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1. Introduction. Fix a finite field Fq of odd cardinality, and let C be
a nonsingular projective curve defined over Fq. For each extension field of
degree n of Fq, denote by Nn(C) the number of points of C in Fqn . The zeta
function associated to C is defined as

ZC(u) = exp
∞∑
n=1

Nn(C)
un

n
, |u| < 1

q
,

and is known to be a rational function of u of the form

(1.1) ZC(u) =
PC(u)

(1− u)(1− qu)

where PC(u) is a polynomial of degree 2g with integer coefficients, satisfying
a functional equation

PC(u) = (qu2)gPC

(
1
qu

)
.

The Riemann Hypothesis, proved by Weil [19], is that the zeros of P (u) all
lie on the circle |u| = 1/

√
q. Thus one may give a spectral interpretation of

PC(u) as the characteristic polynomial of a 2g × 2g unitary matrix ΘC :

PC(u) = det(I − u√q ΘC)

so that the eigenvalues eiθj of ΘC correspond to zeros q−1/2e−iθj of ZC(u).
The matrix (or rather the conjugacy class) ΘC is called the unitarized Frobe-
nius class of C.

We would like to study how the Frobenius classes ΘC change as we vary
the curve over a family of hyperelliptic curves of genus g, in the limit of
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large genus and fixed constant field. The particular family H2g+1 we choose
is the family of all curves given in affine form by an equation

CQ : y2 = Q(x)

where

Q(x) = x2g+1 + a2gx
2g + · · ·+ a0 ∈ Fq[x]

is a square-free, monic polynomial of degree 2g + 1. The curve CQ is thus
nonsingular and of genus g.

We consider H2g+1 as a probability space (ensemble) with the uniform
probability measure, so that the expected value of any function F on H2g+1

is defined as

〈F 〉 :=
1

#H2g+1

∑
Q∈H2g+1

F (Q).

Katz and Sarnak [11] showed that as q → ∞, the Frobenius classes ΘQ
become equidistributed in the unitary symplectic group USp(2g) (in genus
one this is due to Birch [2] for q prime, and to Deligne [3]). That is, for any
continuous function on the space of conjugacy classes of USp(2g),

lim
q→∞
〈F (ΘQ)〉 =

�

USp(2g)

F (U) dU.

This implies that various statistics of the eigenvalues can, in this limit, be
computed by integrating the corresponding quantities over USp(2g).

Our goal is to explore the opposite limit, that of fixed constant field and
large genus (q fixed, g →∞; cf. [13, 6]). Since the matrices ΘQ now inhabit
different spaces as g grows, it is not clear how to formulate an equidistribu-
tion problem. However, one can still meaningfully discuss various statistics,
the most fundamental being various products of traces of powers of ΘQ,
that is, 〈

∏r
j=1 trΘnjQ 〉. Here we study the basic case of the expected values

〈trΘnQ〉, where n is of order of the genus g.
The mean value of traces of powers when averaged over the unitary

symplectic group USp(2g) is easily seen [5] to be

(1.2)
�

USp(2g)

trUn dU =


2g, n = 0,

−ηn, 1 ≤ |n| ≤ 2g,

0, |n| > 2g,

where

ηn =
{ 1, n even,

0, n odd.
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We will show:

Theorem 1. For all n > 0 we have

〈trΘnQ〉 =


−ηn, 0 < n < 2g,

−1− 1/(q − 1), n = 2g,

0, n > 2g

+ ηn
1
qn/2

∑
degP |(n/2)
P prime

degP
|P |+ 1

+Oq(nqn/2−2g + gq−g),

the sum over all irreducible monic polynomials P , and where |P | := qdegP .

In particular, we have

Corollary 2. If 3 logq g < n < 4g − 5 logq g but n 6= 2g then

〈trΘnQ〉 =
�

USp(2g)

trUn dU + o

(
1
g

)
.

