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1. Introduction

1.1. Background. In the 1840’s, Liouville [16] established the existence
of transcendental numbers by actually constructing one. His construction
was based on his discovery that for any algebraic number α of degree n ≥ 2,
there exists a real number c(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ > c(α)
|q|n

for all integers p and q with q 6= 0. It was this work which first demonstrated
the now well-established link between transcendence and diophantine prob-
lems.

In 1909, Thue [25] improved upon Liouville’s diophantine result by in-
troducing a method which eventually led, in 1955, to Roth’s proof [20] that
for any irrational algebraic number α and any ε > 0, there exists c(α, ε) > 0
such that ∣∣∣∣α− p

q

∣∣∣∣ > c(α, ε)
|q|2+ε

for all integers p and q with q 6= 0.
We call the exponents on |q| in these inequalities irrationality measures

for α and Roth’s irrationality measures are essentially best possible.
But the reader should not be misled by this phrase “best possible”, for

here, as is often the case, there is more to be done. From Liouville’s proof it
is possible to explicitly determine the constant, c(α), but this is not true for
the results of Thue or Roth. This is important as an irrationality measure
even slightly less than n along with an explicit constant (such a result is
called effective) can yield bounds on the size of solutions of many classes of
diophantine equations.
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At present, there are three methods available for obtaining such effective
irrationality measures.

The first is due to Alan Baker, who, in 1964, published two papers [3, 4] in
which he obtained such effective irrationality measures for certain algebraic
numbers of the form zm/n. As an example, he showed that for all integers p
and q, with q 6= 0, ∣∣∣∣21/3 − p

q

∣∣∣∣ > 10−6

|q|2.955
.

Such results, via this technique, have since been improved, notably through
Chudnovsky’s analysis of denominators of the coefficients of certain hyper-
geometric functions [13]. The best result currently known, from [28], states
that for any integers p and q, with q 6= 0,∣∣∣∣21/3 − p

q

∣∣∣∣ > 0.25
|q|2.4325

.

Baker also pioneered the second method. Later in the 1960’s, he [5]
established a remarkable result: lower bounds for linear forms in logarithms.
Among the many applications of this result, in a refined form, are effective
irrationality measures which are better than Liouville’s for any algebraic
number of degree at least three. The reader is invited to consult [6] where
effective irrationality measures for numbers of the form 3

√
n with n ∈ Z are

established.
Finally, in the early 1980’s, Bombieri [8] combined elements of the non-

effective method of Thue and Siegel with a result of Dyson, which was
itself discovered for such diophantine approximation purposes, to create a
method which under suitable conditions gives rise to effective irrationality
measures much better than Liouville’s. Along with van der Poorten and
Vaaler, he [9] later refined this method in the case of numbers which are
cubic irrationalities over number fields.

1.2. The present work. In this article, we shall consider ideas re-
lated to the first method, the basis of which lies in the work of Thue, his
Fundamentaltheorem [26]. This work was a continuation of his earlier results
[23, 24] in which he explicitly determined polynomials Pr(x) and Qr(x) such
that

Qr(x)x1/n − Pr(x) = (x− 1)2r+1Sr(x),

where Sr(x) is regular at x = 1.
Siegel [21] recognised these Pr(x) and Qr(x) as hypergeometric poly-

nomials. He [22] also recognised that the polynomials, F (x), satisfying the
differential equation in Thue’s Fundamentaltheorem are those given in our
Lemma 3.2 for m = 2.
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In earlier papers [11, 12, 15], Thue’s Fundamentaltheorem was used to
completely solve several families of Thue equations and inequalities. In this
paper, we investigate the precise conditions under which Thue’s Fundamen-
taltheorem yields effective irrationality measures for algebraic numbers.

As a result, we show that Thue’s Fundamentaltheorem includes all the
effective irrationality measures for numbers of the form z1/n, which can be
obtained by Baker’s first method above and its refinements.

But, in addition to that, we also obtain effective irrationality measures
for a new family of algebraic numbers. These results include all the previous
ones ([11, 12, 15, 27]) derived from Thue’s Fundamentaltheorem.

Furthermore, like Yuan [32], we are able to extend our results to diophan-
tine approximation over imaginary quadratic fields (the only other number
fields besides Q that possess the property of “discreteness” of its integers).

However, there are some related tools that are not dealt with here. In
particular, it is possible to use Padé approximations to several functions
simultaneously to obtain effective irrationality measures (see [13]). A striking
example of applying this technique is Bennett’s paper [7], in which it is used
to obtain effective irrationality measures for numbers of the form (b/a)1/n,
where a and b are “small” rational integers. These cannot be treated by the
usual “non-simultaneous” technique.

See also Wakabayashi’s papers [30, 31] where simultaneous Padé approxi-
mations to the functions

√
1− a1x and

√
1− a2x are used to obtain effective

irrationality measures for the real roots of some families of polynomials of
the form x4 − a2x2 + b. These roots are not covered by our results here.

Finally, in a forthcoming paper [29], we show why Thue’s Fundamen-
taltheorem holds and, as a consequence, generalise the results here.

1.3. Structure of this paper. We structure this paper as follows. Af-
ter some notation in the next subsection, Section 2 contains the statements
of our general theorems followed by two corollaries. In Section 3, we present
Thue’s original statement of his Fundamentaltheorem followed by our own
simplified version. In Section 4, we establish the form of the polynomials to
which Thue’s Fundamentaltheorem applies. Section 5 contains information
on the roots of these polynomials. Section 6 contains two diophantine lem-
mas. This is followed in Section 7 by some analytic results on the size of the
numerators and denominators of the hypergeometric polynomials as well as
bounds for the values of the polynomials. Section 8 contains the proof of
Theorem 2.1, Section 9 contains the proof of Theorem 2.4; finally, we prove
our two corollaries in Sections 10 and 11.

1.4. Notation. In order to state our results, we start with some nota-
tion.
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For positive integers m and n with (m,n) = 1 and a non-negative inte-
ger r, we put

Xm,n,r(x) = 2F1(−r,−r −m/n; 1−m/n;x),

where 2F1 denotes the classical hypergeometric function.
We use X∗m,n,r to denote the homogeneous polynomials derived from

these polynomials, so that

X∗m,n,r(x, y) = yrXm,n,r(x/y).

For Thue’s Fundamentaltheorem itself, we will only use X1,n,r, so for
convenience we will write Xn,r rather than X1,n,r in what follows.

We let Dm,n,r be the smallest positive integer such that Dm,n,rXm,n,r(x)
has rational integer coefficients (and again Dn,r in place of D1,n,r).

For a positive integer d, we define Nd,n,r to be the greatest common
divisor of the numerators of the coefficients of Xm,n,r(1− dx).

We will use vp(x) to denote the largest power of a prime p which divides
into the rational number x. With this notation, for positive integers d and n,
we put

Nd,n =
∏
p|n

pmin(vp(d),vp(n)+1/(p−1)).

For any complex number w, we can write w = seiϕ, where s ≥ 0 and
−π < ϕ ≤ π (with ϕ = 0 if s = 0). With such a representation, unless
otherwise stated, w1/n will signify s1/neiϕ/n for a positive integer n, where
s1/n is the unique non-negative nth root of s.

Lastly, following the function name in PARI, we define core(n) to be the
unique square-free divisor, n1, of n such that n/n1 is a perfect square.

2. Results

Theorem 2.1. Let K be either Q or an imaginary quadratic field and
let β1 be an algebraic integer with [K(β1) : K] ≤ 2.

If K = Q or K(β1) = K, then let τ = 1, else let τ be an algebraic integer
in K such that K(β1) = K(

√
τ).

If β1 ∈ K, then let β2, γ1, γ2 ∈ K with the γi’s non-zero, β2 6= β1 and
β2 an algebraic integer.

If [K(β1) : K] = 2, then let β2 be the algebraic conjugate of β1 over K,
γ1 ∈ K(β1) and γ2 be the algebraic conjugate of γ1 over K (so γ1 = γ2 if
they are elements of K).

For an algebraic integer x ∈ K and a rational integer n ≥ 3, put

U(x) = −γ2(x− β2)n, Z(x) = γ1(x− β1)n, W (x) =
Z(x)
U(x)
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and

A(x) =
β1(x− β2)W (x)1/n − β2(x− β1)

(x− β2)W (x)1/n − (x− β1)
.

Let g be an algebraic number such that U(x)/g and Z(x)/g are algebraic
integers (not necessarily in K(β1)). For each non-negative integer r, let hr
be a non-zero algebraic integer with hr/g

r ∈ K and |hr| ≤ h for some fixed
positive real number h.

Let d be the largest positive rational integer such that (U(x)−Z(x))/(dg)
is an algebraic integer and let Cn and Dn be positive real numbers such that

(2.1) max
(

1,
Γ (1− 1/n)r!
Γ (r + 1− 1/n)

,
nΓ (r + 1 + 1/n)

Γ (1/n)r!

)
Dn,r

Nd,n,r
< Cn

(
Dn
Nd,n

)r
holds for all non-negative integers r.

Put

E =
|g|Nd,n
Dn

{min(|
√
U(x)−

√
Z(x)|, |

√
U(x) +

√
Z(x)|)}−2,

Q =
Dn
|g|Nd,n

{max(|
√
U(x)−

√
Z(x)|, |

√
U(x) +

√
Z(x)|)}2,

κ =
logQ
logE

,

c = 4h|
√
τ |(|x− β1|+ |x− β2|)CnQ

×max(1, 5h|
√
τ | |1−W (x)1/n| |x− β2| |A(x)− β1|CnE)κ.

If E > 1 and either 0 < W (x) < 1 or |W (x)| = 1 with W (x) 6= −1, then

(2.2) |A(x)− p/q| > 1
c|q|κ+1

for all algebraic integers p and q in K with q 6= 0.

Remark 2.2. As we will see in the proof of Corollary 2.7, the inclusion
of the hr’s here can permit the use of a larger value of g and hence improved
reduced values of κ.

Remark 2.3. The inequality (2.1) does not impose any constraint, for,
as we will demonstrate in Lemma 7.4, such an inequality always holds.

We can also obtain a similar, though slightly weaker, result for other
values of W (x) near 1. This allows us to extend and refine the results of
Heuberger [14].

Theorem 2.4. Let K be an imaginary quadratic field and β1, β2, γ1,
γ2, τ , x, n, U(x), Z(x), W (x), A(x), d, g, hr, h, Cn, Dn, Nd,n be as in
Theorem 2.1. Put
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E =
|g|Nd,n
Dn

4(|U(x)| − |Z(x)− U(x)|)
|Z(x)− U(x)|2

,

Q =
Dn
|g|Nd,n

2(|U(x)|+ |Z(x)|),

κ =
logQ
logE

,

c = 4h|
√
τ |(|x− β1|+ |x− β2|)CnQ

×max(1, 2h|
√
τ | |1−W (x)1/n| |x− β2| |A(x)− β1|CnE)κ.

If E > 1, max(|1−W (x)|, |1− 1/W (x)|) < 1, then

(2.3) |A(x)− p/q| > 1
c|q|κ+1

for all algebraic integers p and q in K with q 6= 0.

Remark 2.5. The condition that K be an imaginary quadratic field is
no restriction since the case of K = Q is completely covered by Theorem 2.1.

We now give two corollaries of Theorem 2.1, showing how it contains,
and extends, currently known results as well as providing new results. They
cover all cases where [K(β1) : Q] ≤ 2.

In the first corollary, we establish effective irrationality measures for
numbers of the form z1/n. Together with Lemma 6.3, it also strengthens
Theorem 2.1 in [32] and extends it to any algebraic number in an imaginary
quadratic field which lies on the unit circle.

Corollary 2.6. Let K be an imaginary quadratic field and n ≥ 3 be a
rational integer. Let a and b be algebraic integers in K with the ideal (a, b) =
OK and either a/b > 1 a rational number or |a/b| = 1 with a/b 6= −1. Let
d be the largest positive rational integer such that (a − b)/d is an algebraic
integer. Let Cn, Dn and Nd,n be as in Theorem 2.1. Put

E =
Nd,n
Dn
{min(|

√
a−
√
b|, |
√
a+
√
b|)}−2,

Q =
Dn
Nd,n

{max(|
√
a−
√
b|, |
√
a+
√
b|)}2,

κ =
logQ
logE

,

c = 4|a|CnQ
(

2.5
∣∣∣∣a(a− b)

b

∣∣∣∣CnE)κ.
If E > 1, then

(2.4) |(a/b)1/n − p/q| > 1
c|q|κ+1

for all algebraic integers p and q in K with q 6= 0.
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Our second corollary covers the cases when β1 and β2 lie in a quadratic
extension of Q. There is some overlap with Corollary 2.6, as we allow β1 ∈ Q
here, but the formulation here allows Corollary 2.7 to be readily applied to
parametrised families of algebraic numbers.

