0 defines a subscheme of P5 that is
F -isomorphic to G. Then the minimal desingularizations of the Kδ,i are
isomorphic to Vf,δ.

Proof. It suffices to prove this for i = 1. The F̄ -isomorphism between
Vf,δ and Vf,1 is the restriction of the automorphism ι of P5. On the other
hand, ι induces an automorphism of the variety of lines in P5 in an obvious
way, and hence an isomorphism between the varieties of lines on C4 = C5 = 0
and c4 = c5 = 0 (because ι is an isomorphism from the first of these to the
second). Let us call this isomorphism κ. It is clear that, for all σ in Gal(F̄ /F ),
the isomorphism from Kδ,1 to K1,1 induced by ισ in this way is κσ. This
means that the Galois cocycles expressing Vf,δ and Kδ,1 as forms of Vf,1
and K1,1 respectively can be identified. From this and the fact that Vf,1 and
K̃1,1 are isomorphic, it follows that Vf,δ and K̃δ,1 are likewise isomorphic.

In view of Propositions 2.3 and 4.2, the hypothesis can only be satisfied if
N(δ) is a square in F . If the norm of δ is not a square, then the determinant
of C5 will not be of the form −r2, so the two families of planes on C5 will not
be defined over F . In this case it is not possible to define the πδ,i over F . This
should not be surprising, because the nodes on the image of πδ,i correspond
to a set of sixteen disjoint lines on Vf,δ, and such a set is only defined when
the norm of δ is a square.
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Remark 4.4. Alternatively, it is possible that N(δ) is a square, but
nevertheless the variety defined by C5 is not F -isomorphic to G. In this
case, Proposition 2.10 shows that no rational planes lie on it, so the twisted
maps πδ,i go naturally to a Brauer–Severi variety of dimension 3 with no
rational points. In this case the minimal desingularization of the image is
still isomorphic to Vf,δ. However, this shows that Vf,δ has no rational points;
indeed, if F is a number field then Vf,δ must fail to be locally solvable at at
least two places.

5. Mapping the intersection of three quadrics to the quartic.
Above, we constructed two projective models Vf,δ, Kδ,i of the twisted Kum-
mer surface of the Jacobian of a curve of genus 2. A hyperplane section
of Kδ,i misses those −2-curves that are contracted to double points on Kδ,i

and intersects twice those that are mapped to conics; that is, it is a divisor of
type (2, 0). So constructing a divisor of type (2, 0), and hence the nontrivial
element of the Brauer group of Vf,δ, is essentially equivalent to constructing
a birational equivalence from Vf,δ to Kδ,i. In principle, this could be done
using the known equivalence between Vf,1 and K1,1 ([3, Section 16.3]) and
the isomorphisms ι; however, we preferred a different construction, one that
avoids all need to trivialize explicit Galois cocycles and almost all need to
solve norm equations. (It would be necessary to do an explicit Galois descent
over an extension whose Galois group contains A6 as a simple factor; that
is computationally infeasible.)

We will assume that F is a number field (in fact, our program assumes
that Vf,δ is defined over Q and that F = Q(

√
N(δ)); it would be easy to

remove this restriction, at the cost of agonizing slowness).
Let us fix f, δ for the duration of this section. Since we are interested

in constructing an example of the Brauer–Manin obstruction in the generic
case, we will suppose that f, δ are generic in the sense of Theorem 3.7. The
ideas below should be applicable even when the Galois group is smaller than
in the general case, although some reprogramming would be necessary to
deal with situations in which there are many Galois orbits of lines.

Given f, δ, we start by calculating the Ci defined above. Then we use
Proposition 2.3 to determine whether C5 defines a scheme isomorphic to the
Jacobian. If it does not, then it is not possible to embed Kδ,i in P3 (see
Remark 4.4) and in any case Vf,δ is not locally solvable.