We do however get deviations from the Random Matrix Theory results
(1.2) for small values of n, for instance

〈trΘ2
Q〉 ∼

�

USp(2g)

trU2 dU +
1

q + 1
,

and for n = 2g where we have

〈trΘ2g
Q 〉 ∼

�

USp(2g)

trU2g dU − 1
q − 1

.

Analogous results can be derived for mean values of products, e.g. for
〈trΘmQ trΘnQ〉, when m+ n < 4g; see §6.

To prove these results, we cannot use the powerful equidistribution the-
orem of Deligne [3], as was done for the fixed genus case in [11]. Rather, we
use a variant of the analytic methods developed to deal with such problems
in the number field setting [15, 10, 18]. Extending the range of our results
to cover n > 4g is a challenge.

1.1. Application: The one-level density. The traces of powers de-
termine all linear statistics, such as the number of angles θj lying in a subin-
terval of R/2πZ, or the one-level density, a smooth linear statistic. To de-
fine the one-level density, we start with an even test function f , say in the
Schwartz space S(R), and for any N ≥ 1 set

F (θ) :=
∑
k∈Z

f

(
N

(
θ

2π
− k
))

,
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which has period 2π and is localized in an interval of size ≈ 1/N in R/2πZ.
For a unitary N ×N matrix U with eigenvalues eiθj , j = 1, . . . , N , define

Zf (U) :=
N∑
j=1

F (θj),

which counts the number of “low-lying” eigenphases θj in the smooth inter-
val of length ≈ 1/N around the origin defined by f .

Katz and Sarnak [9] conjectured that for fixed q, the expected value of
Zf over H2g+1 will converge to

	
USp(2g) Zf (U) dU as g → ∞ for any such

test function f . Theorem 1 implies:

Corollary 3. If f ∈ S(R) is even, with Fourier transform f̂ supported
in (−2, 2), then

〈Zf 〉 =
�

USp(2g)

Zf (U) dU +
dev(f)
g

+ o

(
1
g

)
where

dev(f) = f̂(0)
∑

P prime

degP
|P |2 − 1

− f̂(1)
1

q − 1
,

the sum over all irreducible monic polynomials P .

To show Corollary 3, one uses a Fourier expansion to see that

(1.3) Zf (U) =
∞�

−∞
f(x) dx+

1
N

∑
n 6=0

f̂

(
n

N

)
trUn.

Averaging Zf (U) over the symplectic group USp(2g), using (1.2), and as-
suming f is even, gives (1)

�

USp(2g)

Zf (U) dU = f̂(0)− 1
g

∑
1≤m≤g

f̂

(
m

g

)
and then we use Theorem 1 to deduce Corollary 3.

Corollary 3 is completely analogous to what is known in the number
field setting for the corresponding case of zeta functions of quadratic fields,
except for the lower order term which is different: While the coefficient of
f̂(0) is as in the number field setting [14], the coefficient of f̂(1) is special
to our function field setting.

2. Quadratic L-functions. In this section we give some known back-
ground on the zeta function of hyperelliptic curves. The theory was initiated
by E. Artin [1]. We use Rosen [16] as a general reference.

(1) Note that as g →∞,
	
USp(2g)

Zf (U) dU ∼
	∞
−∞

f(x)
`
1− sin 2πx

2πx

´
dx.
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2.1. For a nonzero polynomial f ∈ Fq[x], we define the norm |f | :=
qdeg f . A “prime” polynomial is a monic irreducible polynomial. For a monic
polynomial f , the von Mangoldt function Λ(f) is defined to be zero unless
f = P k is a prime power in which case Λ(P k) = degP .

The analogue of Riemann’s zeta function is

ζq(s) :=
∏

P prime

(1− |P |−s)−1,

which is shown to equal

(2.1) ζq(s) =
1

1− q1−s
.

Let πq(n) be the number of prime polynomials of degree n. The Prime
Polynomial Theorem in Fq[x] asserts that

πq(n) =
qn

n
+O(qn/2),

which follows from the identity (equivalent to (2.1))

(2.2)
∑

deg f=n

Λ(f) = qn,

the sum over all monic polynomials of degree n.