Corollary 2.7. Let n, t and x be rational integers with n ≥ 3 and
t 6= 0. Let β1 = a + b

√
t be an algebraic integer with a, b ∈ Q and b 6= 0

and let β2 = a− b
√
t. Let γ1 be an algebraic integer in Q(

√
t) with γ2 as its

algebraic conjugate. We can write U(x) = −γ2(x − β2)n = (u1 + u2

√
t)/2

where u1, u2 ∈ Z. Put

g1 = gcd(u1, u2), g2 = gcd(u1/g1, t),

g3 =


1 if t ≡ 1 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2,
2 if t ≡ 3 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2,
4 otherwise,

g4 = gcd
(

core(g2g3),
gcd(2, n)n

gcd(u1/g1, gcd(2, n)n)

)
,

g =
g1
√
g2√

g3g4
,

E =
|g|Nd,n

Dn min(|u2

√
t±
√
u2

2t− u2
1|)
,

Q =
Dn max(|u2

√
t±
√
u2

2t− u2
1|)

|g|Nd,n
,

κ =
logQ
logE

,

c = 4
√
|2t|(|x− β1|+ |x− β2|)CnQ

× (max(1, 5
√
|2t| |1−W (x)1/n| |x− β2| |A(x)− β1|CnE))κ,

where d is the largest positive rational integer such that u1/(dg) is an alge-
braic integer and A(x), Cn, Dn, Nd,n and W (x) are as in Theorem 2.1. If
E > 1 and either 0 < W (x) < 1 or |W (x)| = 1 with W (x) 6= −1, then

(2.5) |A(x)− p/q| > 1
c|q|κ+1

for all rational integers p and q with q 6= 0.

Remark 2.8. The factor g4 here may appear wasteful as (u/g1)
√
g3/g2

is already an algebraic integer. It arises from an interdependence between d
and g here. The factor of

√
g4 allows us to increase the size of d by a factor of

g4 and hence obtain a net benefit of
√
g4. This can be important in practice

(for example, filling the gap 1200 < t < 40 000 in [2]).
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3. Thue’s Fundamentaltheorem

Lemma 3.1 (Thue [26]). Let F (x) be a polynomial of degree n ≥ 2 and
assume that there is a quadratic polynomial G(x) with non-zero discriminant
such that

(3.1) G(x)
d2

dx2
(F (x))− (n− 1)

d

dx
(G(x))

d

dx
(F (x))

+
n(n− 1)

2
d2

dx2
(G(x))F (x) = 0.

We write

Y (x) = 2G(x)
d

dx
(F (x))− n d

dx
(G(x))F (x),

h =
n2 − 1

4

((
d

dx
(G(x))

)2

− 2G(x)
d2

dx2
(G(x))

)
,

λ =
h

n2 − 1
.

Let us define two families of polynomials P ′r(x) and Q′r(x) by the initial
conditions

Q′0(x) =
2h
3
,

Q′1(x) =
2(n+ 1)

3

(
G(x)

d

dx
(F (x))− n− 1

2
d

dx
(G(x))F (x)

)
,

P ′0(x) =
2hx

3
,

P ′1(x) = xQ′1(x)− 2(n+ 1)G(x)F (x)
3

,

and, for r ≥ 1, by the recurrence equations

λ(n(r + 1)− 1)Q′r+1(x) =
(
r +

1
2

)
Y (x)Q′r(x)− (nr + 1)F 2(x)Q′r−1(x),

λ(n(r + 1)− 1)P ′r+1(x) =
(
r +

1
2

)
Y (x)P ′r(x)− (nr + 1)F 2(x)P ′r−1(x).

(a) For any root α of F (x),

αQ′r(x)− P ′r(x) = S′r(x),

where S′r(x) is a polynomial divisible by (x− α)2r+1.
(b) Put

Z(x) =
1
2

(
Y (x)
2n
√
λ

+ F (x)
)

and U(x) =
1
2

(
Y (x)
2n
√
λ
− F (x)

)
.
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Then

(
√
λ)rQ′r(x) = A(x)X∗n,r(Z(x), U(x))−B(x)X∗n,r(U(x), Z(x)),

(
√
λ)rP ′r(x) = C(x)X∗n,r(Z(x), U(x))−D(x)X∗n,r(U(x), Z(x)),

where

A(x) =
(

(n− 1)
√
λ

2F (x)

)
Q′1(x)−

(
Y (x)

4
√
λF (x)

− 1
2

)
Q′0(x),

B(x) =
(

(n− 1)
√
λ

2F (x)

)
Q′1(x)−

(
Y (x)

4
√
λF (x)

+
1
2

)
Q′0(x),

C(x) =
(

(n− 1)
√
λ

2F (x)

)
P ′1(x)−

(
Y (x)

4
√
λF (x)

− 1
2

)
P ′0(x),

D(x) =
(

(n− 1)
√
λ

2F (x)

)
P ′1(x)−

(
Y (x)

4
√
λF (x)

+
1
2

)
P ′0(x).

These results can be found in Thue [26, Theorem and equations (35)–
(47)] or Chudnovsky [13] (see, in particular, Lemma 7.1 and the remarks
that follow (pages 364–366)).

We have added two extra hypotheses, requiring that the degree of F (x)
be at least two and that the discriminant of G(x) be non-zero. If n = 1,
then h = n − 1 = 0, with the result that A(x) = B(x) = C(x) = D(x) = 0
and the relationship between the P ′r(x)’s and Q′r(x)’s and the hypergeomet-
ric functions fails. When the discriminant of G(x) is zero, the recurrence
relationship for the P ′r(x)’s and Q′r(x)’s does not hold.

Also notice that there are some differences in notation between the
lemma above, which is similar to Chudnovsky’s [13], and that of Thue. In
particular, here,

• Thue’s U is replaced by G here,
• our n and r are switched from [26],
• our P ′r(x) is 2(r−1)Bn(x)/3 and our Q′r(x) is 2(r−1)An(x)/3 in Thue’s

notation (we use the superscript as we will simplify these polynomials
further in what follows),
• we capitalise Thue’s a, b, c, d, and z,
• what we call Y (x) and U(x), correspond to 2H(x) and y(x) respec-

tively in Thue’s paper,
• we label Thue’s Un(z, y) as X∗n,r(Z(x), U(x)).

However, this lemma can be simplified considerably and that is the ob-
jective of this section.
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We start with a result regarding the differential equation in (3.1).

Lemma 3.2. Let m and n be positive integers with n ≥ m and let
β1, . . . , βm be distinct complex numbers. Put G(x) = (x − β1) · · · (x − βm).
An analytic function F (x) is a solution of the differential equation

(3.2)
m∑
i=0

(−1)i
(
n−m+ i

i

)
di

dxi
(G(x))

dm−i

dxm−i
(F (x)) = 0

if and only if it is of the form

F (x) =
m∑
i=1

γi(x− βi)n

for some choice of γ1, . . . , γm ∈ C.

Proof. Note that (3.2) is a homogeneous linear differential equation of
order m. The theory of these equations is well-understood (see, for example,
Chapter 4 of [10]).

By Theorem 4.1.2 of [10], given m linearly independent solutions (F1(x),
. . . , Fm(x)) of the differential equation, then any solution is given by
γ1F1(x) + · · ·+ γmFm(x) for some constants γ1, . . . , γm. Here we show that
F1(x) = (x − β1)n, . . . , Fm(x) = (x − βm)n are such linearly independent
solutions.

Putting F (x) = Fj(x), we get

dm−i

dxm−i
(F (x)) =

n!
(n− (m− i))!

(x− βj)n−(m−i),

so we can write (3.2) as

m∑
i=0

(−1)i
(
n−m+ i

i

)
di

dxi
(G(x))

n!
(n− (m− i))!

(x− βj)n−(m−i)

=
n!

(n−m)!
(x− βj)n−m

m∑
i=0

(−1)i

i!
di

dxi
(G(x))(x− βj)i.

Note that the sum in the last expression is in fact the Taylor series
expansion ofG(βj) = 0, since degG(x) = m. Therefore, the entire expression
is 0. Hence (x − βj)n satisfies the required differential equation for each
j = 1, . . . ,m and it only remains to show that these m solutions are linearly
independent.

This is equivalent to showing that their Wronskian is not always zero.
We can write this Wronskian as



Thue’s Fundamentaltheorem 111

det


(x− β1)n · · · (x− βm)n

n(x− β1)n−1 · · · n(x− βm)n−1

· · ·
n!(x− β1)n−(m−1)

(n−m+ 1)!
· · · n!(x− βm)n−(m−1)

(n−m+ 1)!



=
( m∏
i=1

n!(x− βi)n−(m−1)

(n− i+ 1)!

)
det


(x− β1)m−1 · · · (x− βm)m−1

(x− β1)m−2 · · · (x− βm)m−2

· · ·
1 · · · 1


=
( m∏
i=1

n!(x− βi)n−(m−1)

(n− i+ 1)!

) ∏
1≤i<j≤m

((x− βi)− (x− βj)).

This function is identically zero only if the βi’s are not all distinct, a condi-
tion which we exclude here.

We now present our simplified version of Lemma 3.1.

Lemma 3.3. Let β1, β2, γ1 and γ2 be complex numbers with β1 6= β2.
For any integer n ≥ 2, we put

U(x) = −γ2(x− β2)n and Z(x) = γ1(x− β1)n.

For all non-negative integers r, we define

Qr(x) = (x− β2)X∗n,r(Z(x), U(x))− (x− β1)X∗n,r(U(x), Z(x)),
Pr(x) = β1(x− β2)X∗n,r(Z(x), U(x))− β2(x− β1)X∗n,r(U(x), Z(x)).

For any root, α, of

F (x) = γ1(x− β1)n + γ2(x− β2)n,

the polynomial

Sr(x) = αQr(x)− Pr(x)

is divisible by (x− α)2r+1.

Proof. First note that we may assume that G(x) is monic since wher-
ever G(x) is used in Lemma 3.1, the leading coefficient can be eliminated.
Therefore, we can write G(x) = (x− β1)(x− β2).

Applying Lemma 3.2 with m = 2, we see that a polynomial F (x) satisfies
the differential equation in (3.1) if and only if it is of the form above.

Also h = (n2 − 1)(β1 − β2)2/4 and λ = (β1 − β2)2/4.



112 P. M. Voutier

Next, we need to calculate Thue’s Y (x):

Y (x) = 2G(x)
d

dx
(F (x))− n d

dx
(G(x))F (x)

= 2(x− β1)(x− β2)(γ1n(x− β1)n−1 + γ2n(x− β2)n−1)
−n(2x− (β1 + β2))(γ1(x− β1)n + γ2(x− β2)n)

= n(β1 − β2)(γ1(x− β1)n − γ2(x− β2)n)

= 2n
√
λ (γ1(x− β1)n − γ2(x− β2)n).

Thus

Z(x) =
1
2

(
Y (x)
2n
√
λ

+ F (x)
)

=
1
2

(γ1(x− β1)n − γ2(x− β2)n + γ1(x− β1)n + γ2(x− β2)n)

= γ1(x− β1)n.

Similarly, we find that U(x) = −γ2(x− β2)n.
Now we determine the expressions for A(x), B(x), C(x) and D(x):

A(x) =
2(n− 1)λQ1(x)− Y (x)Q0(x) + 2

√
λF (x)Q0(x)

4
√
λF (x)

=
h

6
√
λF (x)

(
2G(x)

d

dx
(F (x))

− (n− 1)
d

dx
(G(x))F (x)− Y (x) + 2

√
λF (x)

)
=

h

6
√
λF (x)

(
d

dx
(G(x))F (x) + 2

√
λF (x)

)
=

(n2 − 1)
√
λ

6

(
d

dx
(G(x)) + 2

√
λ

)
=
n2 − 1

6
(β1 − β2)(x− β2).

