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1. Introduction. Throughout this paper k will be a number field of
finite degree d over Q and K will be a finite, Galois extension of k such
that the group G := Gal(K/k) is abelian. We denote by S∞ = S∞(k) and
Sram = Sram(K/k) the sets consisting respectively of the infinite places of k
and those which are finite and ramify in K, and we set S0 = S0(K/k) =
Sram ∪ S∞. If S is any finite set of places containing S0 and s a complex
number with Re(s) > 1, we define a convergent Euler product in the complex
group ring of G (denoted simply CG) by

(1) ΘK/k,S(s) :=
∏
q6∈S

(1−Nq−sσ−1
q )−1.

The product ranges over those places q of k which are not in S (here and
henceforth, finite places are identified with prime ideals) and σq = σq,K

denotes the Frobenius element of G for q. If k is totally real and K is a CM
field with complex conjugation c ∈ G, it can be shown that the “minus part”
Θ−K/k,S(s) := 1

2(1− c)ΘK/k,S(s) extends to an entire function C→ CG.
This paper concerns two conjectures of a p-adic nature about the element

a−K/k,S := (i/π)dΘ−K/k,S(1) (whose coefficients turn out to be algebraic). For
any number p we denote by U1(Kp) the p-semilocal principal units of K
and define a p-adic regulator on the exterior power

∧d
ZpG U

1(Kp). By com-

bining this with a−K/k,S we obtain a map sK/k,S :
∧d

ZpG U
1(Kp) → QpG.

Assuming for the rest of this Introduction that p 6= 2 and S contains all
the places above p in k, our first conjecture (the “Integrality Conjecture”
or “IC”) states simply that the image SK/k,S of sK/k,S is contained in ZpG.
Recall now that if K+ denotes the maximal totally real subfield of K then
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(the meromorphic continuation of) ΘK+/k,S(s) has a zero of order at least d
at s = 0. Furthermore, a well-known conjecture of Stark (reformulated and
refined by Rubin) states that the coefficient of sd in the Taylor expansion
of ΘK+/k,S(s) is given by evaluating an (RG-valued) regulator map on an
element of a certain exterior power of the (global) S-units of K+. Impos-
ing further natural conditions makes this element the unique “Rubin–Stark
element” of the title, here denoted ηK+/k,S .

Our second conjecture (the “Congruence Conjecture” or “CC”) assumes
and refines the IC, and in so doing links the minus part of ΘK/k,S(s) at
s = 1 to its plus part at s = 0. It says that if K contains the pn+1th roots of
unity for some n ≥ 0, then, very roughly speaking, the reduction of sK/k,S
modulo pn+1 gives an explicit reciprocity law for ηK+/k,S .

The idea for these conjectures came from the results of [So4]. We shall not
elaborate on the precise connection in the present paper beyond saying that
if p splits in k then certain rather strong hypotheses considered in [So4] imply
a weak form of the CC at each level in a cyclotomic Zp-tower containing K.
The IC and the CC first appeared explicitly as Conjectures 5.2 and 5.4 at
the end of [So5] in a form less general and more awkward than the present
versions. That form also used twisted zeta-functions at s = 0 in place of the
more accessible Θ−K/k,S(1).

The remainder of this paper is organised as follows. Section 2 contains
the precise definitions and basic properties of the main players: the elements
a−K/k,S and ηK+/k,S , the map sK/k,S and the pairingHK/k,n (a determinant of
additive, equivariant Hilbert symbols in terms of which our conjectural reci-
procity law is formulated). Section 3 contains the precise statements of the
two conjectures. Section 4 surveys the current evidence in their favour—now
quite considerable—and includes the statements of the three main results
of this paper which were announced in [So5]: Firstly, in the case p - |G|, we
give a complete characterisation of SK/k,S in terms of L-functions of odd
characters of G at s = 0. In this case the IC then follows, thanks to a result
of Deligne–Ribet and P. Cassou-Noguès. Secondly, we prove the conjectures
in the case k = Q, using an explicit reciprocity law due to Coleman. Thirdly,
we prove the conjectures when K/Q is abelian (but k is not necessarily Q)
by “base-change” from the previous result. In this case, we require a rela-
tively mild technical hypothesis on K/k, S and p. We also discuss briefly
A. Jones’ recent work showing that a rather different refinement of the IC
would follow from a special case of the Equivariant Tamagawa Number Con-
jecture (ETNC) of Burns and Flach. (On the other hand, there is currently
no known connection between the ETNC and the CC.) Section 5 examines
the behaviour of the conjectures as S, K and n vary. Sections 6, 7 and 8
contain the proofs of the three main results referred to above.
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Jones’ refinement of the IC mentioned above predicts that SK/k,S is
contained in the Fitting ideal (as ZpG-module) of the minus part of the p-
part of a certain ray-class group of K. It would be interesting to investigate
links between SK/k,S and the Fitting ideal of the minus class group itself
(cf. [Gr]). Another goal would be to generalise to arbitrary k the work of [So6]
in the case k = Q. The latter links (an extension of) sK/Q,S to the plus part
of the class group via the CC (which is proven in this case) and Iwasawa
Theory.