2.2. For a monic polynomial D ∈ Fq[x] of positive degree which is
not a perfect square, we define the quadratic character χD in terms of the
quadratic residue symbol for Fq[x] by

χD(f) =
(
D

f

)
and the corresponding L-function

L(u, χD) :=
∏
P

(1− χD(P )udegP )−1, |u| < 1
q
,

the product over all monic irreducible (prime) polynomials P . Expanding
in additive form using unique factorization, we write

L(u, χD) =
∑
β≥0

AD(β)uβ

with
AD(β) :=

∑
degB=β
Bmonic

χD(B).

If D is nonsquare of positive degree, then AD(β) = 0 for β ≥ degD and
hence the L-function is in fact a polynomial of degree at most degD − 1.
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2.3. To proceed further, assume that D is square-free (and monic of
positive degree). Then L(u, χD) has a “trivial” zero at u = 1 if and only if
degD is even. Thus

L(u, χD) = (1− u)λL∗(u, χD), λ =
{

1, degD even,
0, degD odd,

where L∗(u, χD) is a polynomial of even degree

2δ = degD − 1− λ

satisfying the functional equation

L∗(u, χD) = (qu2)δL∗
(

1
qu
, χD

)
.

In fact, L∗(u, χD) is the Artin L-function associated to the unique nontrivial
quadratic character of Fq(x)(

√
D(x)) (see [16, Propositions 17.7 and 14.6]).

We write

L∗(u, χD) =
2δ∑
β=0

A∗D(β)uβ,

where A∗D(0) = 1, and the coefficients A∗D(β) satisfy

(2.3) A∗D(β) = qβ−δA∗D(2δ − β).

In particular, the leading coefficient is A∗D(2δ) = qδ.

2.4. For D monic, square-free, and of positive degree, the zeta function
(1.1) of the hyperelliptic curve y2 = D(x) is

ZD(u) =
L∗(u, χD)

(1− u)(1− qu)
.

The Riemann Hypothesis, proved by Weil [19], asserts that all zeros of
ZC(u), hence of L∗(u, χD), lie on the circle |u| = 1/

√
q. Thus we may write

L∗(u, χD) = det(I − u√q ΘD)

for a unitary 2δ × 2δ matrix ΘD.

2.5. By taking a logarithmic derivative of the identity

det(I − u√q ΘD) = (1− u)−λ
∏
P

(1− χD(P )udegP )−1,

which comes from writing L∗(u, χD) = (1− u)−λL(u, χD), we find

(2.4) − trΘnD =
λ

qn/2
+

1
qn/2

∑
deg f=n

Λ(f)χD(f).
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2.6. Assume now that B is monic, of positive degree and not a perfect
square. Then we have a bound for the character sum over primes:

(2.5)
∣∣∣∣ ∑
degP=n
P prime

(
B

P

)∣∣∣∣� degB
n

qn/2.

This is deduced by writing B = DC2 with D square-free, of positive degree,
and then using the explicit formula (2.4) and the unitarity of ΘD (which is
the Riemann Hypothesis).

3. The hyperelliptic ensemble H2g+1

3.1. Averaging over H2g+1. We denote by Hd the set of square-free
monic polynomials of degree d in Fq[x]. The cardinality of Hd is

#Hd =
{

(1− 1/q)qd, d ≥ 2,
q, d = 1,

as is seen by writing∑
d≥0

#Hd
qds

=
∑

f monic square-free
|f |−s =

ζq(s)
ζq(2s)

and using (2.1). In particular, for g ≥ 1,

#H2g+1 = (q − 1)q2g.

We consider H2g+1 as a probability space (ensemble) with the uniform
probability measure, so that the expected value of any function F on H2g+1

is defined as

(3.1) 〈F 〉 :=
1

#H2g+1

∑
Q∈H2g+1

F (Q).

We can pick out square-free polynomials by using the Möbius function µ
of Fq[x] (as is done over the integers) via∑

A2|Q

µ(A) =
{

1, Q square-free,
0, otherwise.