A similar argument establishes that

B(x) =
n2 − 1

6
(β1 − β2)(x− β1),

as well as the relationships C(x) = β1A(x) and D(x) = β2B(x).
Therefore,

(
√
λ)rQ′r(x) = A(x)X∗n,r(Z(x), U(x))−B(x)X∗n,r(U(x), Z(x))

=
n2 − 1

6
(β1 − β2)

×{(x− β2)X∗n,r(Z(x), U(x))− (x− β1)X∗n,r(U(x), Z(x))}
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and

(
√
λ)rP ′r(x) = C(x)X∗n,r(Z(x), U(x))−D(x)X∗n,r(U(x), Z(x))

=
n2−1

6
(β1−β2)

×{β1(x−β2)X∗n,r(Z(x), U(x))−β2(x−β1)X∗n,r(U(x), Z(x))}.

We now set Pr(x), Qr(x) and Sr(x) to be 6/((n2 − 1)(β1 − β2)) times
(
√
λ)rP ′r(x), (

√
λ)rQ′r(x) and (

√
λ)rS′r(x), respectively.

From the statement of Thue’s Fundamentaltheorem (Lemma 3.1(a)), for
any root α of F (x),

αQr(x)− Pr(x) = Sr(x),

where Sr(x) is a polynomial divisible by (x− α)2r+1.

4. The form of the polynomials

Lemma 4.1. Let β1, β2, γ1 and γ2 be complex numbers with β1 6= β2 and
let n be an integer with n ≥ 3. For any number field K, we have

0 6= F (x) = γ1(x− β1)n + γ2(x− β2)n ∈ K[x]

if and only if either

(a) one of the γi’s is zero (say γ1), β1 is any complex number, γ2 is a
non-zero element of K and β2 is element of K other than β1,

(b) β1, β2, γ1, γ2 ∈ K, or
(c) [K(β1) : K] = 2 and β2 is the algebraic conjugate of β1 over K,

γ1 ∈ K(β1) and γ2 is the algebraic conjugate of γ1 over K (so γ1 = γ2

if they are elements of K).

Remark 4.2. The condition n ≥ 3 here is necessary. If β1 = π, β2 =
−1/π, γ1 = 1/(π2 +1) and γ2 = π2/(π2 +1) with n = 2, then F (x) = x2 +1.
Here we have transcendental values for β1, β2, γ1 and γ2, yet F (x) ∈ Q[x].

Proof of Lemma 4.1. We will consider the four highest-order coefficients
of F (x):

(4.1)

γ1 + γ2 = a1 ∈ K,
γ1β1 + γ2β2 = a2 ∈ K,
γ1β

2
1 + γ2β

2
2 = a3 ∈ K,

γ1β
3
1 + γ2β

3
2 = a4 ∈ K.

Using these expressions, we find that

a2
3 − a2a3β2 + (a2

2 − a1a3)β2
2

a2 − a1β2
=
β4

1γ
2
1 − β3

1β2γ
2
1 + β1β

3
2γ1γ2 − β4

2γ1γ2

γ1(β1 − β2)
= γ1β

3
1 + γ2β

3
2 .
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If a2− a1β2 = γ1(β1− β2) = 0, then γ1 = 0 (since we assumed β1 6= β2).
From the expression for our polynomial, this implies that β1 can be any
complex number and that γ2 must be an element of K. If γ2 = 0, then β2

can be any complex number (6= β1). And if γ2 6= 0, then β2 must be an
element of K (again, 6= β1).

These cases constitute part (a) of the lemma, along with the assumption
that F (x) 6= 0, so we can assume a2 − a1β2 6= 0 in the remainder of the
proof.

From the first and last terms of the above relationship, we obtain a
polynomial, f(x), such that f(β2) = 0. Namely,

(4.2) f(β2) = (a2
2 − a1a3)β2

2 + (a1a4 − a2a3)β2 + (a2
3 − a2a4) = 0.

Therefore, β2 is an algebraic number of degree at most 2 over K.
From the expression in (4.1) for the ai’s, we find that

γ1 =
a2 − a1β2

β1 − β2
,(4.3)

γ2 =
a1(β1 − β2)− (a2 − a1β2)

β1 − β2
=
a1β1 − a2

β1 − β2
,(4.4)

β1 =
a3 − a2β2

a2 − a1β2
.(4.5)

Let us consider the case of β2 ∈ K. From the expressions above, we see
that β1, γ1, γ2 ∈ K. Hence we find ourselves in case (b).

Therefore, in what follows, we assume that β2 6∈ K.
We now show that β1 is the algebraic conjugate of β2. To demonstrate

this, we substitute the expression for β1 in (4.5) into the polynomial f(x).
We find that

(a2 − a1β2)2f(β1)

= (a2
2 − a1a3)(a3 − a2β2)2 + (a1a4 − a2a3)(a3 − a2β2)(a2 − a1β2)

+ (a2
3 − a2a4)(a2 − a1β2)2

= (a2
2 − a1a3)(a3 − a2β2)2 + (a2 − a1β2)(a1a3a4 − a2

2a4 + a2
2a3β2 − a1a

2
3β2)

= (a2
2 − a1a3)((a3 − a2β2)2 − (a2 − a1β2)(a4 − a3β2))

= (a2
2 − a1a3)f(β2) = 0.

Therefore β1 is the algebraic conjugate of β2. Hence, from (4.3), the algebraic
conjugate of γ1 is (a2 − a1β1)/(β2 − β1) = γ2, as required.

Remark 4.3. From a diophantine point of view, there is no interest in
the cases of γ1 = 0 or γ2 = 0 (that is, part (a) of this lemma), since the
resulting polynomial is a power of x−β2, where β2 ∈ K. So in the following
we shall not consider this case any further.



Thue’s Fundamentaltheorem 115

Remark 4.4. This proof is quite detailed, but it does provide an explicit
means to easily test if a given polynomial F (x), of degree n, is of the required
form.

Let A be the lead coefficient of F (x), B be the coefficient of F (x) of
degree n − 1, C be the coefficient of F (x) of degree n − 2 and D be the
coefficient of F (x) of degree n− 3.

Set a1 = A, a2 = −B/n, a3 = C/
(
n
2

)
and a4 = −D/

(
n
3

)
. Find β1 and β2

as the roots of f(x) in (4.2) and then find γ1 and γ2 from (4.3) and (4.4).

5. Roots of these polynomials. We start with the following lemma
describing the roots themselves.

Lemma 5.1. Let n, β1, β2, γ1, γ2 and F (x) be as above. Then

α =
β1(−γ1/γ2)1/n − β2

(−γ1/γ2)1/n − 1
is a root of F (x) for each nth root of −γ1/γ2, except 1 in the case of γ1

= −γ2. Furthermore, for any two distinct nth roots of −γ1/γ2 (again ex-
cluding 1 in the case of γ1 = −γ2), the corresponding α’s are distinct.

Proof. We start by substituting the above expression for α into F (x):

F (α) = γ1

(
β1(−γ1/γ2)1/n − β2

(−γ1/γ2)1/n − 1
− β1

)n
+ γ2

(
β1(−γ1/γ2)1/n − β2

(−γ1/γ2)1/n − 1
− β2

)n
= γ1

(
β1 − β2

(−γ1/γ2)1/n − 1

)n
+ γ2

(
(β1 − β2)(−γ1/γ2)1/n

(−γ1/γ2)1/n − 1

)n
=

(β1 − β2)n(γ1 + γ2(−γ1/γ2))
((−γ1/γ2)1/n − 1)n

= 0.

Next, we consider when two of these α’s are equal. Let (−γ1/γ2)1/n be
a fixed nth root of −γ1/γ2. Suppose that

β1(−γ1/γ2)1/n − β2

(−γ1/γ2)1/n − 1
=
β1ζ

k
n(−γ1/γ2)1/n − β2

ζkn(−γ1/γ2)1/n − 1

for some ζkn = exp(2πik/n). Then

β1ζ
k
n(−γ1/γ2)2/n − β1(−γ1/γ2)1/n − β2ζ

k
n(−γ1/γ2)1/n + β2

= β1ζ
k
n(−γ1/γ2)2/n − β2(−γ1/γ2)1/n − β1ζ

k
n(−γ1/γ2)1/n + β2.

So
(β1 − β2)ζkn(−γ1/γ2)1/n = (β1 − β2)(−γ1/γ2)1/n.

This implies that either β1 = β2 (a condition which we exclude), γ1 = 0 and
γ2 6= 0 (which we have again excluded, see Remark 4.3) or ζkn = 1, which is
to say that the two α’s are equal.
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In the following lemma, we determine when the roots of the polynomials
are real for polynomials with rational coefficients.

Lemma 5.2. Let n, β1, β2, γ1, γ2 and F (x) be as above.

(a) If K = Q and K(β1) is an imaginary quadratic field, then F (x) has
n real roots.

(b) Suppose that K = Q and K(β1) is contained in a real quadratic field
and write β1 = a+ b

√
t with a, b ∈ Q.

If −γ1/γ2 > 0, then F (x) has two real roots for n even and one real root
for n odd. These roots are

(5.1) α1 = a+ b
√
t

(−γ1/γ2)1/n + 1
(−γ1/γ2)1/n − 1

and, for n even,

(5.2) α2 = a+
tb2

α1 − a
= a+ b

√
t

(−γ1/γ2)1/n − 1
(−γ1/γ2)1/n + 1

,

where (−γ1/γ2)1/n denotes the unique positive real nth root of −γ1/γ2.
If −γ1/γ2 < 0, then F (x) has no real roots for n even and one real root,

α1 above, for n odd, where (−γ1/γ2)1/n denotes the unique negative real nth
root of −γ1/γ2.

Proof. When K(β1) = Q, the result is well-known, so we restrict our
attention to the case of [K(β1) : Q] = 2. In this case, we can write β1 =
a+ b

√
t and β2 = a− b

√
t, where a, b ∈ Q.

(a) From Lemma 5.1, we know that as j runs through the integers from
0 to n− 1,

β1e
2πij/n(−γ1/γ2)1/n − β2

e2πij/n(−γ1/γ2)1/n − 1

runs through the roots, where (−γ1/γ2)1/n denotes a fixed root of −γ1/γ2.
Multiplying the numerator and denominator by the complex conjugate

of the denominator and substituting the expressions for β1, β2 and e2πij/n,
we find that the roots are of the form

a+ b
√
t

× |(−γ1/γ2)1/n|2 − 1− 2i{sin(2πj/n)<((−γ1/γ2)1/n) + cos(2πj/n)=((−γ1/γ2)1/n)}
|(−γ1/γ2)1/n|2 + 1 + 2 sin(2πj/n)=((−γ1/γ2)1/n)− 2 cos(2πj/n)<((−γ1/γ2)1/n)

.

If t < 0, then γ1 and γ2 are also complex conjugates, and |(−γ1/γ2)1/n|2
= 1, so the roots are of the form

a+ b
√
−t sin(2πj/n)<((−γ1/γ2)1/n) + cos(2πj/n)=((−γ1/γ2)1/n)

1 + sin(2πj/n)=((−γ1/γ2)1/n)− cos(2πj/n)<((−γ1/γ2)1/n)
.

So all the roots are real numbers.
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(b) Now suppose that t > 0 and −γ1/γ2 > 0. Then <((−γ1/γ2)1/n) =
(−γ1/γ2)1/n and =((−γ1/γ2)1/n) = 0, so we can write the roots as

a+ b
√
t

(−γ1/γ2)2/n − 1− 2i sin(2πj/n)(−γ1/γ2)1/n

(−γ1/γ2)2/n + 1− 2 cos(2πj/n)(−γ1/γ2)1/n
.

These roots are real if and only if their imaginary part is zero, which only
happens if 2j is a multiple of n (i.e., j = 0 or j = n/2). Hence, there are
precisely two real roots when n is even and precisely one real root when n
is odd.

These roots are

a+
b
√
t ((−γ1/γ2)2/n − 1)

(−γ1/γ2)2/n − 2(−γ1/γ2)1/n + 1
= a+

b
√
t ((−γ1/γ2)2/n − 1)

((−γ1/γ2)1/n − 1)2

= a+
b
√
t ((−γ1/γ2)1/n + 1)
(−γ1/γ2)1/n − 1

,

and similarly for n even,

a+
b
√
t ((−γ1/γ2)2/n − 1)

(−γ1/γ2)2/n + 2(−γ1/γ2)1/n + 1
= a+

b
√
t ((−γ1/γ2)1/n − 1)
(−γ1/γ2)1/n + 1

.