In addition to those introduced above, we use the following basic nota-
tions and conventions. If R is a commutative ring and H a finite abelian
group, we write RH for the group-ring, and if M is a ZH-module we shall
sometimes abbreviate R ⊗Z M to RM (considered as an RH-module in
the obvious way). For any subgroup D ⊂ H, we write ND for the norm
element

∑
d∈D d ∈ RH. If m is a positive integer, we denote by µm(R)

the group of all mth roots of unity in R and for any prime number p we
set µp∞(R) =

⋃∞
i=0 µpi(R). All number fields in this paper are supposed of

finite degree over Q and are considered as subfields of Q̄, which is the alge-
braic closure of Q within C. We shall write ξm for the particular generator
exp(2πi/m) of µm(Q̄). For any number field F and any integer r we shall
write Sr(F ) for the set of places (prime ideals) of F dividing r. If S is a
set of places of F and L is any finite extension of F we shall write S(L)
for the set of places of L lying above those in S. If S contains S∞(F ) (see
above) then the group US(F ) of S-units of F consists of those elements of
F× which are local units at every place not in S and we shall often write
simply US(L) in place of US(L)(L). (Caution: US and related modules will
sometimes be written additively.)

If L/F is abelian and v is any place of F we shall write Dv(L/F )
for the decomposition subgroup of Gal(L/F ) at any prime dividing v
in L and similarly Tv(L/F ) for the inertia subgroup (if v is finite).
Suppose L ⊃ F ⊃ M are three number fields such that L/M and F/M
are Galois extensions. Then the restriction map Gal(L/M) → Gal(F/M)
will be denoted πL/F and extended R-linearly to a ring homomorphism
RGal(L/M) → RGal(F/M) for any commutative ring R. We also write
νL/M for the R-linear “corestriction” map RGal(F/M) → RGal(L/M)
which sends g ∈ Gal(F/M) to the sum of its preimages under πL/F in
Gal(L/M).

2. Dramatis personæ

2.1. The function ΘK/k,S and the element a−K/k,S. Let Ĝ denote the
dual group of G, namely the group of all (irreducible) complex characters
χ : G → C× with identity element χ0, the trivial character. For any χ ∈ Ĝ
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we write eχ,G for the associated idempotent in the complex group-ring CG:

eχ,G :=
1
|G|

∑
g∈G

χ(g)g−1.

Expanding the Euler product (1), we get

(2) ΘK/k,S(s) =
∑
g∈G

ζK/k,S(s; g)g−1 =
∑
χ∈Ĝ

LK/k,S(s, χ)eχ−1,G

for Re(s) > 1. Here, ζK/k,S(s; g) and LK/k,S(s, χ) denote respectively the “S-
truncations” of the partial zeta-function attached to G and the L-function
attached to χ. In particular,

(3) LK/k,S(s, χ)

=
∏
q6∈S

(1−Nq−sχ(σq))−1 =
∏

q∈S\S∞
q - fχ

(1−Nq−sχ̂([q]))L(s, χ̂)

where fχ and L(s, χ̂) denote respectively the conductor of χ and the L-
function of its associated primitive ray-class character χ̂ modulo fχ.

Remark 2.1. The second (but not the first) expression for LK/k,S(s, χ)
in (3) makes sense when S is any finite set of places of k, containing S∞(k)
but not necessarily Sram(K/k). In fact, it agrees with the definition of the
S-truncated Artin L-function attached to χ considered as a character of G
(see for example [Ta, p. 23]).

The analytic behaviour of L(s, χ̂) is well-known. Its (in general) mero-
morphic continuation means that we may use equations (2) and (3) to con-
tinue ΘK/k,S to a meromorphic, CG-valued function on C. These equations
then hold as identities between meromorphic functions on C. Similarly, if
S ⊃ S′ ⊃ S0, then the obvious identity

(4) ΘK/k,S(s) =
∏

q∈S\S′
(1−Nq−sσ−1

q )ΘK/k,S′(s)

for Re(s) > 1 also holds for all s. In fact, the function L(s, χ̂), hence also
the function χ(ΘK/k,S(s)) = LK/k,S(s, χ−1), is analytic on C \ {1} and

(5) ords=1χ(ΘK/k,S(s)) =
{

0 if χ 6= χ0,
−1 if χ = χ0.

Moreover, the residue of χ0(ΘK/k,S(s)) =
∏

q∈S\S∞(1−Nq−s)ζk(s) at s = 1
is well-known (see e.g. [Ta, Théorème I.1.1]).

Using the well-known functional equation relating the primitive L-func-
tion L(s, χ̂−1) to L(1 − s, χ̂) one might expect to derive a natural relation
between ΘK/k,S(s) and ΘK/k,S(1 − s) by means of (2) and (3). There are
however at least three obstacles to this: firstly the presence of Gauss sums
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in the functional equations and secondly the dependence on χ of the second
product in (3) which, thirdly, forces LK/k,S(0, χ) = 0 for certain χ. Instead,
in [So5] we used these functional equations to give a precise relation between
ΘK/k,S0(s) (there denoted ΘK/k(s)) and ΦK/k(1 − s), where the function
ΦK/k : C→ CG was defined by means of twisted zeta-functions and studied,
together with its p-adic analogues, in [So2–So5]. For each v ∈ S∞, we write
cv for the unique generator of Dv(K/k) so that cv = 1 unless v is real and
one (hence every) place w of K above v is complex, in which case cv is the
complex conjugation associated to any such w.