Thus we may write expected values as

(3.2) 〈F (Q)〉 =
1

(q − 1)q2g
∑

2α+β=2g+1

∑
degB=β

∑
degA=α

µ(A)F (A2B),

the sums over all monic A, B.
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3.2. Averaging quadratic characters. Suppose now that we are
given a polynomial f ∈ Fq[x] and apply (3.2) to the quadratic character
χQ(f) =

(Q
f

)
. Then

χA2B(f) =
(
B

f

)(
A

f

)2

=
{(

B
f

)
, gcd(A, f) = 1,

0, otherwise.
Hence

〈χQ(f)〉 =
1

(q − 1)q2g
∑

2α+β=2g+1

σ(f ;α)
∑

degB=β

(
B

f

)
,

where
σ(f ;α) :=

∑
degA=α

gcd(A,f)=1

µ(A).

3.3. A sum of Möbius values. Suppose P is a prime of degree n, and
k ≥ 1 and α ≥ 0. Set

σn(α) := σ(P k;α) =
∑

degA=α
gcd(A,Pk)=1

µ(A).

Since the conditions gcd(A,P k) = 1 and gcd(A,P ) = 1 are equivalent for
a prime P and any k ≥ 1, this quantity is independent of k; the notation
anticipates that it depends only on the degree n of P , as is shown in:

Lemma 4.

(i) For n = 1,

σ1(0) = 1, σ1(α) = 1− q for all α ≥ 1.

(ii) If n ≥ 2 then

σn(α) =


1, α = 0 mod n,
−q, α = 1 mod n,
0, otherwise.

Proof. Since P is prime,

σn(α) =
∑

degA=α

µ(A)−
∑

degA=α
P |A

µ(A) =
∑

degA=α

µ(A)−
∑

degA1=α−n
µ(PA1).

Now µ(PA1) 6= 0 only when A1 is coprime to P , in which case µ(PA1) =
µ(P )µ(A1) = −µ(A1). Hence

σn(α) =
∑

degA=α

µ(A) +
∑

degA1=α−n
(P,A1)=1

µ(A1),
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that is,

σn(α)− σn(α− n) =
∑

degA=α

µ(A) =


1, α = 0,
−q, α = 1,
0, α ≥ 2,

on using ∑
Amonic

µ(A)
|A|s

=
1

ζq(s)
= 1− q1−s

and (2.1). For n ≥ 2 we get (ii), while for n = 1 we find that σ1(0) = 1 and
for α ≥ 1,

σ1(α) = σ1(α− 1) = · · · = σ1(1) = −q,

giving (i).

3.4. The probability that P - Q

Lemma 5. Let P be a prime. Then

〈χQ(P 2)〉 =
|P |
|P |+ 1

+O(q−2g).

Proof. Since P is prime, χQ(P 2) = 1 unless P divides Q, that is, setting

ιP (f) :=
{

1, P - f,
0, P | f,

we have χQ(P 2) = ιP (Q) and thus, by (3.2),

〈χQ(P 2)〉 = 〈ιP 〉 =
1

(q − 1)q2g
∑

degA2B=2g+1

µ(A)ιP (A2B).

Since P is prime, P - A2B if and only if P - A and P - B. Hence

〈χQ(P 2)〉 =
1

(q − 1)q2g
∑

0≤α≤g

∑
degA=α, P -A

µ(A)
∑

degB=2g+1−2α, P -B

1.

Writing m := degP , we get

#{B : degB = β, P - B} = qβ ×
{

1 if m > β,

1− 1/|P | if m ≤ β,

and ∑
degA=α, P -A

µ(A) = σm(α)
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is computed in Lemma 4. Hence

〈χQ(P 2)〉 =
1

(q − 1)q2g
∑

0≤α≤g
σm(α)q2g+1−2α

×
{ 1− 1/|P |, 0 ≤ α ≤ g − (m−1)/2,

1, g − (m− 1)/2 < α ≤ g

=
(

1− 1
|P |

)
1

1− 1/q

( ∞∑
α=0

σm(α)
q2α

+O(q−2g)
)
.