If −γ1/γ2 < 0 and n is odd, then we let (−γ1/γ2)1/n denote the unique
negative real nth root of −γ1/γ2 and by the same argument as above, there
is one real root of F (x) and it is of the form

a+
b
√
t ((−γ1/γ2)2/n − 1)

(−γ1/γ2)2/n − 2(−γ1/γ2)1/n + 1
= a+

b
√
t ((−γ1/γ2)1/n + 1)

((−γ1/γ2)1/n − 1)
.

If −γ1/γ2 < 0 and n is even, then the roots are as above and can be real
only if

(5.3) sin(2πj/n)<((−γ1/γ2)1/n) + cos(2πj/n)=((−γ1/γ2)1/n)

is zero. For n > 2, both the real and imaginary parts of (−γ1/γ2)1/n are non-
zero, which means that for (5.3) to be zero, both cos(2πj/n) and sin(2πj/n)
must be 0. This is impossible, hence there are no real roots in this case.

Lemma 5.3. Let A(x) and W (x) be as in Theorem 2.1 and let F (x) be
as above. For any x ∈ C such that W (x) is not a negative real number or
zero, F (A(x)) = 0.

Furthermore, for each root, α, of F (x), we can find a value of x such
that A(x) = α (in particular, A(α) = α).

Proof. We can write W (x)1/n as e2πik/n(x−β1)(−γ1/γ2)1/n/(x−β2) for
some integer k. Hence

A(x) =
e2πik/nβ1(−γ1/γ2)1/n − β2

e2πik/n(−γ1/γ2)1/n − 1
.

By Lemma 5.1, this quantity is a root of F (x).
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To show that A(α) = α, observe that since α is a root of F (x), we have
γ1(α− β1)n + γ2(α− β2)n = 0 and hence

W (α) = −γ1(α− β1)n

γ2(α− β2)n
= 1.

Therefore, by our choice of nth root,

A(α) =
β1(α−β2)W (α)1/n−β2(α−β1)

(α−β2)W (α)1/n−(α−β1)
=
β1(α−β2)−β2(α−β1)

(α−β2)−(α−β1)
= α.

6. Diophantine lemmas. The following lemma is used to obtain an
effective approximation measure for a complex number θ from a sequence
of “good” approximations in an imaginary quadratic field.

Lemma 6.1. Let θ ∈ C and let K be either Q or an imaginary quadratic
field. Suppose that for all non-negative integers r, there are algebraic integers
pr and qr in K satisfying prqr+1 6= pr+1qr with |qr| < k0Q

r and |qrθ − pr|
≤ `0E

−r, for some real numbers k0, `0 > 0 and E,Q > 1. Then for any
algebraic integers p and q in K with |q| ≥ 1/(2`0), we have∣∣∣∣θ − p

q

∣∣∣∣ > 1
c|q|κ+1

, where c = 2k0Q(2`0E)κ and κ =
logQ
logE

.

Remark 6.2. This is a generalisation of Lemma 2.8 in [12] to quadratic
imaginary fields.

Proof of Lemma 6.1. Let p, q be algebraic integers in K with |q| ≥
1/(2`0) > 0. Choose

n0 =
⌊

log(2`0|q|)
logE

⌋
+ 1.

Since E > 1 and 2`0|q| ≥ 1, we have n0 ≥ 1.
It also follows that log(2`0|q|)/logE < n0 and hence for all n ≥ n0,

(6.1) `0E
−n < `0E

− log(2`0|q|)/logE = 1/(2|q|) < 1.

If we have qn = 0 for some n ≥ n0, then from (6.1), |pn| = |qnθ−pn| < 1,
which implies that pn = 0, since all non-zero algebraic integers in these
fields are of absolute value at least 1. This contradicts the supposition that
pnqn+1 6= pn+1qn. Therefore, qn 6= 0 for all n ≥ n0.

So, for any n ≥ n0 with p/q 6= pn/qn, we have∣∣∣∣θ − p

q

∣∣∣∣ ≥ ∣∣∣∣pnqn − p

q

∣∣∣∣− ∣∣∣∣θ − pn
qn

∣∣∣∣ ≥ 1
|qqn|

− `0
En|qn|

>
1

2|qqn|
,

again using (6.1) and the fact that pnq− qnp is a non-zero algebraic integer
and hence of absolute value at least 1 in such fields.
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The choice of n0 yields

Qn0 ≤ exp
(

log(2`0|q|) + logE
logE

logQ
)

= (2E`0|q|)κ.

If p/q 6= pn0/qn0 , then∣∣∣∣θ − p

q

∣∣∣∣ > 1
2|qqn0 |

≥ 1
2|q|k0Qn0

≥ 1
2k0(2E`0)κ|q|κ+1

.

If p/q = pn0/qn0 , then p/q 6= pn0+1/qn0+1 and we obtain∣∣∣∣θ − p

q

∣∣∣∣ > 1
2|qqn0+1|

≥ 1
2|q|k0Qn0+1

≥ 1
2k0Q(2E`0)κ|q|κ+1

.

Lemma 6.3. Let K be either Q or an imaginary quadratic field and let
θ ∈ C. Suppose that

|qθ − p| > C|q|−κ,

for some C, κ > 0 and all p, q ∈ OK, the ring of integers of K, with q 6= 0. Let
a1, a2, a3, a4 ∈ OK with a1a4 − a2a3 6= 0 and put θ′ = (a1θ+ a2)/(a3θ+ a4).
Then

|qθ′ − p| > C

|a4 + a3θ|(|a3|(1 + |θ′|) + |a1|)κ
|q|−κ,

for the same C, κ > 0 and all p, q ∈ OK with q 6= 0.

Remark 6.4. This is an explicit version of the results in Section 8 of [13],
as well as an extension to include the imaginary quadratic fields. It can
be used to obtain effective irrationality measures for numbers that can be
obtained from θ by means of fractional transformations.

Proof of Lemma 6.3. We can write

(6.2) θ =
−a4θ

′ + a2

a3θ′ − a1
.

Suppose we have qθ′− p = δ for some δ. Using this expression, we can write
θ′ = (δ+ p)/q and substituting this expression for θ′ into (6.2), we find that

θ(a3p− a1q)− (a2q − a4p) = −δ(a4 + a3θ).

From our hypothesis that

|Qθ − P | > C|Q|−κ,

for some C, κ > 0 and all P,Q ∈ OK with Q 6= 0, we know that

|δ(a4 + a3θ)| > C|a3p− a1q|−κ

or

|δ| > C

|a4 + a3θ|
|a3p− a1q|−κ.
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We can assume that |δ| < 1. Therefore, |p| < |qθ′|+ 1. So

|a3p− a1q| < |a3|(1 + |θ′q|) + |a1q|
≤ |a3|(|q|+ |θ′q|) + |a1q| = |q|(|a3|(1 + |θ′|) + |a1|).

Hence
|qθ′ − p| > C

|a4 + a3θ|(|a3|(1 + |θ′|) + |a1|)κ
|q|−κ,

completing the proof of our lemma.

7. Analytic bounds. The following lemma is part of Lemma 2.3 in [12]
with one important change. In Lemma 2.3 of [12], we only allowed non-zero
values for x. We have removed this condition here as it is not used, or
required, in the proof of Lemma 2.3 in [12].

This is important and fortunate, as x = 0 was actually used to obtain
the theorems in [12, 15, 27]. Therefore, despite the statements in each of
those papers of a result like that Lemma 2.3 which does exclude x = 0, the
proofs of the theorems in those papers are still sound.

Note that the condition that W (x) is not a negative real number or zero
is required here with the current proof as it is used in the proof of Lemma 2.2
of [12], a lemma which is used as part of the proof of Lemma 2.3 of [12].

Lemma 7.1. Let r be a non-negative integer. If W (x) is not a negative
real number or zero, then

Sr(x) = {α((x− β2)W (x)1/n − (x− β1))(7.1)

−(β1(x− β2)W (x)1/n − β2(x− β1))}X∗n,r(U(x), Z(x))
−(x− β2)(α− β1)U(x)rR1,n,r(W (x)),

where

Rm,n,r(W (x)) =
Γ (r + 1 +m/n)

Γ (m/n)r!

W (x)�

1

((1− t)(t−W (x)))rtm/n−r−1 dt.

Proof. We proved this result for r positive in [12]. It is part of Lemma 2.3
there upon noting that x − β2, x − β1, β1(x − β2), β2(x − β1) are
6/((n2 − 1)(β1 − β2)) times the a(x), b(x), c(x) and d(x) there respectively
(see the proof of our Lemma 3.3 for details).

As noted above, we have removed the unnecessary condition that x be
non-zero.

So it only remains to consider r = 0. Since

Rm,n,0(W (x)) =
Γ (1 +m/n)
Γ (m/n)

W (x)�

1

tm/n−1 dt = W (x)m/n − 1,

we have
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{α((x− β2)W (x)1/n − (x− β1))− (β1(x− β2)W (x)1/n − β2(x− β1))}
×X∗n,0(U(x), Z(x))− (x− β2)(α− β1)U(x)0R1,n,0(W (x))

= α{(x− β2)− (x− β1)} − {β1(x− β2)− β2(x− β1)}
= αQ0(x)− P0(x) = S0(x),

and hence (7.1) holds for r = 0 too.

Recall that Lemma 5.3 states that for any root, α, of F (x), we can find a
value of x such that the first quantity on the right-hand side of the expression
for Sr(x) is zero. This is very important for our needs as otherwise this
term would actually grow exponentially with r, whereas we require Sr(x) to
decrease exponentially quickly to zero with r.

We will show next that the U(x)rRm,n,r(W (x)) term approaches 0 ex-
ponentially with r.

Lemma 7.2. Let m, n and r be non-negative integers with 0 < m < n
and (m,n) = 1.

(a) If either u and z are distinct positive real numbers, or u and z are
complex numbers with |u| = |z| 6= 0 and z/u 6= −1, then

|urRm,n,r(w)| ≤ 2.38|1− wm/n| nΓ (r + 1 +m/n)
mΓ (m/n)r!

×min(|
√
u−
√
z|, |
√
u+
√
z|)2r,

where w = z/u.
(b) If u and z are complex numbers with |1− z/u| < 1, then

|urRm,n,r(w)| < |wm/n − 1| nΓ (r + 1 +m/n)
mΓ (m/n)r!

(
|z − u|2

4(|u| − |z − u|)

)r
,

where w = z/u.

Proof. (a) We first consider the case when u and z are distinct positive
real numbers. Using the definition of Rm,n,r(w) from Lemma 7.1, we put

f(t) =
(1− t)(t− w)

t
.

We find that (d/dt)f(t) = −(t2 − w)/t2 and that (d/dt)f(t) = 0 precisely
when t = ±

√
w. Therefore, |f(t)| ≤ (1−

√
w)2 for all t in the closed interval

between w and 1.
As we saw in the proof of Lemma 7.1,

w�

1

tm/n−1 dt = (n/m)(wm/n − 1),

and the lemma follows in this case.
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We next consider the case when u and z are complex numbers with
|u| = |z|. We proceed similarly to the proof of Lemma 2.5 in [12]. For
w = eiϕ with 0 < ϕ < π and

√
w = eiϕ/2, by Cauchy’s theorem,

(7.2) Rm,n,r(w) =
Γ (r + 1 +m/n)

Γ (m/n)r!

�

C

((1− t)(t− w))rtm/n−r−1 dt,

where
C = {t | t = eiθ, 0 ≤ θ ≤ ϕ}.

Put

f(t) =
(1− t)(t− w)

t
and g(t) = tm/n−1.

Define F (θ) = |f(eiθ)|2, so

F (θ) = 4(1− cos θ)(1− cos(θ − ϕ)) for 0 ≤ θ ≤ ϕ.

A simple calculation shows that

F ′(θ) = −16 sin
(
θ − ϕ

2

)
sin

θ

2
sin

ϕ− θ
2

.

The only values of 0 ≤ θ ≤ ϕ with F ′(θ) = 0 are θ = 0, ϕ/2 and ϕ. It is
easy to check that

F (θ) ≤ F (ϕ/2) = 4
(

1− cos
ϕ

2

)2

= |1−
√
w|4,

and hence ∣∣∣ �
C

f(t)rg(t) dt
∣∣∣ ≤ ϕ�

0

|f(eiθ)|r|g(eiθ)| dθ ≤ ϕ|1−
√
w|2r.