We define an entire, CDv(K/k)-valued function

Cv(s) =
{

exp(iπs).1− exp(−iπs).cv = 2i sin(πs).1 if v is complex,
exp(iπs/2).1 + exp(−iπs/2).cv if v is real.

Then Theorem 2.1 of [So5], combined with (4) for S′ = S0, gives

(6) ir2(k)
√
|dk|

∏
q∈S\S0

(1−Nq−sσ−1
q )ΦK/k(1− s)

= ((2π)−sΓ (s))d
( ∏
v∈S∞

Cv(s)
)
ΘK/k,S(s)

where r2(k) denotes the number of complex places of k and dk its absolute
discriminant. Let Θn.t.

K/k,S(s) be the function (1 − eχ0,G)ΘK/k,S(s), which is
regular at s = 1 by (5). So (6) gives

(7)
√
|dk|

∏
q∈S\S0

(1−Nq−1σ−1
q )(1− eχ0,G)ΦK/k(0)

= (2π)−di|S∞|
( ∏
v∈S∞

(1− cv)
)
Θn.t.
K/k,S(1),

from which it follows that (1−eχ0,G)ΦK/k(0) vanishes unless k is totally real
and K is totally complex. On the other hand, multiplying (6) by eχ0,G and
letting s → 1, we see that eχ0,GΦK/k(0) vanishes unless |S∞| = 1, i.e. k is
Q or an imaginary quadratic field, in which case it may easily be calculated
from ress=1 ζk(s). Thus ΦK/k(0) has little interest unless k is totally real and
K is totally complex. Even then,

∏
v∈S∞(1 − cv) vanishes unless there is a

(unique) CM-subfield K− of K containing k, in which case we lose little but
complication by replacing K by K−. (See Remark 3.1(i) of [So5] for further
explanations.) For these reasons we shall henceforth make the

Hypothesis 2.2. k is totally real and K is a CM field.

This means that dk is a positive integer and cv = c, the unique complex
conjugation in G, for all v ∈ S∞. Let e± denote the two idempotents 1

2(1±c)
of CG and let Θ−K/k,S(s) be the entire function e−ΘK/k,S(s) = e−Θn.t.

K/k,S(s).
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The above remarks, together with a simple calculation of eχ0,GΦK/k(0) when
k = Q, show that equation (7) may be rewritten as

(8) a−K/k,S :=
(
i

π

)d
Θ−K/k,S(1)

=


∏

q∈S\S0

(1−Nq−1σ−1
q )
√
dk ΦK/k(0) if k 6= Q,

∏
q∈S\S0

(1− q−1σ−1
q )ΦK/Q(0) +

1
2

∏
q∈S\{∞}

(1− q−1)eχ0,G if k = Q.

If R is a commutative ring in which 2 is invertible and if M is any
R〈c〉-module then we shall write M+ (resp. M−) for the R-submodule e+M
(resp. e−M), so that M = M+ ⊕M−. In this notation, a−K/k,S clearly lies
in CG− and multiplying (8) by e− gives

(9) a−K/k,S = e−a−K/k,S = e−
∏

q∈S\S0

(1−Nq−1σ−1
q )
√
dk ΦK/k(0)

whether or not k = Q, but if k 6= Q then the term e− may be omitted on
the R.H.S. In fact, a−K/k,S has algebraic coefficients: Let f(K) be the integral
ideal of Ok which is the conductor of K/k in the sense of class-field theory
and let f(K) be the positive generator of the ideal f(K) ∩ Z. The product
in (9) lies in QG×, therefore (9) and [So5, Prop. 3.1] show that a−K/k,S has
coefficients in

√
dk Q(µf(K)) and that

(10) a−K/k,SQ(µf(K))G =
√
dk Q(µf(K))G

−.

Integrality properties of the coefficients of a−K/k,S are given in [R-S2] where
it is shown that they also lie in the Galois closure of K over Q (see ibid.,
Proposition 2 and Remark 6).

2.2. Rubin–Stark elements for K+/k. Let us write Ḡ for Gal(K+/k)
∼=G/〈c〉, so that πK/K+ : CG→CḠ induces an ring isomorphism CG+→CḠ
sending e+ΘK/k,S(s) onto ΘK+/k,S(s). To study ΘK+/k,S(s) at s = 0 we

define an integer rS(φ) for each φ ∈ ̂̄G by

(11) rS(φ) :=
{
d+ |{q∈ S \S∞: φ(Dq(K+/k)) = {1}}| if φ is non-trivial,
d+ |S \ S∞| − 1 = |S| − 1 if φ is trivial.

Since k and K+ are totally real, the functional equation of L(s, φ̂) for φ ∈ ̂̄G
shows that, for any such φ, we have

(12) ords=0φ(ΘK+/k,S(s)) = ords=0LK+/k,S(s, φ−1) = rS(φ)

(see e.g. [Ta, Ch. I, §3]). We shall assume until further notice
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Hypothesis 2.3. |S| ≥ d+ 1 (i.e. S contains at least one finite place).