Moreover, inserting the values of σm(α) given by Lemma 4 gives
∞∑
α=0

σm(α)
q2α

=
1− 1/q

1− 1/|P |2

(this is valid for both m = 1 and m ≥ 2 !) and hence

〈χQ(P 2)〉 =
(

1− 1
|P |

)
1

1− 1/q
1− 1/q

1− 1/|P |2
+O(q−2g)

=
|P |
|P |+ 1

+O(q−2g)

as claimed.

4. Double character sums. We consider the double character sum

S(β;n) :=
∑

degP=n
P prime

∑
degB=β
Bmonic

(
B

P

)
.

We may express S(β;n) in terms of the coefficients AP (β) =
∑

degB=β χP (B)
of the L-function L(u, χP ) =

∑
β AP (β)uβ:

S(β;n) = (−1)((q−1)/2)βn
∑

degP=n

AP (β),

which follows from the law of quadratic reciprocity [16]: If A, B are monic
then(

B

A

)
= (−1)((q−1)/2) degA degB

(
A

B

)
= (−1)((q−1)/2) degAdegBχA(B).

Since AP (β) = 0 for β ≥ degP , we find:

Lemma 6. For n ≤ β we have

S(β;n) = 0.
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4.1. Duality

Proposition 7.

(i) If n is odd and 0 ≤ β ≤ n− 1 then

S(β;n) = qβ−(n−1)/2S(n− 1− β;n),(4.1)

S(n− 1;n) = πq(n)q(n−1)/2.(4.2)

(ii) If n is even and 1 ≤ β ≤ n− 2 then

S(β;n) = qβ−n/2
(
−S(n− 1− β;n) + (q − 1)

n−β−2∑
j=0

S(j;n)
)
,(4.3)

S(n− 1;n) = −πq(n)q(n−2)/2.(4.4)

Proof. Assume that n = degP is odd. Then L(u, χP ) = L∗(u, χP ), and
so the coefficients AP (β) = A∗P (β) coincide. Therefore the functional equa-
tion in the form (2.3) implies

AP (β) = AP (n− 1− β)qβ−(n−1)/2, n odd, 0 ≤ β ≤ n− 1.

Consequently, for n odd,

S(β;n) = qβ−(n−1)/2S(n− 1− β;n), n odd, 0 ≤ β ≤ n− 1.

In particular,

S(n− 1;n) = q(n−1)/2S(0, n) = q(n−1)/2πq(n), n odd.

Next, assume that n = degP is even. Then L(u, χP ) = (1−u)L∗(u, χP ),
which implies that the coefficients of L(u, χP ) and L∗(u, χP ) satisfy

AP (β) = A∗P (β)−A∗P (β − 1), β ≥ 1,

and

(4.5) A∗P (β) = AP (β) +AP (β − 1) + · · ·+AP (0) .

Moreover,
AP (0) = A∗P (0), AP (n− 1) = −A∗P (n− 2).

In particular, since

A∗P (0) = 1, A∗P (n− 2) = q(n−2)/2

(see (2.3)), we get

AP (n− 1) = −A∗P (n− 2) = −q(n−2)/2, n even,

so that
S(n− 1;n) = −πq(n)q(n−2)/2, n even.

The functional equation (2.3) implies

A∗P (β) = A∗P (n− 2− β)qβ−(n−2)/2, 0 ≤ β ≤ n− 2,
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and hence, for 1 ≤ β ≤ n− 2,

AP (β) = A∗P (β)−A∗P (β − 1)

= A∗P (n− 2− β)qβ−(n−2)/2 −A∗P (n− 1− β)qβ−n/2

and inserting (4.5) gives

AP (β) = qβ−n/2
(
−AP (n− 1− β) + (q − 1)

n−β−2∑
j=0

AP (j)
)
.