Hence

|Rm,n,r(w)| ≤ ϕ Γ (r + 1 +m/n)
Γ (m/n)r!

|1−
√
w|2r

for such w.
Note that since |ϕ| < π, the integrand used in (7.2) is continuous over

the path of integration.
The same argument can be used to extend this result to all w on the

unit circle using the same definition of the square root.
Notice that |1 −

√
w| ≤ |1 +

√
w| for such w, as the real part of

√
w is

non-negative. Therefore,

|
√
u(1−

√
w)| ≤ min(|

√
u−
√
z|, |
√
u+
√
z|).

Finally, observe that since

|ϕ|
√

1− (mϕ/n)2/12 < (n/m)
√

2− 2 cos(mϕ/n) = (n/m)|1− wm/n|,
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we have

|ϕ| < (n/m)|1− wm/n|√
1− π2/12

< 2.38(n/m)|1− wm/n|

since |mϕ/n| ≤ π, so the result holds in this case too.
(b) Following the proof of Lemma 2.4 in [14], we use the change of

variables t = (1− λ) + λw to obtain

Rm,n,r(w) =
Γ (r + 1 +m/n)

Γ (m/n)r!
(w − 1)2r+1

×
1�

0

(λ(1− λ))r(1 + λ(w − 1))m/n−r−1 dλ.

With the estimates λ(1 − λ) ≤ 1/4 and |1 + λ(w − 1)| ≥ 1 − |w − 1| for
0 ≤ λ ≤ 1 and |w − 1| < 1, we find that

|Rm,n,r(w)| ≤ Γ (r + 1 +m/n)
Γ (m/n)r!

(
|w − 1|2

4(1− |w − 1|)

)r
×
∣∣∣1�
0

(w − 1)(1 + λ(w − 1))m/n−1 dλ
∣∣∣

= |wm/n − 1| nΓ (r + 1 +m/n)
mΓ (m/n)r!

(
|w − 1|2

4(1− |w − 1|)

)r
,

and conclude the proof by substituting w = z/u.

Lemma 7.3. Let m, n and r be non-negative integers with 0 < m < n
and (m,n) = 1.

(a) If either u and z are distinct positive real numbers, or u and z are
complex numbers with |u| = |z|, then

|X∗m,n,r(z, u)|, |X∗m,n,r(u, z)|

≤ 2
Γ (1−m/n)r!
Γ (r + 1−m/n)

{max(|
√
u+
√
z|, |
√
u−
√
z|)}2r.

(b) If u and z are complex numbers with max(|1 − z/u|, |1 − u/z|) < 1,
then

|X∗m,n,r(z, u)|, |X∗m,n,r(u, z)| ≤ 2
Γ (1−m/n)r!
Γ (r + 1−m/n)

{2(|u|+ |z|)}r.

Proof. (a) We first consider the case when u and z are distinct positive
real numbers.

For positive integers r, from Lemma 5.2 of [28], we have

|X∗m,n,r(z, u)|, |X∗m,n,r(u, z)| ≤ (
√
u+
√
z)2r.
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Since X∗m,n,0(u, z) = 1, this also holds for r = 0. Since

(7.3)
Γ (1−m/n) r!
Γ (r + 1−m/n)

=
r

r −m/n
· · · 1

1−m/n
> 1,

the desired upper bound holds.
Now we turn to the case when u and z are complex numbers with

|u| = |z|. This is an extension of Lemma 2.6 of [12] to non-negative r and to
any u and z with w = z/u = eiϕ where −π < ϕ ≤ π. We proceed similarly
here and determine the maximum of the function

F (θ) = |f(eiθ)|2 = 4(1− cos θ)(1− cos(θ + ϕ))

defined there for 0 ≤ θ < 2π and fixed −π < ϕ ≤ π, again observing that
since r is a positive integer, f is continuous. Since

d

dθ
F (θ) = −16 sin

(
θ +

ϕ

2

)
sin

θ

2
sin
−ϕ− θ

2
,

the only values of θ for which (d/dθ)F (θ) = 0 are θ = 0, 2π (so that
sin(θ/2) = 0), −ϕ/2, π − ϕ/2, 2π − ϕ/2 (so that sin(θ + ϕ/2) = 0) and
−ϕ, 2π − ϕ (so that sin(−(θ + ϕ)/2) = 0).

• θ = 0, 2π: F (θ) = 0.
• θ = −ϕ/2: F (θ) = 4(1− cos(−ϕ/2))(1− cos(ϕ/2)) = 4(1− cos(ϕ/2))2.
• θ = π − ϕ/2: F (θ) = 4(1− cos(π − ϕ/2))(1− cos(π + ϕ/2))

= 4(1 + cos(ϕ/2))2.
• θ = 2π − ϕ/2: F (θ) = 4(1− cos(2π − ϕ/2))(1− cos(2π + ϕ/2))

= 4(1− cos(ϕ/2))2.
• θ = −ϕ: F (θ) = 4(1− cos(−ϕ))(1− cos(0)) = 0.
• θ = 2π − ϕ: F (θ) = 4(1− cos(2π − ϕ))(1− cos(2π)) = 0.

Since −π/2 < ϕ/2 ≤ π/2, we have 0 ≤ cos(ϕ/2) ≤ 1 and hence the
maximum value of F (θ) is 4(1 + cos(ϕ/2))2. We can write |1 +

√
w|2 =

(1 + cos(ϕ/2))2 + sin2(ϕ/2) = 1 + 2 cos(ϕ/2) + cos2(ϕ/2) + sin2(ϕ/2) =
2 + 2 cos(ϕ/2).

Hence F (θ) ≤ |1+
√
w|4 and following the same steps as in the remainder

of the proof of Lemma 2.6 of [12], we find that

|X∗m,n,r(z, u)| ≤ 4|u|r Γ (1−m/n) r!
Γ (r + 1−m/n)

|1 +
√
w|2r−2.

Since
|
√
u| |1 +

√
w| ≤ max(|

√
u+
√
z|, |
√
u−
√
z|),

we see that

|X∗m,n,r(z, u)| ≤ 4
|1 +
√
w|2

Γ (1−m/n)r!
Γ (r + 1−m/n)

max(|
√
u+
√
z|, |
√
u−
√
z|)2r.
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Since w is on the unit circle, we can write 1 +
√
w = 1 + w1 ±

√
1− w2

1 i,
where 0 ≤ w1 ≤ 1. Hence, |1 +

√
w|2 = 2 + 2w1 ≥ 2, and so

4
|1 +
√
w|2
≤ 2.

It follows that

|X∗m,n,r(z, u)| ≤ 2
Γ (1−m/n) r!
Γ (r + 1−m/n)

max(|
√
u+
√
z|, |
√
u−
√
z|)2r.

To bound |X∗m,n,r(u, z)| from above, we appeal to the fact that 2F1(−r,−r−
m/n; 1 − m/n;w−1) is the complex conjugate of 2F1(−r,−r − m/n; 1 −
m/n;w), as shown at the end of the proof of Lemma 2.6 of [12].

Finally, for r = 0, we have X∗m,n,r(z, u) = X∗m,n,r(u, z) = 1. From (7.3),
the desired upper bound holds for r = 0.

(b) We prove the upper bound for X∗m,n,r(z, u), assuming that
|1− z/u| < 1. The proof for X∗m,n,r(u, z) is identical.

We can readily extend the proof of Lemma 2.5 of [14] to any 0 < m < n,
so the desired result holds for positive integers, r, since

4e2/n

π

1
(2
√

3)r+1
|1− z/u|2r+1|w|m/n < 1

for r ≥ 1, n ≥ 2, |1−z/u| < 1, and 2r−m/n(1+ |z/u|)r+m/n < {2(1+ |z/u|)}r
for such u and z.

The proof for r = 0 is identical to that in (a).

Lemma 7.4. Suppose that d, m, n and r are non-negative integers with
d ≥ 1, 0 < m < n and (m,n) = 1.

(a) Let Dm,n,r and Nd,n,r be as in the Introduction. Then

(Dm,n,r/Nd,n,r)Xm,n,r(1− dx) ∈ Z[x].

Moreover, with d1 = gcd(d, n) and d2 = gcd(d/d1, n), we have
(dr1
∏
p|d2 p

vp(r!)) |Nd,n,r.
(b) Define

µn =
∏
p|n

p prime

p1/(p−1).

Then each of the coefficients of the polynomial(
2r
r

)
2F1(−r,−r ±m/n;−2r;nµnx)

is a rational integer times non-negative integer powers of µn. For
n ≥ 3, µn < 1.94 log n, and for n > 420, µn < 1.18 log n.
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(c) For n in Tables 1 and 2 and putting either (Cn,Dn) = (C1,n,D1,n) or
(Cn,Dn) = (100,D2,n) in those tables, we have

(7.4) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
Dm,n,r

Nd,n,r
< Cn

(
Dn
Nd,n

)r
.

(d) If Nd,n |n, then (7.4) holds with Cn = 1 and Dn = nµn for all n ≥ 3,
and Cn = 1 and Dn < 1.18n log n for all n ≥ 3, n 6= 6.

Remark 7.5. In practice, for a particular value of n one should use the
results in Tables 1 and 2 or, for other values of n, calculate nµn explicitly.
However, the values of Cn and Dn in part (d) will be useful in obtaining
results for arbitrary n.

Remark 7.6. As Wakabayashi states in Remark 3.1 in [31], it can some-
times be beneficial to have a smaller value of Cn even at the expense of a
somewhat larger Dn. This is the reason for providing D2,n in Tables 1 and 2.
For a given n, it is the smallest value of Dn ≥ D1,n for which we can take
Cn < 100.

Remark 7.7. It appears that nµn is approximately π/eγ times the best
possible value for Dn. That is,

nµn ≈
π

eγ
exp
(

π

φ(n)

n/2∑
j=1, (j,n)=1

cot
πj

n

)
.

Remark 7.8. To check the calculations used as part of the proof of
part (c), we checked the results for all n considered there and all r ≤ 400
against calculations done in Maple 8. No differences were found. As well
as providing a test for the correctness of the code used, this also provides
further evidence that Proposition 3.2 of [28] yields exact information on the
prime decomposition of Dm,n,r.

Proof of Lemma 7.4. (a) The fact that (Dm,n,r/Nd,n,r)Xm,n,r(1 − dx)
∈ Z[x] follows immediately from the definitions of these quantities.

The second statement is a more general version of Proposition 5.1 of [13]
and we follow Chudnovsky’s method of proof.

We can write

Xm,n,r(1− dx) =
r!nr

(n−m) · · · (rn−m)
P−m(dx),

where

P−m(x) =
(

2r
r

)
2F1(−r,−r −m/n;−2r;x)

=
r∑
i=0

( r∏
k=r−i+1

(kn−m)
) 1
i!ni

(
2r − i
r

)
(−x)i.
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Table 1. Denominator bounds: 3 ≤ n ≤ 80

n C1,n logD1,n logD2,n n C1,n logD1,n logD2,n

3 2.0 · 107 0.93 0.97 41 1.2 · 106 3.37 3.51

4 4.9 · 106 1.60 1.64 42 2300 4.81 4.86

5 8.8 · 109 1.37 1.42 43 2.4 · 106 3.42 3.55

6 35 000 2.75 2.78 44 48 000 4.27 4.34

7 3.8 · 1011 1.66 1.75 45 31 000 4.33 4.42

8 2.5 · 108 2.26 2.39 46 3800 4.26 4.32

9 4.1 · 1011 2.19 2.27 47 240 000 3.51 3.59

10 2.6 · 106 3.02 3.11 48 2.4 · 106 4.67 4.77

11 9.7 · 109 2.06 2.19 49 6400 3.80 3.86

12 3.9 · 1011 3.18 3.27 50 540 4.58 4.62

13 1.9 · 1013 2.21 2.31 51 200 000 4.24 4.35

14 6.9 · 1010 3.24 3.37 52 210 000 4.42 4.46

15 94 000 3.21 3.31 53 13 000 3.64 3.70

16 3400 2.99 3.09 54 190 000 4.79 4.88

17 75 000 2.50 2.57 55 1400 4.25 4.34

18 6.9 · 107 3.64 3.71 56 2.6 · 106 4.61 4.71

19 1.2 · 106 2.61 2.73 57 52 000 4.35 4.48

20 14 000 3.60 3.68 58 22 000 4.48 4.56

21 2.2 · 107 3.47 3.55 59 1.2 · 107 3.75 3.96

22 750 000 3.58 3.66 60 160 000 5.30 5.38

23 150 000 2.80 2.90 61 14 000 3.79 3.85

24 140 000 3.93 4.08 62 3500 4.54 4.60

25 29 000 3.16 3.28 63 14 000 4.61 4.70

26 6.3 · 106 3.72 3.83 64 1900 4.44 4.49

27 840 000 3.38 3.48 65 41 000 4.41 4.51

28 16 000 3.87 4.00 66 1200 5.22 5.27

29 27 000 3.02 3.14 67 7400 3.89 3.94

30 1.4 · 106 4.53 4.63 68 6800 4.67 4.74

31 1.3 · 107 3.09 3.20 69 5100 4.54 4.63

32 1.1 · 106 3.70 3.83 70 54 000 5.22 5.31

33 95 000 3.85 3.94 71 3500 3.95 4.03

34 4200 3.99 4.06 72 1.2 · 106 5.09 5.16

35 890 000 3.85 4.00 74 2200 4.71 4.78

36 1.8 · 107 4.36 4.41 75 240 000 4.87 4.99

37 3200 3.27 3.35 76 1.8 · 1010 4.78 4.86

38 1100 4.09 4.13 77 11 000 4.55 4.60

39 40 000 4.00 4.10 78 8.1 · 106 5.37 5.50

40 16 000 4.33 4.37 80 39 000 5.07 5.13
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Table 2. Denominator bounds: 81 ≤ n ≤ 486