If the scheme C5 = 0 is isomorphic to G, we will need to find an isomor-
phism. It suffices to find an F -isomorphism of the quadratic forms C5 and
Qg = x0x5 − x1x4 + x2x3. (This must be possible, because some multiple
of C5 is isomorphic to Qg, while Proposition 2.4 shows that all nonzero mul-
tiples of C5 are isomorphic as quadratic forms.) The following algorithm,
suggested to me by Jonathan Hanke, can be used to find an isomorphism
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of two quadratic forms Q1, Q2 in n variables: search for a common value r
of the two forms, then write each form as fi(x1, . . . , xn−1) + rx2

n, where the
fi are quadratic forms in n − 1 variables. These forms will be isomorphic,
so the problem is solved by induction. (This method can be used to prove
Proposition 2.3; see [11, Theorem 9, p. 44].)

However, the program uses a simpler method which is not guaranteed to
work. In our situation C5 actually has rational coefficients; we diagonalize
it over Q to obtain a diagonal form D =

∑
cix

2
i . If we divide some of the

ci by N(δ) we obtain a form D′ isomorphic to D over F ; we can determine
whether D′ is isomorphic to Qg over Q by calculating the invariants (Propo-
sition 2.3). If it is, we try to construct an isomorphism. First, the product of
the coefficients of D′ is of the form −n2. Let p |n. If p divides all coefficients
of D′, we divide it out. If p2 divides the x2

i coefficient of D′, we may remove
this factor by replacing xi with pxi. If p divides four of the coefficients of D′,
we multiply through by p and then remove the p2 as above. Thus we may
assume that n is squarefree.

Again, let p |n, and suppose that p divides the coefficients d1, d2 of x2
1, x

2
2

in D′. It is easy to show that the conic d1x
2 +d2y

2−pd1z
2 fails to be locally

solvable at exactly the places where D′ is not isomorphic to the quadratic
form D′′ = d1x

2
1/p + d2x

2
2/p +

∑6
i=3 dix

2
i . If this conic has a rational point

we can construct an isomorphism from D′ to D′′. (In this case the form
x2 +(d2/d1)y2 represents p, so by standard theory of binary quadratic forms
it is equivalent to x2/p+ (d2/(pd1))y2.) Similarly, if d1x

2 +d2y
2 + pd1z

2 has
a rational point then D′ is isomorphic to −d1x

2
1/p − d2x

2
2/p +

∑6
i=3 dix

2
i .

Repeating this process, we may eventually reach Qg.
This method may fail: it is possible that we reach a form for which no

primes can be removed from the coefficients in this way. However, experience
shows that an element m of F [x]/(f(x)) of small norm can usually be found
such that multiplying δ by m2 produces C5 to which the method applies.

Let C ′4 be C4 in the coordinates for which C5 = x0x5 − x1x4 + x2x3.
We diagonalize C ′4 and find the Fano scheme of lines lying on it. This is a
subscheme of P14, and we use the Plücker embedding to find the image. (Di-
agonalizing C ′4 is not strictly necessary, but it makes the image calculation
much faster.) Changing the base of P5 induces a linear change of coordinates
on the P14 containing the Grassmannian of lines of P5, so we can recover
the subscheme L of P14 parametrizing the lines on C ′4∩G. The image π1(L)
is Kδ,1. Since we know that the image is a quartic hypersurface in P3 de-
fined over F , we may compute it by applying the maps to the intersection
of L with linear subspaces of codimension 2; after the first few images have
been computed, the vector space of quartics vanishing on all of the images
is 1-dimensional, and so a generator must define the image.
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We could find Kδ,2 by the same method, but this is not necessary for our
purposes. If we wished to, it would be simpler to compute the dual of Kδ,1

rather than to calculate Kδ,2 by the same method used for Kδ,1.
Now we turn our attention to Vf,δ. We compute the Fano schemes that

parametrize the lines on C3, C4, C5 and intersect them, producing a scheme
of degree 32 and dimension 0 parametrizing the lines of Vf,δ. We use elimi-
nation ideals to separate this scheme into two components over F (

√
N(δ)).