Summing over all primes P of degree n gives

S(β;n) = qβ−n/2
(
−S(n− 1− β;n) + (q − 1)

n−β−2∑
j=0

S(j;n)
)

as claimed.

4.2. An estimate for S(β;n)

Lemma 8. Suppose β < n. Then

(4.6) S(β;n) = ηβπq(n)qβ/2 +O

(
β

n
qn/2+β

)
,

where ηβ = 1 for β even, and ηβ = 0 for β odd.

Proof. We write

S(β;n) =
∑
B=�

degB=β

∑
degP=n

(
B

P

)
+

∑
B 6=�

degB=β

∑
degP=n

(
B

P

)
,

where the squares only occur when β is even.
For B not a perfect square, we use the Riemann Hypothesis for curves

in the form (2.5): ∑
degP=n

(
B

P

)
� degB

n
qn/2.

Hence summing over all nonsquare B of degree β, of which there are at
most qβ, gives ∑

B 6=�
degB=β

∑
degP=n

(
B

P

)
� β

n
qβ+n/2.

Assume now that β is even. For B = C2, we find that P and B are
coprime since degC = β/2 < n = degP , and hence

(
B
P

)
=
(
C2

P

)
= +1 and

so the squares, of which there are qβ/2, contribute πq(n)qβ/2. This proves
(4.6).
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By using duality, (4.6) can be bootstrapped into an improved estimate
when β is odd:

Proposition 9. If β is odd and β < n then

(4.7) S(β;n) = −ηnπq(n)qβ−n/2 +O(qn).

Proof. Assume n odd with β < n. Then by (4.1) for odd n,

S(β;n) = qβ−(n−1)/2S(n− 1− β;n)

and inserting (4.6) with β replaced by n− 1− β (which is odd in this case)
we get

S(n− 1− β;n)� qn/2+n−1−β,

hence
S(β;n)� qβ−(n−1)/2qn/2+n−1−β � qn

as claimed.
Assume n even, with β < n. Using (4.3) and the bound (4.6) gives

S(β;n) = qβ−n/2
(
−S(n− 1− β;n) + (q − 1)

n−β−2∑
j=0

S(j;n)
)

= qβ−n/2
(
−ηn−1−βπq(n)q(n−1−β)/2 + (q − 1)

n−β−2∑
j=0

ηjπq(n)qj/2
)

+O

(
qβ−n/2

n−1−β∑
j=0

j

n
qn/2+j

)
.

The remainder term is O(qn). For the main term, we note that n−1−β = 2L
is even since β is odd and n is even, and then we can write the sum as

qβ−n/2πq(n)
(
−qL + (q − 1)

L−1∑
l=0

ql
)

= −qβ−n/2πq(n),

which is our claim.

5. Proof of Theorem 1. The explicit formula (2.4) says that for n > 0,

trΘnQ = − 1
qn/2

∑
deg f=n

Λ(f)χQ(f),

the sum over all monic prime powers. We will separately treat the contribu-
tions Pn of primes, �n of squares and Hn of higher odd powers of primes:

(5.1) trΘnQ = Pn + �n + Hn .
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5.1. The contribution of squares. When n is even, we have a contri-
bution to trΘnQ coming from squares of prime powers (for odd n this term
does not appear), which give

�n = − 1
qn/2

∑
deg h=n/2

Λ(h)χQ(h2).

Since χQ(h2) = 0 or 1, we clearly have �n ≤ 0 and

�n ≥ −
1
qn/2

∑
deg h=n/2

Λ(h) = −1

by (2.2). Hence the contribution of squares is certainly bounded.
Now for h = P k a prime power,

(5.2) 〈χQ(h2)〉 = 〈χQ(P 2)〉 = 1− 1
|P |+ 1

+O(q−2g)

by Lemma 5. Thus, recalling that
∑

deg h=m Λ(h) = qm from (2.2), we deduce
that the contribution of squares to the average is

〈�n〉 = −1 +
1
qn/2

∑
degP |(n/2)

(
(degP )

1
|P |+ 1

+O(q−2g)
)

(5.3)

= −1 +
1
qn/2

∑
degP |(n/2)

degP
|P |+ 1

+O(q−2g).