This implies that rS(φ) ≥ d for φ trivial hence for every φ ∈ ̂̄G, so we
may define

Θ
(d)
K+/k,S

(0) := lim
s→0

s−dΘK+/k,S(s)

(an element of CḠ which is easily seen to lie in RḠ). Conjectures of Stark,
as refined by Rubin [Ru], predict that Θ(d)

K+/k,S
(0) is given by a certain

RḠ-valued regulator of S-units of K+ defined as follows. We fix once and
for all a set τ1, . . . , τd of left coset representatives for Gal(Q̄/k) in Gal(Q̄/Q)
and we define QḠ-linear, real logarithmic maps for i = 1, . . . , d:

λK+/k,i : QUS(K+)→ RḠ, a⊗ ε 7→ a
∑
g∈Ḡ

log |τi(gε)| g−1 ∈ RḠ.

The above-mentioned regulator is the QḠ-linear map uniquely defined by

RK+/k :
∧d

QḠ QUS(K+)→ RḠ, x1 ∧ · · · ∧ xd 7→ det (λK+/k,i(xt))1≤i,t≤d.

The following definition generalises the above construction and will be useful
later.

Proposition/Definition 2.4.

(i) Suppose R is a commutative ring, S a commutative R-algebra, and
that M is any (left) RH module for a finite group H. There is
an isomorphism from HomR(M,S) to HomRH(M,SH) given by
f 7→ fH where fH is defined to be the map m 7→

∑
h∈H f(h−1m)h.

(ii) Suppose H is abelian and l ∈ N. Then for every l-tuple (f1, . . . , fl) ∈
HomR(M,S)l there is an RH-linear determinantal map ∆f1,...,fl

uniquely defined by

∆f1,...,fl :
∧l
RHM → SH, m1 ∧ · · · ∧ml 7→ det (fHi (mt))li,t=1.

∆f1,...,fl is S-multilinear and alternating as a function of (f1, . . . , fd).
Moreover for each i = 1, . . . , l and h ∈ H we have ∆f1,...,fi◦h,...,fl(µ)
= ∆f1,...,fl(µ)h for all µ ∈

∧l
RHM .

For instance, taking R = Q, S = R, M = QUS(K+) and H = Ḡ gives
RK+/k = ∆f1,...,fd , where fi is the map sending a ⊗ ε ∈ QUS(K+) to its
logarithmic embedding a log |τi(ε)| in R. If instead we take R = S = Q, then
any d elements f1, . . . , fd of HomQ(QUS(K+),Q) give rise to a QḠ-linear
map ∆f1,...,fd :

∧d
QḠ QUS(K+) → QG. Let us identify HomZ(US(K+),Z)

with the lattice in HomQ(QUS(K+),Q) which is its image under the map
f → 1 ⊗ f . We can then define a ZḠ submodule Λ0,S = Λ0,S(K+/k) of
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QḠ QUS(K+) by

Λ0,S(K+/k) :=
{
η ∈

∧d
QḠ QUS(K+) : ∆f1,...,fd(η) ∈ ZḠ

∀f1, . . . , fd ∈ HomZ(US(K+),Z)
}
.

This coincides with “Λd0US(K+)” as defined by Rubin’s “double dual” con-
struction in [Ru, §1]. It is clear that Λ0,S contains the lattice which is the nat-

ural image of
∧d

ZḠ US(K+) in
∧d

QḠ QUS(K+) (we denote this
∧d

ZḠ US(K+))
but the two are not necessarily equal. In fact, Proposition 1.2 of [Ru] implies

Proposition 2.5. If d = 1 (i.e. k = Q) then Λ0,S =
∧1

ZḠ US(K+) =

US(K+). In general, the index |Λ0,S :
∧d

ZḠ US(K+)| is finite and supported
on primes dividing |Ḡ|.

Let us define an idempotent eS,d,Ḡ, a priori in CḠ, by setting eS,d,Ḡ :=∑
φ∈ b̄G, rS(φ)=d

eφ,Ḡ. This is the unique element x of CḠ such that φ(x) = 1
or 0 according as rS(φ) = d or rS(φ) > d. It follows easily from this descrip-
tion and the formula (11) that

(13) eS,d,Ḡ =



∏
q∈S\S∞

(
1− 1
|Dq(K+/k)|

NDq(K+/k)

)
if |S| > d+ 1,(

1− 1
|Dq(K+/k)|

NDq(K+/k)

)
+ eχ0,Ḡ if |S| = d+ 1,

i.e. S= {q}∪S∞.

Thus eS,d,Ḡ is an idempotent of QḠ, so lies in |Ḡ|−1ZḠ. We also deduce
easily:

Proposition 2.6. Let M be any QḠ-module and m ∈M . The following
are equivalent:

(i) m ∈ eS,d,ḠM .
(ii) m = eS,d,Ḡm.

(iii) For all q ∈ S \ S∞,

(14) NDq(K+/k)m ∈
{ {0} if |S| > d+ 1,
M Ḡ if |S| = d+ 1, i.e. S = {q} ∪ S∞.

(iv) eφ,Ḡ(1⊗m) = 0 in C⊗Q M for all φ ∈ ̂̄G such that rS(φ) > d.