For each component Bi we choose a representative line Mi. Since Mi lies
on C4 and C5, it corresponds to a point Pi of Kδ,1. The 32 irreducible
curves of self-intersection −2 on Vf,δ correspond to the 16 nodes on Kδ,1

and the 16 tropes. (The tropes are conics on Kδ,1 that are the reduced sub-
schemes of the hyperplane sections of Kδ,1 that pass through 6 nodes. The
self-intersection of a generic hyperplane section is 4, but since these special
hyperplane sections are double curves we divide by 22 = 4. Then, as in
[8, Section II(b)], we subtract a correction term of 1/2 for each node.) One
of the orbits corresponds to nodes and the other to tropes; by testing which
of the Pi is singular on Kδ,1, we determine which orbit corresponds to nodes.
Let us suppose it is P1. Then the lines of B1 are defined over the same field
as the nodes of Kδ,1, so any map from Vf,δ to Kδ,1 must contract the lines
to the nodes.

Since the hyperplane section of Kδ,1 is of type (2, 0), the difference
2HVf,δ−HKδ,1 is effective (being of type (0, 2)). Therefore there are quadratic
forms on P5 defining the birational equivalence. Furthermore, as we saw
above, such maps must contract the lines of B1.

Conversely, let φ : Vf,δ → P3 be a map defined by quadratic forms that
contracts the lines of B1 and whose image is not contained in a hyperplane.
Then the base locus must intersect every line of B1 twice. Hence either the
base locus is a divisor of type (0, 2), in which case φ must be the desired
map that embeds Vf,δ by a divisor of type (2, 0), or it consists of two points
on each line of B1, for a total of 32 points.

Proposition 5.1. With φ as above, the base locus of φ is in fact a
divisor of type (0, 2), not two points on each line of B1.

Proof. Since Vf,δ is of degree 8, the self-intersection of the zero locus of
a quadratic form is 8 · 22 = 32. Each base point reduces the degree of the
image by 1, so if the map had 32 base points the degree of the image would
be 0; that is, the image would be of lower dimension.

If the dimension of the image were 0, then the image would be contained
in a hyperplane; so suppose it is 1. The image is then an irreducible curve X
that contains all sixteen nodes of Kδ,1. Since the lines of B2 are not con-
tracted, they must map surjectively to X, which is therefore the image of a
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line by a map defined by quadratic forms and whose degree is therefore at
most 4.

Let T be a trope, let K̃δ,1 be the minimal desingularization of Kδ1 , and
let N1, . . . , N6 be the exceptional divisors above the nodes lying on T . On
K̃δ,1, then, we have H̃ ∼ 2T̃ +

∑
Ni. Intersecting both sides with the strict

transform X̃ of X, we see that H̃ · X̃ ≤ 4 and X̃ · Ni ≥ 1 for all i; it
follows that X̃ · T̃ < 0. Since X and T are irreducible curves, this means
that X = T . But X cannot be a trope, because the tropes do not contain
all sixteen nodes. This contradiction establishes that φ is the desired map.

So we find all 4-tuples of quadratic forms defined over F (
√
N(δ)) that

contract the lines of B1 to a node of Kδ,1 and that do not define a constant
map. (We know that such maps exist, so this amounts to finding all elements
of a vector space not contained in a certain proper subspace; this is simple
linear algebra.) Once we have found one such map, corresponding to a divisor
D0 of type (0, 2), we may find other equations for it. To do so, find a divisor of
type (2, 2) containing D0 (this is just the divisor cut out by a quadratic form
vanishing on D0); the residual is then of type (2, 0). Every effective divisor
of type (0, 2) is then the residual intersection of Vf,δ with a quadratic form
vanishing on this divisor.

To describe the Brauer group, let us pull back hyperplanes H1, . . . ,Hn

from Kδ,1 to Vf,δ and let qi (1 ≤ i ≤ n) be the quadratic forms defining the
union of the inverse images with their K(

√
N(δ))-conjugates as subschemes

of Vf,δ; then the (N(δ), qi/l2i ) are Azumaya algebras representing the non-
trivial element of BrVf,δ/Br Q, where li are arbitrary nonzero linear forms.
The construction does not guarantee that these Azumaya algebras represent
the same element of BrVf,δ.