In particular, we find that the contribution of squares to the average is

〈�n〉 = −1 +O

(
n

qn/2

)
+O(q−2g)

and thus if n� 3 logq g we get

〈�n〉 = −ηn
(

1 + o

(
1
g

))
.

5.2. The contributions of primes. The contribution to trΘnQ of
primes is

Pn = − n

qn/2

∑
degP=n

χQ(P ).

Proposition 10.

(5.4) 〈Pn〉 = − n

(q − 1)q2g+n/2
∑

β+2α=2g+1
α,β≥0

σn(α)S(β;n).

Moreover, if n > g then

(5.5) 〈Pn〉 = − n

(q − 1)q2g+n/2
(S(2g + 1;n)− qS(2g − 1;n)).
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Proof. Using (3.2) we have

〈Pn〉 = − n

(q − 1)q2g+n/2
∑

degP=n

∑
β+2α=2g+1

α,β≥0

σn(α)
∑

degB=β

(
B

P

)

= − n

(q − 1)q2g+n/2
∑

β+2α=2g+1
α,β≥0

σn(α)S(β;n),

which gives (5.4).
Now assume that n > g. Then σn(α) 6= 0 forces α = 0, 1 mod n by

Lemma 4(ii) and together with α ≤ g < n we must have α = 0, 1. Hence in
(5.4) the only nonzero terms are those with α = 0, 1, which gives (5.5).

5.3. Bounding the contribution of primes. Assume first that n ≤ g.
In (5.4), if S(β;n) 6= 0 then β < n by Lemma 6. For those, we use the bound
|S(β;n)| � (β/n)qβ+n/2 of Lemma 8 and hence

(5.6) 〈Pn〉 �
n

q2g+n/2

∑
β<n

β

n
qn/2+β � nqn−2g ≤ gq−g

(since n ≤ g), which vanishes as g →∞.
For g < n < 2g, use (5.5), and note that S(2g ± 1;n) = 0 by Lemma 6.

Hence
〈Pn〉 = 0, g < n < 2g.

5.3.1. The case n = 2g. We have S(2g + 1; 2g) = 0 by Lemma 6, and
S(2g − 1; 2g) = −πq(2g)q(2g−2)/2 by (4.4). Hence

〈Pn〉 = − 2g
(q − 1)q2g+g

(S(2g + 1, 2g)− qS(2g − 1, 2g))

= − 2g
(q − 1)q2g+g

qπq(2g)q(2g−2)/2 = − 1
q − 1

+O(gq−g).

5.3.2. The case 2g < n. Here we use (4.7) to find

〈Pn〉 = − n

(q − 1)q2g+n/2
(S(2g + 1;n)− qS(2g − 1;n))

= − n

(q − 1)q2g+n/2
(−ηnπq(n)q2g+1−n/2 + qηnπq(n)q2g−1−n/2)

+O

(
n

q2g+n/2
qn
)

= ηn
nπq(n)
qn

+O(nqn/2−2g) = ηn(1 +O(gq−g)) +O(nqn/2−2g).

The main term is asymptotic to ηn, and the remainder is o(1/g) provided

2g < n < 4g − 5 logq g.



96 Z. Rudnick

5.4. The contribution of higher prime powers. The contribution
of odd powers of primes P d, d > 1 odd, degP d = n, is

Hn = − 1
qn/2

∑
d|n

3≤d odd

∑
degP=n/d

n

d
χQ(P d).

Since χQ(P d) = χQ(P ) for d odd, the average is

〈Hn〉= −
1

(q − 1)q2g+n/2
∑
d|n

3≤d odd

n

d

∑
degP=n/d

∑
2α+β=2g+1

σn/d(α)
∑

degB=β

(
B

P

)

= − 1
(q − 1)q2g+n/2

∑
d|n

3≤d odd

n

d

∑
2α+β=2g+1

σn/d(α)S
(
β;
n

d

)
.