For brevity, we shall sometimes refer to any of these conditions as the
eigenspace condition on m with respect to (S, d, Ḡ). Now, given any subring
R of Q, we formulate a version of the Rubin–Stark conjecture “over R”:

Conjecture RSC(K+/k, S;R). Let K/k and S be as above, satisfying
Hypotheses 2.2 and 2.3. Then there exists an element η ∈

∧d
QḠ QUS(K+)
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satisfying the eigenspace condition with respect to (S, d, Ḡ) and such that

(15) Θ
(d)
K+/k,S

(0) = RK+/k(η)

and

(16) η ∈ 1
2RΛ0,S(K+/k).

Notice that Θ(d)
K+/k,S

(0) lies in the ideal eS,d,ḠRḠ (and in fact gener-

ates it) by equation (12). Thus if η ∈
∧d

QḠ QUS(K+) is any solution of (15)
then eS,d,Ḡη is a solution satisfying the eigenspace condition. On the other
hand, it can be shown that RK+/k is injective on eS,d,Ḡ

∧d
QḠ QUS(K+) (this

follows from [Ru, Lemma 2.7]), so a solution of (15) satisfying the eigenspace
condition is unique. For this reason, we call such an element the Rubin–Stark
element for K+/k and S and denote it ηK+/k,S since it is independent of R.
Of course, condition (16) is redundant if R = Q, and for any prime number
p we have

RSC(K+/k, S; Z) ⇒ RSC(K+/k, S; Z(p)) ⇒ RSC(K+/k, S; Q)

(where Z(p) denotes the localisation {a/b∈Q : p - b}). Moreover, RSC(K+/k,
S; Z) is equivalent to the conjunction of RSC(K+/k, S; Z(p)) for all primes p.
We shall mainly be interested in RSC(K+/k, S; Z(p)) when p 6= 2, in which
case (16) reduces to η ∈ Z(p)Λ0,S .

Remark 2.7. Since RK+/k depends on the choice (and ordering) of the
τi’s, so will ηK+/k,S , but in a simple way. For example, if one τi is replaced by
τiτ
−1 for some τ ∈ Gal(Q̄/k) then we must replace ηK+/k,S by τ |K+ηK+/k,S

where τ |K+ ∈ Ḡ.

Remark 2.8. RSC(K+/k, S; Q) and RSC(K+/k, S; Z) follow from
certain special cases of Conjectures A′ and B′ of [Ru] respectively. Indeed,
if we choose the extension “K/k” of Rubin’s paper to be our K+/k, his “S”
to be ours, his “r” to be d and his chosen places “w1, . . . , wr” to be the
real places of K+ defined by τ1, . . . , τd, then Rubin’s Hypotheses 2.1.1–2.1.4
are satisfied. His conjectures also require an auxiliary set T of finite places
of k satisfying certain conditions, although for Conjecture A′ the precise
choice of such T does not affect the truth of the conjecture. For simplicity
we take T = {q} for some prime q 6∈ S not dividing 2 and splitting in K+

(infinitely many of these exist by Chebotarev’s theorem). Then Rubin’s
Hypothesis 2.1.5 certainly holds since US(K+)tor = {±1}. Moreover, his
“Θ(r)

S,T (0)” is our (1−Nq)Θ(d)
K+/k,S

(0) and his “Λr0US,T ” is a sublattice of our

Λ0,S(K+/k) which also spans
∧d

QḠ QUS(K+) over Q. It follows easily that
RSC(K+/k, S; Q) is equivalent to Rubin’s Conjecture A′ with these choices
and this (hence any) T . Moreover, if both hold then Rubin’s “εS,T ” equals
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our (1 −Nq)ηK+/k,S , by uniqueness. It follows that Rubin’s Conjecture B′

with these choices amounts to the further condition that (1 − Nq)ηK+/k,S

lie in his “Λr0US,T ” hence in our Λ0,S(K+/k). But as q varies subject to the
above conditions, Lemme IV.1.1 of [Ta] says that the g.c.d. of the corre-
sponding integers 1 − Nq is |µ(K+)| = 2. Thus the corresponding cases of
Rubin’s Conjecture B′ together imply RSC(K+/k, S; Z).

The connection with Stark’s original conjecture in terms of characters
(see [Ta, Conjecture I.5.1]) is as follows. Propositions 2.3 and 2.4 of [Ru]
show that Stark’s conjecture holds for K+/k, S and every character φ ∈ Ḡ
satisfying rS(φ) = d if and only if Rubin’s Conjecture A′ holds (for any T ),
which is equivalent to RSC(K+/k, S; Q), by the above.

In the next section we shall be interested in determinantal maps ob-
tained from a d-tuple (f1, . . . , fd) ∈ HomZ(US(K+),Z/pn+1Z) for some
prime p and n ≥ 0. Taking R = Z, S = Z/pn+1Z and M = US(K+)
in Proposition/Definition 2.4 gives such a map ∆f1,...,fd :

∧d
ZḠ US(K+) →

(Z/pn+1Z)Ḡ. We shall now show that provided p is odd, this map “extends”
naturally to Z(p)Λ0,S in a sense to be explained below. First, we have

Lemma 2.9. If p is odd then the following sequence is exact:

0→ HomZ(US(K+),Z)
pn+1

−−−→ HomZ(US(K+),Z)

→ HomZ(US(K+),Z/pn+1Z)→ 0.