6. Example of Brauer–Manin obstruction. In this section we give
an example of f and δ such that the Brauer–Manin obstruction blocks the
existence of rational points on the Kummer surface of the Jacobian of y2 =
f(x) twisted by δ. The reader unfamiliar with the Brauer–Manin obstruction
may wish to consult [4, Section 2].

The following simple lemma will allow us to compute local invariants of
an element of the Brauer group at all but finitely many places.

Lemma 6.1. Let p > 40 be an odd prime and n an integer relatively
prime to p. Let S be a smooth K3 surface over Q with good reduction at p
in P5 defined by three quadratic forms, and f a quadratic form over Qp that
is not identically 0 on S, is not 0 mod p, and does not have any coefficients
with p in the denominator. Then there is a Qp-point Pp of S such that the
local invariant (n, f(Pp))p is 1.
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Remark 6.2. Of course, f(Pp) is not well-defined, but it is defined up to
multiplication by an element of (Q∗p)2, so the local invariant is well-defined.

Proof of Lemma 6.1. The Weil bounds show that S has at least
p2 − 22p+ 1 points mod p. The locus of S mod p where f = 0 (mod p) is
a curve of degree 16 over Fp, so it has at most 16p + 16 points mod p
(with equality if it is a disjoint union of 16 rational lines). Since p > 40, it
follows that there are points of S mod p where f 6= 0. Let P be such a point
of S mod p. Since S has good reduction at p, we can lift it to a Qp-point Pp.
Then the p-adic valuation of f(Pp) is 0 (scaling so that the coordinates of
Pp are in Zp and not all in pZp). Since p is odd and does not divide n, it
follows that (n, f(Pp))p = 1.

We now proceed to the proof of our main arithmetical theorem.

Theorem 6.3. Let f = x6−3x5+3x4−3x2−x−1, let Af = Q[x]/(f(x)),
and let δ ∈ Af be the image of x5 − 7x4 + 4x3 + 3x2 + x. Then the Brauer–
Manin obstruction blocks the existence of rational points on the surface Vf,δ,
which is defined by the equations

3x2
1 + 3x1x2 − 4x1x3 − 19x1x4 − 26x1x5 − 7x1x6 − 2x2

2 − 19x2x3

− 26x2x4 − 7x2x5 + 54x2x6 − 13x2
3 − 7x3x4 + 54x3x5 + 125x3x6

+ 27x2
4 + 125x4x5 + 112x4x6 + 56x2

5 − 105x5x6 − 261x2
6,

x2
1 − 8x1x3 − 8x1x4 + 10x1x5 + 62x1x6 − 4x2

2 − 8x2x3 + 10x2x4

+ 62x2x5 + 134x2x6 + 5x2
3 + 62x3x4 + 134x3x5 + 184x3x6

+ 67x2
4 + 184x4x5 + 164x4x6 + 82x2

5 + 128x5x6 + 183x2
6,

5x2
1 + 17x1x2 + 34x1x3 + 3x1x4 − 74x1x5 − 191x1x6 + 17x2

2 + 3x2x3

− 74x2x4 − 191x2x5 − 222x2x6 − 37x2
3 − 191x3x4 − 222x3x5

− 33x3x6 − 111x2
4 − 33x4x5 + 382x4x6 + 191x2

5 + 601x5x6 − 137x2
6.

Proof. The norm of δ is 123008 = 27312, so the nontrivial Brauer element
is of the form (2, f). The only primes ramified in Af are 2 and 14009, so the
only primes of bad reduction of Vf,δ are 2, 31, and 14009. Since 2 is a square
in Q31, Q14009, and Q∞, the local invariants at these places are identically 0.

Using the programs, we find an explicit Brauer element (2, fi/l2), where
the fi are quadratic polynomials. These are relegated to [6] because the
smallest of them, which we will call f1, has coefficients with up to 19 digits.