n C1,n logD1,n logD2,n n C1,n logD1,n logD2,n

81 170 000 4.57 4.69 132 250 5.99 6.00

82 1000 4.82 4.86 134 50 5.33 5.33

84 35 000 5.58 5.65 138 3400 5.93 5.98

85 1400 4.67 4.70 140 270 000 6.00 6.14

86 2800 4.87 4.95 142 41 5.40 5.40

87 2300 4.77 4.85 143 42 5.17 5.17

88 1700 5.02 5.09 144 1200 5.85 5.90

90 11 000 5.72 5.80 150 2.1 · 106 6.28 6.41

91 1200 4.71 4.75 154 130 5.95 5.96

92 720 4.97 5.01 156 3400 6.15 6.21

93 1600 4.84 4.90 162 1000 5.99 6.03

94 160 4.96 4.97 163 9.4 4.95 4.95

95 670 4.78 4.83 168 77 6.34 6.34

96 11 000 5.40 5.52 169 8.1 5.16 5.16

98 49 000 5.22 5.35 170 820 6.07 6.10

99 5900 5.03 5.10 174 91 6.18 6.18

100 4300 5.31 5.38 180 89 6.49 6.49

102 240 5.63 5.65 182 54 6.12 6.12

104 600 5.18 5.25 186 1100 6.25 6.29

105 3000 5.55 5.60 190 27 6.19 6.19

106 2400 5.08 5.14 198 7300 6.44 6.48

108 5200 5.53 5.58 210 1900 6.98 7.01

110 2400 5.64 5.70 216 510 6.32 6.34

111 200 5.03 5.05 222 9.5 6.44 6.44

112 1900 5.36 5.40 234 3.0 6.61 6.61

114 1000 5.74 5.78 242 8.7 6.20 6.20

116 360 000 5.21 5.33 243 2.0 5.91 5.91

117 700 5.20 5.23 250 3.5 6.38 6.38

118 7000 5.19 5.24 256 37 6.05 6.05

120 11 000 6.04 6.08 286 4.3 6.60 6.60

121 23 4.76 4.76 326 1.2 6.41 6.41

122 4400 5.23 5.30 338 1.0 6.61 6.61

124 1700 5.28 5.35 360 6.0 7.31 7.31

125 46 4.94 4.94 420 2.3 7.79 7.79

126 22 000 6.01 6.08 432 1.0 7.19 7.19

128 79 000 5.20 5.32 486 1.0 7.36 7.36

130 360 5.80 5.83
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(Notice that this differs from [13]. This is due to the fact that Xr(z) and
Yr(z) have been incorrectly switched in (4.3), (4.4), (5.2) and (5.4) of [13].)
So

Xm,n,r(1− dx) =
r∑
i=0

(r−i∏
k=1

1
kn−m

)
r!nr−idi1d

i
2d
i
3

i!

(
2r − i
r

)
(−x)i,

where d3 = d/(d1d2). Since (kn−m,n) = 1 for any integer k, it is clear that
dr1 is a divisor of the numerator of Xm,n,r(1− dx).

Now suppose that d2 > 1 and let p be a prime divisor of d2. Then
pi/pvp(i!) is an integer, since vp(i!) ≤ i/(p − 1) ≤ i. Hence we can remove a
factor of pvp(r!) from r!. Doing so for each prime divisor of d2 completes the
proof of part (a).

(b) The first statement is a slightly stronger and more general version of
the statement of Lemma 2.4 of [12], but it is, in fact, what is proved there.
Note that the restriction to j = ±1 is never used in the proof.

Let f(x) be a positive non-decreasing function for x ≥ 2 and suppose we
want to show that µn ≤ f(n). If n1 is the largest square-free divisor of n,
then µn1 = µn. If µn1 ≤ f(n1), then µn = µn1 ≤ f(n1) ≤ f(n). So we need
only prove µn ≤ f(n) for square-free n.

Furthermore, g(x) = x1/(x−1) is a decreasing function for x > 1. There-
fore, we can further reduce our consideration to n = p1 · · · pk, where pi is
the ith prime. So we can write

logµn =
∑
p≤pk

log p
p− 1

<
∑
p≤pk

log p
p

+
∑
p

(
log p
p− 1

− log p
p

)

<
∑
p≤pk

log p
p

+
∑
p<P

log p
p(p− 1)

+
∞�

P−1

log p
p− 1

dp−
∞�

P−1

log p
p

dp.

Following the notation of [1, §27.7] (i.e., letting f(x) = −
	x
1(log t)/(t−1) dt),

we get
∞�

P−1

log p
p− 1

dp−
∞�

P−1

log p
p

dp =
log2(P − 1)

2
+f(P −1)− lim

z→∞

(
f(z)+

log2 z

2

)
.

Using the functional relationship f(x) + f(1/x) = −(log2 x)/2 (see
(27.7.5) in [1]) with x = 1/z, we see that

lim
z→∞

f(z) +
log2 z

2
= −f(0) = −π

2

6
.

Therefore,

logµn <
∑
p≤pk

log p
p

+
∑
p<P

log p
p(p− 1)

+
π2

6
+

log2(P − 1)
2

−
P−1�

1

log t
t− 1

dt
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for any prime P ≥ 3. With P = 107, we find that

logµn <
∑
p≤pk

log p
p

+ 0.8.

For pk ≥ 32, by the Corollary to Theorem 6 of [19],

logµn <
∑
p≤pk

log p
p

+ 0.8

< log pk − 1.33258 + 1/log pk + 0.8 < log pk − 0.244.

Recalling that n = p1 · · · pk, we have log n = θ(pk), where θ(x) is the
logarithm of the product of all primes ≤ x. Hence, from Theorem 10 of [19],
for pk ≥ 1427, we have 0.95pk < θ(pk) = log n and so log pk < log log n −
log 0.95. Thus logµn < log logn− 0.1927 and the result holds for such n.

A computation for 11 ≤ pk < 1427 shows that logµn < log logn+ 0.162,
or µn < 1.18 log n, in this range.

By means of another computation, we find that for 3 ≤ n < 2310,
µn < 1.18 log n holds except for n = 3, 4, 6, 10, 12, 18, 30, 42, 60, 210 and 420
and that µn < 1.94 log n for these n, completing the proof of part (b).

(c) The basis of the proof of this part of the lemma will be Lemma 3.3
from [28] and we shall proceed as in the proof of Lemma 5.1 there. However,
to determine how much computation will be needed, we must first find a
feasible value for Dn, so we begin with the analytic bounds.

(c-i) Analytic estimates

Numerator estimates. We use d1 and d2 as in part (a).
If d2 = 1, then Nd,n = d1 is a divisor of n and, from Lemma 3.5(a)

of [28], N r
d,n is a divisor of Nd,n,r. Hence N r

d,n/Nd,n,r ≤ 1.
If d2 > 1, then there exists at least one prime, p, such that p contributes

pvp(n)+1/(p−1) to Nd,n. From part (a), we know that

N r
d,n

Nd,n,r
≤

N r
d,n

dr1
∏
p|d2 p

vp(r!)
=

∏
p-d2 p

rvp(d)
∏
p|d2 p

rvp(n)+r/(p−1)

dr1
∏
p|d2 p

vp(r!)
(7.5)

=
∏
p|d2

pr/(p−1)−vp(r!) ≤
∏
p|n

pr/(p−1)−vp(r!),

the last equality holding since
∏
p-d2 p

vp(d)
∏
p|d2 p

vp(n) = d1.
Now 0 ≤ r/(p− 1)− vp(r!) ≤ (log r)/log p+ 1/(p− 1). Therefore,

(7.6)
N r
d,n

Nd,n,r
≤ rω(n)µn,

where ω(n) is the number of distinct prime factors of n.
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Γ -term estimates. Observe that
Γ (1−m/n)r!
Γ (r + 1−m/n)

=
r

r −m/n
· · · 1

1−m/n
> 1

for n ≥ 2. Similarly,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

=
r +m/n

r
· · · 1 +m/n

1
> 1

for n ≥ 1. Furthermore, since (x + a)/x is a decreasing function of x for
fixed positive a,

nΓ (r + 1 +m/n)
mΓ (m/n)r!

<
Γ (1−m/n)r!
Γ (r + 1−m/n)

,

so

(7.7) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
=

Γ (1−m/n)r!
Γ (r + 1−m/n)

.

Notice that − log(1−x) = x+x2/2+x3/3+ · · · for |x| < 1. Furthermore,

(x+ x2)− (x+ x2/2 + x3/3 + · · ·) > x2

(
1
2
− x

3
(1 + x+ x2 + · · ·)

)
= x2

(
1
2
− x

3(1− x)

)
> 0

for 0 < x < 3/5. Therefore, − log(1− x) < x+ x2 for 0 < x < 3/5, and so

Γ (1−m/n)r!
Γ (r + 1−m/n)

=
r∏
i=1

1
1−m/(in)

=
n

n−m
exp
( r∑
i=2

− log
(

1− m

in

))

<
n

n−m
exp
( r∑
i=2

(
m

in
+

m2

(in)2

))

≤ n

n−m
exp
( r�

1

(
m

nx
+

m2

(nx)2

)
dx

)
=

n

n−m
exp
(
mnr log r −m2 +m2r

n2r

)
< nem

2/n2
rm/n ≤ (en)r(n−1)/n

for r ≥ 1, n ≥ 2 and n > m. Hence

max
(

1,
Γ (1−m/n) r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

) N r
d,n

Nd,n,r
< (en)rω(n)+(n−1)/nµn

for n ≥ 2.
We saw in part (b) of this lemma that µn < 1.18 log n for n > 420; it

follows that eµn < 3.21 log n for such n. Computing eµn for 3 ≤ n ≤ 420,
we find that eµn < 5.26 log n for all n ≥ 3.



132 P. M. Voutier

From Théorème 11 of [18], ω(n) < (1.3842 log n)/log logn for n ≥ 3, so
for n ≥ 30, we have ω(n)+(n−1)/n < 1.42 log n. Computing ω(n)+(n−1)/n
for 3 ≤ n < 29, we find that ω(n) + (n− 1)/n < 1.59 log n for all n ≥ 3.

Therefore,

(7.8) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

) N r
d,n

Nd,n,r

< 5.26r1.59 lognn log n

for n ≥ 3.
We divide the prime divisors of Dm,n,r into two sets, according to their

size. We let D(S)
m,n,r denote the contribution to Dm,n,r from primes at most

(nr)1/2 and let D(L)
m,n,r denote the contribution from the remaining, larger,

primes.

D
(S)
m,n,r estimates. From Lemma 3.3(a) of [28], we know that

D(S)
m,n,r ≤

∏
p≤(nr)1/2

pb(lognr)/log pc.

Now bxc ≤ 2bx/2c+ 1, so

D(S)
m,n,r ≤ exp{2ψ(

√
nr) + θ(

√
nr)}(7.9)

< exp{(2.07766 + 1.01624)
√
nr} = exp{3.1

√
nr},

from Theorems 9 and 12 of [19].
From (7.8) and (7.9), we know that

(7.10) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

) N r
d,n

Nd,n,r
D(S)
m,n,r

< 5.26r1.59 lognn(log n) exp{3.1
√
nr}.