Proof. As K+ is totally real, US(K+)/{±1} is Z-free. Thus the sequence
is exact if US(K+) is replaced by US(K+)/{±1}. But since Z and Z/pn+1Z
have no 2-torsion, we may identify

HomZ(US(K+)/{±1},Z) ∼= HomZ(US(K+),Z),

HomZ(US(K+)/{±1},Z/pn+1Z) ∼= HomZ(US(K+),Z/pn+1Z).

Thus given f1, . . . , fd in HomZ(US(K+),Z/pn+1Z) for p odd, we can
choose lifts f̃1, . . . , f̃d in HomZ(US(K+),Z). As previously, we may regard
these as elements of HomQ(QUS(K+),Q) and use Proposition/Definition 2.4
to construct ∆f̃1,...,f̃d

:
∧d

QḠ QUS(K+) → QḠ. If η ∈ Λ0,S then ∆f̃1,...,f̃d
(η)

lies in ZḠ by definition of Λ0,S and we write ∆̃f1,...,fd(η) for its image in
(Z/pn+1Z)Ḡ. The latter is independent of the choice of each lift f̃i, as one
easily checks using Lemma 2.9, the linearity of ∆f̃1,...,f̃d

in f̃i and the fact
that η ∈ Λ0,S . Consequently we have a well-defined map ∆̃f1,...,fd : Λ0,S →
(Z/pn+1Z)Ḡ which is linear and so extends uniquely to Z(p)Λ0,S . It is now
an easy exercise to check the following properties of ∆̃f1,...,fd :

Proposition 2.10. Let p be odd and choose

f1, . . . , fd ∈ HomZ(US(K+),Z/pn+1Z).
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(i) The map ∆̃f1,...,fd : Z(p)Λ0,S(K+/k)→ (Z/pn+1Z)Ḡ is ZḠ-linear.
(ii) It is also (Z/pn+1Z)-multilinear and alternating as a function of

(f1, . . . , fd) and for each i = 1, . . . , d we have ∆̃f1,...,fi◦g,...,fd(η) =
∆̃f1,...,fd(η)g for all g ∈ Ḡ and η ∈ Z(p)Λ0,S(K+/k).

(iii) The following diagram commutes:∧d
ZḠ US(K+)

α

��

∆f1,...,fd

,,XXXXXXXXXXXXXXX

(Z/pn+1Z)Ḡ

Z(p)Λ0,S(K+/k) ∆̃f1,...,fd

22ffffffffffffff

where α is the natural map
∧d

ZḠ US(K+) →
∧d

QḠ QUS(K+) with
restricted range.

Remark 2.11. This shows in particular that ∆f1,...,fd vanishes on the
kernel of α in the above diagram. One can show that ker(α) is always finite
and supported on primes dividing 2|Ḡ| = |G|. Also, Proposition 2.5 implies
that im(α) spans Z(p)Λ0,S over Z(p) whenever p - |G|. So if p - |G| then any
ZḠ-linear map F :

∧d
ZḠ US(K+)→ (Z/pn+1Z)Ḡ vanishes on ker(α) and has

a unique “extension” F̃ : Z(p)Λ0,S → (Z/pn+1Z)Ḡ satisfying F = F̃ ◦ α.

2.3. Hilbert symbols and the pairing HK/k,n. Suppose that L is a
local field containing µm for some positive integer m coprime to the charac-
teristic of L. We recall that the Hilbert symbol is the map

(·, ·)L,m : L× × L× → µm ⊂ L×, (α, β) 7→ (β1/m)σα,L−1,

where β1/m is any mth root of β in any abelian closure Lab of L, and σα,L
denotes the image of α under the reciprocity homomorphism (·, L) of local
class-field theory from L× to Gal(Lab/L). The Hilbert symbol is bilinear
and skew-symmetric. For the general theory, see [A-T, Ch. 12], [Ne, V.3] or
[Se, Ch. XIV]. (Note that our notation (α, β)L,m is compatible with that
of [A-T] and [Ne] but represents the element denoted (β, α) in [Se] and is
similarly reversed in the notation of [Col].)

Let p be a prime number and n ≥ 0 an integer. We shall assume until
further notice that K contains µpn+1 for some n ≥ 0. Let κn : Gal(Q̄/Q)→
(Z/pn+1Z)× be the cyclotomic character modulo pn+1, determined by τ(ζ) =
ζκn(τ) for all ζ ∈ µpn+1 , and τ ∈ Gal(Q̄/Q). Since K contains µpn+1 ,
the restriction of κn to Gal(Q̄/k) factors through a homomorphism G →
(Z/pn+1Z)× which we denote by the same symbol. We also use the short-
hand ζn for ξpn+1 ∈ K. If KP denotes the completion of K at some prime
ideal P, we may define a bilinear pairing [·, ·]P,n : K×P ×K

×
P → Z/pn+1Z by
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setting
ιP(ζn)[α,β]P,n = (α, β)KP,pn+1 for all α, β ∈ K×P

where ιP : K → KP is the natural embedding. Every g ∈ G induces an
isomorphism KP → KgP, also denoted g and such that g ◦ ιP = ιgP ◦ g.
Standard facts from local class field theory imply that (gα, gβ)KgP,pn+1 =
g(α, β)KP,pn+1 in K×gP for any α, β ∈ K×P . It follows easily that

(17) [gα, gβ]gP,n = κn(g)[α, β]P,n for all α, β ∈ K×P , g ∈ G.