Let Pb = {2, 31, 14009} be the set of primes of bad reduction of V and let
Ps be the set of primes less than 23. To show that V is locally solvable at all
finite places, it is enough to prove that it has a point in Qp for all p ∈ Pb∪Ps,
since for other p there is automatically a smooth point mod p by the Weil
bounds and such a point lifts to Qp by Hensel’s lemma. It is easy to find
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smooth points mod all odd primes less than 23 and mod 31, and there is a
smooth point mod 14009 with x3 = x6 = 0. On the other hand, V has no
smooth points mod 2, but there is a 2-adic point with x3 − 3x6 = x5 = 0.
In addition, there is a real point with x5 = x6 = 0.

It follows from Theorem 1 of [2] that the local invariant is constant
at primes of good reduction; since 2 is a square mod 31 and mod 14009,
the local invariant is identically 0 there. To prove the theorem, it therefore
remains to verify the following two claims:

(i) the local invariant of the nontrivial Brauer element at 2 is constant;
(ii)

∑
p(2, b(Pp)) = 1/2.

These claims are easily checked by computation. To prove claim (i), the
program begins by calculating the invariants of (2, fi) at a single 2-adic
point for all i to determine the class of (2, f1) − (2, fi) in Br Q2. It then
finds all of the points of V mod 2 and creates a polydisc with all radii 1/2
around each point; every Q2-point of V must be contained in one of these.
For each polydisc, the program attempts to use the fi to prove that the local
invariant is constant there. If it is, and the invariant is not already known to
occur, the program then tries to prove that no 2-adic points of V are found
in the polydisc. If not, the program subdivides the polydisc and proceeds
to examine the subdivisions. (This is much the same method discussed in
the proof of [7, Theorem 3.31], except that we use depth-first rather than
breadth-first search; it is much faster to manipulate the end of a long list
rather than the beginning, and that is what depth-first search does.) The
program expands about 40000 polydiscs, in some cases working mod 210,
before concluding that the local invariant at 2 is identically 1/2.

Lemma 6.1 reduces claim (ii) to a finite calculation. The primes dividing
the denominator of some coefficient of f1 are 11, 59, 113, 1531, 20161; the
program finds that (2, b(Pp)) is equal to 1/2 for p = 2, 11, 1531 and to 0 for
the other primes less than 40 and for 59, 113, 20161. Finally, since 2 is a
square in R the invariant is 0 there.

Remark 6.4. The pair (f, δ) above was found by searching through a
table of extensions of Q of degree 6 for fields with an element ν of norm 2
such that the local invariant of the twist of the K, Kummer surface of the
Jacobian of y2 = f(x), by ν is constant at all p (the only p that need to be
considered are 2 and the ramified primes of Af = Q[x]/(f(x))). To simplify
matters, one can restrict to the fields that are ramified only at 2 and primes
congruent to ±1 mod 8, since the local invariant at p must be 0 if p ≡ 1
(mod 8). Thus I found the f used above and δ0 = 1

2(−x4+x3−x−1). For this
pair (f, δ0), the local invariant is constant at all places, but unfortunately
the sum is 0, so there is no Brauer–Manin obstruction. However, multiplying
by an element β of Af that has square norm and is a square multiplied by an
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integer everywhere locally at 2 will not affect the invariants except at primes
involved in β; moreover, if a prime involved in β is congruent to ±1 mod 8,
then the local invariant there is automatically 0. Trying some suitable β,
I found that multiplying δ0 by the element 1

2(−x5 + 5x3 − 3x2 − 3) of Af
of norm 312 made the sum of local invariants 1/2. The given δ is obtained
from this by multiplying by −2, which does not affect the surface.

In this way, it is easy to find infinitely many β up to elements of (A∗f )2Q∗
such that the invariants of the surface associated to (f, δ0β) are all locally
constant, and one would expect that half of them (in some sense) give twists
of the Kummer surface on which the local invariants sum to 0, and half 1/2.
Accordingly, the following conjecture seems reasonable.

Conjecture 6.5. Up to elements of (A∗f )2Q∗, there are infinitely many
β for which the Brauer–Manin obstruction blocks the existence of rational
points on the twist of K by β.
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