D
(L)
m,n,r estimates. For each n in Tables 1 and 2, we let εn denote the

analytic bound obtained from Table 1 of Ramaré and Rumely [17] such
that |θ(x;n, k) − x/φ(n)| < εnx/φ(n) for x > 1010, where θ(x;n, k) is the
logarithm of the product of all primes p ≤ x with p ≡ k mod n and φ(n) is
Euler’s phi function.

From Table 2 of [17], we can also find ε′n such that |θ(x;n, k)− x/φ(n)|
< ε′n
√
x for x ≤ 1010.

Combining these two results, we can find X0 = (φ(n)ε′n/εn)2 < 1010 such
that the analytic bound |θ(x;n, k)− x/φ(n)| < εnx/φ(n) holds for x ≥ X0.
We then compute θ(x;n, k) for all x ≤ X0 to find the last value X1 that
breaches the analytic bounds of Ramaré and Rumely for n.
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Put

Dn,N = exp
{

n

φ(n)

(N−1∑
A=0

n/2∑
`=1, (`,n)=1

(
1 + εn
nA+ `

− 1− εn
nA+ n− `

)

+
n/2∑

`=1, (`,n)=1

1 + εn
nN + `

)}
and compute Dn,N for N ≥ 1 to find the value of Nmin that minimises it.
We use Dn,min to denote this minimum value.

From Lemma 3.3(b) of [28], we see that for any positive integer N sat-
isfying nr/(nN + n/2) ≥ (nr)1/2, we have

D(L)
m,n,r ≤ exp

{N−1∑
A=0

n/2∑
`=1, (`,n)=1

(θ(nr/(nA+ `);n, k`)

− θ(nr/(nA+ n− `);n, k`))
}

× exp
{ n/2∑
`=1, (`,n)=1

θ(nr/(nN + `);n, k`)
}
,

where k` ≡ (−m)`−1 mod n.
So, for r > X1(Nmin+1/2) = rcomp, we have D(L)

m,n,r ≤ Drn,min. Combining
this inequality with (7.10) yields

(7.11) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

) N r
d,n

Nd,n,r
Dm,n,r

< 5.26r1.59 lognn(log n) exp{3.1
√
nr + r logDn,min}

for r > rcomp. Hence we can choose Dn to be any real number greater than
or equal to

exp
{

log(5.26r1.59 logn
comp n log n)
rcomp

+ 3.1
√

n

rcomp

}
Dn,min.

Therefore

max
(

1,
Γ (1−m/n) r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

) N r
d,n

Nd,n,r
Dm,n,r < Drn ≤ CnDrn

for all r ≥ rcomp, provided Cn ≥ 1. Note that as Dn is taken closer to the
minimum possible value above, the associated value of Cn increases. We will
try to strike a balance between the sizes of these two quantities. Therefore,
we will often take Dn slightly larger than its minimum possible value here.

We now know Dn as well as how much computation is required to estab-
lish our desired inequalities for all r ≥ 0 (a computation which will yield Cn),
so we are ready to describe the required computations.
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(c-ii) Direct calculations. First, for each 1 ≤ r ≤ 1000, we directly
calculate

max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
Dm,n,r,

along with the product over all prime divisors of n of the maximum of 1 and
N r
pvp(n)+1,n

/Npvp(n)+1,n,r.

(c-iii) Calculated estimates. For 1000 < r ≤ rcomp, we take the
following steps.

(1) Computation of the Γ terms in the max term.
(2) Estimation of the numerator. We calculate the product over all prime

divisors of n of pr/(p−1)−vp(r!).
This provides an upper bound for N r

d,n/Nd,n,r over all possible values
of d.

This is much faster than calculating the maximum possible value of
N r
d,n/Nd,n,r precisely over all values of d. However, if, for a particular value

of r, after the denominator steps that follow, this estimate leads to a large
value of Cn, then we do calculate the maximum possible value of N r

d,n/Nd,n,r

precisely.
(3) The computation of the contribution to Dm,n,r from the small primes,

that is, primes, p, satisfying p ≤ (nr)1/2, using Proposition 3.2 of [28].
We speed up this part of the calculation, and the following parts, by

calculating and storing the first million primes (the last one being 32 441 957)
and their logarithms before we start the calculations for any of the r’s.

(4) The computation of the contribution toDm,n,r from all primes greater
than

√
nr and at most (nr − 1)/(nA(r) + 1) for some non-negative integer

A(r), which depends only on r. We use Lemma 3.3(b) of [28] as well as the
cached primes and their logarithms here.

(5) The computation of the contribution to Dm,n,r from the remaining
larger primes using the same technique as in [28] of using Lemma 3.3(b)
there and calculating the contributions from each interval and congruence
class via the endpoints of these intervals. The only difference is that here
we grew A(r) dynamically over the course of the calculation.

In this manner, we proceeded to estimate the size of the required quan-
tities for all r ≤ rcomp to complete the proof of part (c) of the lemma.

All these calculations were performed using code written in the Java
programming language (JDK 1.5.0.11). The code is available upon request.

(d) Following Chudnovsky [13] and defining µn,r =
∏
p|n p

br/(p−1)c (note
that we use a somewhat different notation from Chudnovsky to avoid con-
fusion with (µn)r), from his Lemma 4.2, we know that

(n−m) · · · (rn−m)
r!

µn,r
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is an integer and that (n−m)···(rn−m)
r! µn,rXm,n,r(x) has integer coefficients. We

will bound this integer from above to obtain our upper bound for Dm,n,r.
When considering the Γ terms in the proof of part (c), we saw that

max
(

1,
Γ (1−m/n) r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
=

Γ (1−m/n)r!
Γ (r + 1−m/n)

.

Now
(n−m) · · · (rn−m)

r!
= nr

Γ (r + 1−m/n)
Γ (1−m/n)r!

.

Hence

max
(

1,
Γ (1−m/n) r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
Dm,n,r ≤ nrµn,r.

Since Nd,n |n, we saw when considering the numerators in part (c) that
N r
d,n/Nd,n,r ≤ 1 and so

max
(

1,
Γ (1−m/n) r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)N r
d,nDm,n,r

Nd,n,r

≤ nrµn,r ≤ (nµn)r < (1.18n log n)r

for all n > 420 from part (b). In fact, we see that nµn < 1.18n log n holds
for all n ≥ 3, except n = 3, 4, 6, 10, 12, 18, 30, 42, 60, 210 and 420. For these
excluded values of n, we can use the data in Tables 1 and 2 associated with
part (c), along with some calculation, to show that the desired result holds
and we can take Cn = 1 and Dn = 1.18n log n for all n ≥ 3, n 6= 6.

Lemma 7.9. Let β1, β2, Pr(x), Qr(x) and F (x) be defined as in Lem-
ma 3.3 and let a, b, c and d be complex numbers satisfying ad − bc 6= 0.
Define

Kr(x) = aPr(x) + bQr(x) and Lr(x) = cPr(x) + dQr(x).

If (x− β1)(x− β2)F (x) 6= 0, then

Kr+1(x)Lr(x) 6= Kr(x)Lr+1(x)

for all r ≥ 0.

Proof. Lemma 2.7 of [12] states this with our P ′r(x) and Q′r(x) in place
of Pr(x) and Qr(x). Upon noting that our Pr(x) and Qr(x) are constant
multiples of P ′r(x) and Q′r(x), the result here holds.

8. Proof of Theorem 2.1. We first determine the quantities defined
in Lemma 3.3. We have

W (x) =
Z(x)
U(x)

=
γ1

−γ2

(
x− β1

x− β2

)n
.
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Notice that

W (x) = 1− U(x)− Z(x)
U(x)

and
1

W (x)
= 1− Z(x)− U(x)

Z(x)
.

8.1. Construction of approximations. We now construct our se-
quences of approximations to A(x).

From Lemmas 3.3 and 7.1, for r ≥ 0, we have

Qr(x) = (x− β2)X∗n,r(Z(x), U(x))− (x− β1)X∗n,r(U(x), Z(x)),
Pr(x) = β1(x− β2)X∗n,r(Z(x), U(x))− β2(x− β1)X∗n,r(U(x), Z(x)),
Sr(x) = −(x− β2)(A(x)− β1)U(x)rRn,r(W (x)).

These quantities will form the basis for our approximations.
Recalling the definitions of g and d from the statement of Theorem 2.1,

we put U1(x) = U(x)/g and Z1(x) = Z(x)/g and have

X∗n,r(U(x), Z(x)) = grX∗n,r(U1(x), Z1(x))

= (gZ1(x))rXn,r

(
1− d Z1(x)− U1(x)

dZ1(x)

)
.

From Lemma 7.4(a),

Dn,r

Nd,n,r
Xn,r

(
1− d Z1(x)− U1(x)

dZ1(x)

)
∈ Z

[
Z1(x)− U1(x)

dZ1(x)

]
and, as a consequence,

Z1(x)r
Dn,r

Nd,n,r
Xn,r

(
1− d Z1(x)− U1(x)

dZ1(x)

)
=

Dn,r

Nd,n,r
X∗n,r(U1(x), Z1(x))

is an algebraic integer. Hence
hrDn,r

grNd,n,r
X∗n,r(U(x), Z(x)) =

hrDn,r

Nd,n,r
X∗n,r(U1(x), Z1(x)),

hrDn,r

grNd,n,r
X∗n,r(Z(x), U(x)) =

hrDn,r

Nd,n,r
X∗n,r(Z1(x), U1(x))

are algebraic integers in K(β1) (switching the U ’s and Z’s in the above
argument to prove the latter). Since x, β1 and β2 are algebraic integers, it
follows that

(8.1)
hrDn,r

grNd,n,r
Pr(x),

hrDn,r

grNd,n,r
Qr(x) ∈ OK(β1).

If [K(β1) : K] = 1, then we let

(8.2) pr =
hrDn,r

grNd,n,r
Pr(x) and qr =

hrDn,r

grNd,n,r
Qr(x).

If [K(β1) : K] = 2, then by hypothesis, β1 and β2 are algebraic conjugates
over K, as are γ1 and γ2, and since x ∈ K, U(x) is −1 times the algebraic



Thue’s Fundamentaltheorem 137

conjugate of Z(x). Hence, (x−β1)X∗n,r(U(x), Z(x)) is the algebraic conjugate
of (−1)r(x − β2)X∗n,r(Z(x), U(x)). Similarly, β2(x − β1)X∗n,r(U(x), Z(x)) is
the algebraic conjugate of (−1)rβ1(x− β2)X∗n,r(Z(x), U(x)).

So if [K(β1) : K] = 2 and r is odd, then we let

(8.3) pr =
hrDn,r

grNd,n,r
Pr(x) and qr =

hrDn,r

grNd,n,r
Qr(x).

If K = Q and r is even, then

(x− β1)
hrDn,r

grNd,n,r
X∗n,r(U(x), Z(x)) =

a+ b
√
t

2

for some choice of rational integers a, b, t with t 6= 0. Hence

hrDn,r√
t grNd,n,r

Qr(x) = −b ∈ Z.

Similarly,
hrDn,r√
t grNd,n,r

Pr(x) ∈ Z.

So if K = Q, [K(β1) : K] = 2 and r is even, then we let

(8.4) pr =
hrDn,r√
t grNd,n,r

Pr(x) and qr =
hrDn,r√
t grNd,n,r

Qr(x).

If K is an imaginary quadratic field and r is even, then

(x− β1)
hrDn,r

grNd,n,r
X∗n,r(U(x), Z(x)) = a+ b

√
τ

for some a, b ∈ K and where τ is as in the statement of the theorem. Hence

hrDn,r

grNd,n,r
Qr(x) = −2b

√
τ and

√
τ
hrDn,r

grNd,n,r
Qr(x) ∈ OK.

Similarly,
√
τ
hrDn,r

grNd,n,r
Pr(x) ∈ OK.

So if K is an imaginary quadratic field, [K(β1) : K] = 2 and r is even,
then we let

(8.5) pr =
√
τ
hrDn,r

grNd,n,r
Pr(x) and qr =

√
τ
hrDn,r

grNd,n,r
Qr(x).

These are the numbers we shall use for our approximations. We have

qrA(x)− pr = sr,
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where

sr = tr
hrDn,r

grNd,n,r
Sr(8.6)

= −tr
hrDn,r

Nd,n,r
(x− β2)(A(x)− β1)U1(x)rRn,r(W (x)),

where tr = 1, 1/
√
t or
√
τ depending on values of pr and qr used above and

the last equality holds due to the expression for A(x) in the statement of
Theorem 2.1 and Lemma 7.1.