In order that S(β;n/d) 6= 0 we need β < n/d. Thus using the bound
S(β;n/d)� qβ+n/2d of (4.6) (recall that β ≤ 2g + 1 is odd here) gives

〈Hn〉 �
1

q2g+n/2

∑
d|n

3≤d odd

n

d

∑
β≤min(n/d,2g+1)

qn/2d+β

� n

q2g+n/2

∑
d|n

3≤d odd

qn/2d+min(2g,n/d).

Treating separately the cases n/3 < 2g and n/3 ≥ 2g we see that we have
in either case

(5.7) 〈Hn〉 � gq−2g.

5.5. Conclusion of the proof. We saw that

〈trΘnQ〉 = 〈Pn〉+ 〈�n〉+ 〈Hn〉

with the individual terms giving

〈Pn〉 =


O(gq−g), 0 < n < 2g,
−1/(q − 1) +O(gq−g), n = 2g,
ηn +O(nqn/2−2g), 2g < n,

〈�n〉 = −ηn + ηn
1
qn/2

∑
degP |(n/2)

degP
|P |+ 1

+O(q−2g),

〈Hn〉 = O(gq−2g).
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Putting these together gives Theorem 1. In particular,

〈trΘnQ〉 =


−ηn, 3 logq g < n < 2g,
−1− 1/(q − 1), n = 2g,
0, 2g < n < 4g − 8 logq g

+ o

(
1
g

)
.

6. The product of two traces. Using the methods of this paper, one
can also compute mean values of products of traces. For the product of two
traces, the results can be stated as follows:

Assume min(m,n)� log g and m+ n ≤ 4g − 100 logq g. Then
(i) If m = n then

(6.1) 〈|trΘnQ|2〉 ∼


n+ ηn, n < g,

n+ ηn + 1
q−1 , n = g,

n− 1 + ηn, g < n < 2g − 50 logq g.

(ii) If m < n then for “generic” values of (m,n) we have

(6.2) 〈trΘmQ trΘnQ〉 ∼


ηmηn, m+ n < 2g,
ηmηn − ηm+n, n < 2g, m+ n > 2g,
−ηm+n, n > 2g, n−m < 2g,
0, n−m > 2g,

while on “exceptional” lines we have

(6.3) 〈trΘmQ trΘnQ〉 ∼


ηmηn + 1

q−1 , m+ n = 2g,
ηmηn − ηm+n + ηm

1
q−1 , n = 2g,

− q
q−1ηm+n, n−m = 2g.

The expected values for the symplectic group are (cf. [5, 4, 8, 12]):
(i) If m = n then

(6.4)
�

USp(2g)

|trUn|2 dU =


n+ ηn, 1 ≤ n ≤ g,
n− 1 + ηn, g + 1 ≤ n ≤ 2g,
2g, n > 2g.

(ii) If 1 ≤ m < n then

(6.5)
�

USp(2g)

trUm trUn dU =


ηmηn, m+ n ≤ 2g,
ηmηn−ηm+n, m < n ≤ 2g, m+ n > 2g,
−ηm+n, n > 2g, n−m ≤ 2g,
0, n−m > 2g.

Comparing (6.4), (6.5) with (6.2), (6.3) we find that if m = min(m,n)�
logq g and m+ n < 4g − 100 logq g then for “generic” values of (m,n), that
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is, if n,m 6= 2g and |n±m| 6= 2g, we have

(6.6) 〈trΘmQ trΘnQ〉 ∼
�

USp(2g)

trUm trUn dU,

while on the lines n,m = 2g, |n ± m| = 2g the difference between the
averages over H2g+1 and USp(2g) is bounded by∣∣∣〈trΘmQ trΘnQ〉 −

�

USp(2g)

trUm trUn dU
∣∣∣ ≤ 1

q − 1
+ o(1), g →∞.

These results can be used to study the two-level density (cf. [17, 7]).
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