If P divides p then ιP extends to a Qp-algebra map from Kp := K ⊗Q Qp

to KP. Thus we obtain a pairing

[·, ·]K,n : K×p ×K×p → Z/pn+1Z, (α, β) 7→
∑
P|p

[ιP(α), ιP(β)]P,n.

Letting G act on Kp through K, we still have ιP ◦ g = g ◦ ιg−1P for any
g ∈ G and P | p, so (17) implies

(18) [gα, gβ]K,n = κn(g)[α, β]K,n for all α, β ∈ K×p , g ∈ G.

The product map
∏

P|p ιP : Kp →
∏

P|pKP is a G-equivariant ring isomor-
phism (where g((xP)P) = (gxg−1P)P in

∏
P|pKP). We shall regard this as an

identification so that ιP identifies with the projection
∏

P|pKP → KP. Thus
we identify the principal semilocal units

∏
P|p U

1(KP) with a ZG-submodule
of K×p and denote it U1(Kp). Regarding each U1(KP) as a finitely generated
Zp-module, U1(Kp) becomes a finitely generated ZpG-module.

From now on we assume that p is odd. Consider the unique ring auto-
morphism of (Z/pn+1Z)G sending g ∈ G to κn(g)g−1. Since κn(c) = −1,
this restricts to a ring isomorphism from (Z/pn+1Z)G+ to (Z/pn+1Z)G−.
Composing with 2̄−1νK/K+ : (Z/pn+1Z)Ḡ→ (Z/pn+1Z)G, we obtain a ring
isomorphism κ̄∗n = κ̄∗K,n : (Z/pn+1Z)Ḡ→ (Z/pn+1Z)G−. Explicitly, if h ∈ Ḡ
and g ∈ G then

(19) κ̄∗n(h) = 2̄−1
∑
h̃∈G

πK/K+ (h̃)=h

κn(h̃)h̃−1 and so κ̄∗n(πK/K+(g)) = e−κn(g)g−1.

Given a set S ⊃ S0 as in previous sections, any u ∈ U1(Kp) defines a
homomorphism fu ∈ HomZ(US(K+),Z/pn+1Z) by setting fu(ε) = [ε, u]K,n
(by abuse, we write ε for ε ⊗ 1 ∈ K×p ). Using the “∆̃” notation of the last
section we may now define a map

HK/k,S,n : Z(p)Λ0,S(K+/k)× U1(Kp)d → (Z/pn+1Z)G−,

(η;u1, . . . , ud) 7→ 2dκ̄∗n(∆̃fu1 ,...,fud
(η)).
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Proposition 2.12. Suppose that η ∈ Z(p)Λ0,S(K+/k) and u1, . . . , ud ∈
U1(Kp)d.

(i) For any x ∈ ZḠ we have

HK/k,S,n(xη;u1, . . . , ud) = κ̄∗n(x̄)HK/k,S,n(η;u1, . . . , ud)

where x̄ denotes the image of x in (Z/pn+1Z)Ḡ.
(ii) HK/k,S,n is ZG-multilinear (hence ZpG-multilinear) and alternating

as a function of u1, . . . , ud.

Proof. Part (i) follows from Proposition 2.10(i). The Z-multilinearity in
part (ii) follows from Proposition 2.10(ii) so it suffices to prove that replacing
ui by gui (for g ∈ G) multiplies HK/k,S,n(η;u1, . . . , ud) by g, or indeed by
e−g since it lies in the minus part. But if we write h for πK/K+(g) ∈ Ḡ then
(18) and Proposition 2.10(ii) give

κ̄∗n(∆̃fu1 ,...,fgui ,...,fud
(η)) = κ̄∗n(∆̃fu1 ,...,κn(g)fui◦h−1,...,fud

(η))

= κ̄∗n(∆̃fu1 ,...,fud
(η)κn(g)h−1)

= κ̄∗n(κn(g)h−1)κ̄∗n(∆̃fu1 ,...,fud
(η))

= e−gκ̄∗n(∆̃fu1 ,...,fud
(η))

by (19) and the result follows.

By part (ii) of the proposition, HK/k,S,n defines a unique pairing (also
denoted HK/k,S,n) from Z(p)Λ0,S ×

∧d
ZpGU

1(Kp) to (Z/pn+1Z)G−. By
ZpG-linearity in the second variable, it factors through the projection on∧d

ZpGU
1(Kp)−. An important and simple special case is when η equals

(1⊗ε1)∧· · ·∧(1⊗εd) ∈
∧d

ZḠ US(K+). Using Proposition 2.10(iii) and equa-
tion (19) and tracing through the definitions, we find that for all u1, . . . , ud
in U1(Kp),

HK/k,S,n((1⊗ ε1) ∧ · · · ∧ (1⊗ εd), u1 ∧ · · · ∧ ud)

= 2dκ̄∗n(∆fu1 ,...,fud
(ε1 ∧ · · · ∧ εd)) = κ̄∗n

(
det
(

2
∑
h∈Ḡ

[h−1εi, ut]K,nh
)

1≤i,t≤d

)
= det

(
κ̄∗n

(∑
g∈G

[g−1εi, ut]K,nπK/K+(g)
))

1≤i,t≤d

= det
(
e−
∑
g∈G

κn(g)[g−1εi, ut]K,ng−1
)

1≤i,t≤d
.