8.2. Estimates. We now want to show that these are “good” approxi-
mations; we do this by estimating |qr| and |sr| from above.

Since |t|, |
√
τ | ≥ 1, it follows that |tr| ≤ |

√
τ |. Hence

|qr| ≤ h|
√
τ | Dn,r

Nd,n,r
{|(x− β1)X∗n,r(U1(x), Z1(x))|(8.7)

+ |(x− β2)X∗n,r(Z1(x), U1(x))|}

≤ 2h|
√
τ |(|x− β1|+ |x− β2|)Cn

(
Dn
Nd,n

)r
× {max(|

√
U1(x) +

√
Z1(x)|, |

√
U1(x)−

√
Z1(x)|)}2r

from (8.2)–(8.5), the triangle inequality, the definitions of Cn, Dn, h, Nd,n
and Qr(x), as well as Lemma 7.3(a).

Furthermore,

|sr| =
∣∣∣∣ trhrDn,r

Nd,n,r
(x− β2)(A(x)− β1)U1(x)rRn,r(W (x))

∣∣∣∣(8.8)

≤ 2.4h|
√
τ | |1−W (x)1/n| |x− β2| |A(x)− β1|Cn

(
Dn
Nd,n

)r
× {min(|

√
U1(x) +

√
Z1(x)|, |

√
U1(x)−

√
Z1(x)|)}2r

from (8.6), the definition of h as well as Lemma 7.2(a).
Recall that we are only considering 0 < W (x) < 1 or |W (x)| = 1 in

Theorem 2.1, so only parts (a) of Lemmas 7.2 and 7.3 are required here.
We can apply Lemma 7.9 to see that prqr+1 6= pr+1qr.
From (8.7) and (8.8), we can set

k0 = 2h|
√
τ |(|x− β1|+ |x− β2|)Cn,

`0 = max(0.5, 2.4h|
√
τ | |1−W (x)1/n| |x− β2| |A(x)− β1|Cn),

E =
Nd,n
Dn
{min(|

√
U1(x) +

√
Z1(x)|, |

√
U1(x)−

√
Z1(x)|)}−2,

Q =
Dn
Nd,n

{max(|
√
U1(x) +

√
Z1(x)|, |

√
U1(x)−

√
Z1(x)|)}2.
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Hence we have κ = (logQ)/logE and c = 2k0Q(2`0E)κ in Lemma 6.1. Since
1/(2`0) ≤ 1, our result follows.

9. Proof of Theorem 2.4. The proof is identical to that of Theorem 2.1
except that we apply parts (b) of Lemmas 7.2 and 7.3, rather than parts (a).
With this change, we have

k0 = 2h|
√
τ |(|x− β1|+ |x− β2|)Cn,

`0 = max(0.5, h|
√
τ | |1−W (x)1/n| |x− β2| |A(x)− β1|Cn),

E =
Nd,n
Dn

4(|U1(x)| − |Z1(x)− U1(x)|)
|Z1(x)− U1(x)|2

,

Q =
Dn
Nd,n

2(|U1(x)|+ |Z1(x)|).

Hence we have κ = (logQ)/logE and c = 2k0Q(2`0E)κ in Lemma 6.1. Since
1/(2`0) ≤ 1, our result follows.

10. Proof of Corollary 2.6. We first determine the quantities defined
in Lemma 3.3. Put β1 = 0, β2 = b − a, γ1 = 1, γ2 = −(b/a)n−1 and x = b.
We have

U(x) = −γ2(x− β2)n =
bn−1

an−1
(x− b+ a)n,

Z(x) = γ1(x− β1)n = xn,

W (x) =
Z(x)
U(x)

=
an−1

bn−1

(
x

x− b+ a

)n
.

Hence, since U(b) = abn−1, Z(b) = bn and W (b) = b/a, using the notation
of Lemma 5.3,

A(b) =
β1(b− β2)W (b)1/n + β2(b− β1)

(b− β2)W (b)1/n + (b− β1)

=
(b− a)b

−a(b/a)1/n + b
= −(b− a)(b/a)(n−1)/n

1− (b/a)(n−1)/n
= α.

Since (a, b) = OK, by assumption, we can take g = bn−1 and hr = h = 1.
So we put U1(x) = a, Z1(x) = b and take d to be the largest positive rational
integer such that (a− b)/d is an algebraic integer.

Observe that
b

a

(
b− a
α
− 1
)

= −
(
b

a

)1/n

,

so if
qrα− pr = sr,
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then
apr(−(b/a)1/n)− b((b− a)qr − pr) = −b(b− a)

sr
α
.

We use the pr’s and qr’s defined in the proof of Theorem 2.1 (note that
they are members of OK). In particular, with the expressions in this section
for the relevant quantities,

pr =
hr
gr

Dn,r

Nd,n,r
Pr(b) =

Dn,r

Nd,n,r
(a− b)bX∗n,r(a, b).

Note that pr and b((b− a)qr − pr) are both divisible by b(b− a), so we have
apr

b(b− a)
((b/a)1/n)−

(
pr
b− a

− qr
)

=
sr
α
.

Therefore, by Lemma 7.3(a) along with the definitions of Cn, Dn and Nd,n,
we have

(10.1)
∣∣∣∣ apr
b(b− a)

∣∣∣∣ ≤ 2|a|Cn
(
Dn
Nd,n

)r
{max(|

√
a+
√
b|, |
√
a−
√
b|)}2r.

Similarly, by Lemma 7.2(a),∣∣∣∣srα
∣∣∣∣ =

∣∣∣∣ Dn,r

Nd,n,r
aU1(b)rRn,r(W (b))

∣∣∣∣
≤ 2.38|1− (b/a)1/n| |a|Cn

(
Dn
Nd,n

)r
{min(|

√
a+
√
b|, |
√
a−
√
b|)}2r.

Next, we require an upper bound for |1− (b/a)1/n|.
If b/a ∈ Q, then 0 < b/a < 1 and 0 < (a− b)/a < 1. From the binomial

theorem, we have

|1− (b/a)1/n|
= |1− (1− (a− b)/a)1/n|

=
∣∣∣∣a− bna

{
1 +

n− 1
2n

(
a− b
a

)
+

(n− 1)(2n− 1)
6n2

(
a− b
a

)2

+ · · ·
}∣∣∣∣

<
|a− b|
n|a|

{
1 +

(
a− b
a

)
+
(
a− b
a

)2

+ · · ·
}

=
a− b
n|b|

.

If |b/a| = 1, then we can write b/a = eiϕ for some −π < ϕ ≤ π. So we
have

|1− (b/a)1/n| =
√

2− 2 cos(ϕ/n).

Similarly,
|1− a/b| =

√
2− 2 cosϕ.

Now (2/π)2ϕ2 ≤ 2− 2 cosϕ ≤ ϕ2 for all −π < ϕ ≤ π. Hence

|1− (b/a)1/n| ≤ |ϕ/n| = π/(2n)(2/π)|ϕ| ≤ π/(2n)|1− (a/b)|.
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Therefore,

(10.2)
∣∣∣∣srα
∣∣∣∣ ≤ 1.25

∣∣∣∣a(a− b)
b

∣∣∣∣Cn( DnNd,n
)r
{min(|

√
a+
√
b|, |
√
a−
√
b|)}2r

since n ≥ 3.
From (10.1) and (10.2), we can set

k0 = 2|a|Cn,

`0 = 1.25
∣∣∣∣a(a− b)

b

∣∣∣∣Cn,
E =

Nd,n
Dn
{min(|

√
a+
√
b|, |
√
a−
√
b|)}−2,

Q =
Dn
Nd,n

{max(|
√
a+
√
b|, |
√
a−
√
b|)}2.

Hence κ = (logQ)/logE and c = 2k0Q(2`0E)κ in Lemma 6.1.
We have |a/b| ≥ 1 and |a−b| ≥ 1, since the closest distance between two

algebraic integers in an imaginary quadratic field is 1. In addition, Cn ≥ 1
(since Dn,0 = 1). Therefore, 1/(2`0) < 1 and our result follows.

11. Proof of Corollary 2.7. We do not specify a value of x here, so
we need only concern ourselves with determining d, g, hr and h, and hence
obtaining expressions for E, Q and c.

• g
Using the definitions of g and the gi’s in Corollary 2.7, we will show that

(U(x)
√
g3/g2/g1)2 is an algebraic integer (and in Q(

√
t)). Since g4 ∈ Z, it

will follow that U(x)/g =
√
g4 U(x)

√
g3/g2/g1 is also an algebraic integer.

Writing

U2(x)g3
g2
1g2

=
g3
4

{(
u1

g1g2

)2

g2 +
(
u2

g1

)2 t

g2

}
+

u1

g1g2

u2

g1

g3
2

√
t ∈ Q(

√
t),

we have

Trace
(
U2(x)g3
g2
1g2

)
=
g3(u2

1 + u2
2t)

2g2
1g2

, Norm
(
U2(x)g3
g2
1g2

)
=
g2
3(u2

1 − u2
2t)

2

16g4
1g

2
2

.

If both of these quantities are rational integers, then the minimal polyno-
mial of U2(x)g3/(g2

1g2) over Q will be monic with rational integer coefficients
and hence U2(x)g3/(g2

1g2) is an algebraic integer.
From the definitions of g1 and g2, we see that t/g2, u1/(g1g2) and u2/g1

are all rational integers, so (u2
1 +u2

2t)/(g
2
1g2) and (u2

1−u2
2t)

2/(g4
1g

2
2) are both

rational integers.
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If t ≡ 1 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2, then

u2
1

g2
1

+
u2

2

g2
1

t =
{

0 mod 4 if u1/g1 ≡ u2/g1 ≡ 0 mod 2,
2 mod 4 if u1/g1 ≡ u2/g1 ≡ 1 mod 2,

while
u2

1

g2
1

+
u2

2

g2
1

t = 0 mod 4

if t ≡ 3 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2.
In both cases, t is odd, so g2 is also odd and thus Trace(U2(x)g3/(g2

1g2))
∈ Z.

If neither of these conditions holds (i.e., if we are in the “otherwise” case
of the definition of g3), then g3 = 4 and again Trace(U2(x)g3/(g2

1g2)) ∈ Z.
We proceed in a similar way to show that Norm(U2(x)g3/(g2

1g2)) ∈ Z.
If t ≡ 1 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2, then

u2
1

g2
1

− u2
2

g2
1

t = 0 mod 4.

If t ≡ 3 mod 4 and (u1 − u2)/g1 ≡ 0 mod 2, then

u2
1

g2
1

− u2
2

g2
1

t =
{

0 mod 4 if u1/g1 ≡ u2/g1 ≡ 0 mod 2,
2 mod 4 if u1/g1 ≡ u2/g1 ≡ 1 mod 2.

Since in both cases t is odd, g2 is also odd, so Norm(U2(x)g3/(g2
1g2)) ∈ Z.

If neither of these conditions holds, then g3 = 4 and again

Norm(U2(x)g3/(g2
1g2)) ∈ Z.

Since Z(x) is −1 times the algebraic conjugate of U(x), Z(x)/g is an
algebraic integer as well.

• hr
Since g2 ∈ Q, we can take hr = 1 for r even. However, if, for example, g2

is a proper divisor of t or if g3 = 2, then g need not be a perfect square. Since
g2g3g4/core(g2g3g4) is a perfect square, we can take hr =

√
core(g2g3g4) for

r odd. From the definition of g4 we see that g4 | core(g2g3), so core(g2g3g4) ≤
core(g2g3). Since g2 | t and g3 = 1, 2 or 4, we have core(g2g3) ≤ 2t. Hence
hr ≤

√
2t for r odd.

• d
Since U(x)− Z(x) = u1, our definition of d is correct.

• E and Q
Since U(x) = (u1 + u2

√
t)/2, we have Z(x) = (−u1 + u2

√
t)/2. Hence,

(
√
U(x)±

√
Z(x))2 = U(x) + Z(x)± 2

√
U(x)Z(x) = u2

√
t±
√
u2

2t− u2
1,

giving rise to our expressions for E and Q.
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• c
From our determination of hr above, we can let h =

√
|2t|. Since K = Q

here, we have τ = 1 and hence take c to be

4
√
|2t| (|x− β1|+ |x− β2|)CnQ

× (max(1, 5
√
|2t| |1−W (x)1/n| |x− β2| |A(x)− β1|CnE))κ.
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[25] —, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909),
284–305.

[26] —, Ein Fundamentaltheorem zur Bestimmung von Annäherungswerten aller
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