But
∑

g∈G κn(g)[g−1εi, ut]K,ng−1 clearly lies in the minus part, and (18)
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allows us to rewrite it as
∑

g∈G[εi, gut]K,ng−1. Thus we obtain simply

(20) HK/k,S,n((1⊗ ε1) ∧ · · · ∧ (1⊗ εd), u1 ∧ · · · ∧ ud)

= det
(∑
g∈G

[εi, gut]K,ng−1
)

1≤i,t≤d
.

This shows in particular that, on
∧d

ZḠ US(K+)×
∧d

ZpGU
1(Kp), the pairing

HK,n(α(·), ·) agrees with that defined by the pairing HK,n(·, ·) of [So5].

Remark 2.13. If S ⊃ S′ ⊃ S0, we shall always view the natural injec-
tion

∧d
QḠ QUS′(K+) →

∧d
QḠ QUS(K+) as an inclusion. It is then a simple

exercise to check “compatibility of the pairings as S varies” in the sense
that Λ0,S contains Λ0,S′ and HK/k,S,n agrees with HK/k,S′,n on Z(p)Λ0,S′ ×∧d

ZpGU
1(Kp). For this reason, we shall usually omit the reference to S and

write simply HK/k,n.

2.4. The map sK/k,S. For the time being we drop Hypothesis 2.3 and
the assumption that K contains µpn+1 . We use the element a−K/k,S to define
a generalisation of the map sK/k of [So5] (slightly modified). Let j be any
embedding of Q̄ into a fixed algebraic closure Q̄p of Qp. For each i = 1, . . . , d,
the composite jτi : Q̄ → Q̄p defines a prime ideal Pi of OK dividing p,
namely Pi = {a ∈ OK : |jτi(a)|p < 1}. (Of course, the ideals P1, . . . ,Pd

are not in general distinct.) So jτi gives rise to an isometric embedding
KPi → Q̄p (with the appropriately normalised Pi-adic metric onKPi) whose
image is the topological closure jτi(K). This embedding is also denoted jτi,
by abuse.

There is a composite homomorphism of Qp-algebras

δi = δ
(j)
i := jτi ◦ ιPi : Kp → Q̄p

where ιPi : Kp → KPi is as in the previous section. It follows in particular
that if u lies in U1(Kp) ⊂ Kp then |δ(j)

i (u) − 1|p < 1 for all i, hence the
element logp(δ

(j)
i (u)) of jτi(K) is given by the usual logarithmic series. In

Proposition/Definition 2.4 we take R = Zp, S = Q̄p, M = U1(Kp), H = G,
l = d and set fi(u) := logp(δ

(j)
i (u)) for all u ∈ U1(Kp) and i ∈ {1, . . . , d} to

get a p-adic regulator map RK/k,p := ∆f1,...,fd :
∧d

ZpG U
1(Kp) → Q̄pG. (We

will denote it R(j)
K/k,p or R(j;τ1,...,τd)

K/k,p if we need to indicate the dependence
on j and/or τ1, . . . , τd.) For any abelian group H and commutative ring R
we define an involutive automorphism (·)∗ of RH by setting (

∑
ahh)∗ =∑

ahh
−1. The element a−K/k,S lies in Q̄G− by (10), hence so does a−,∗K/k,S and

applying j to the coefficients we obtain an element j(a−,∗K/k,S) of Q̄pG
−.
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Definition 2.14. For any θ ∈
∧d

ZpG U
1(Kp) we define sK/k,S(θ) =

sK/k,S,p(θ) to be the product j(a−,∗K/k,S)R(j)
K/k,p(θ) in Q̄pG.

Remark 2.15. It is easy to see that permuting the τi can only change
the sign of the regulator R(j)

K/k,p and hence of the map sK/k,S and that if
τi is replaced by τiτ for some τ ∈ Gal(Q̄/k) then both are multiplied by
τ |K ∈ G. If clarity demands it we shall indicate this (simple) dependence
on the τi by writing s

τ1,...,τd
K/k,S instead of sK/k,S .

If sK/k denotes the map introduced in Definition 3.1 of [So5] then (9)
gives

sK/k,S(θ) = e−
∏

q∈S\S0

(1−Nq−1σq)j(
√
dk ΦK/k(0)∗)R(j)

K/k,p(θ)(21)

= e−
∏

q∈S\S0

(1−Nq−1σq)sK/k(θ)

and if k 6= Q then we can even drop the factor e−. Equation (21) and
Proposition 3.4 of [So5] imply the important

Proposition 2.16. sK/k,S(θ) lies in QpG
− for every θ ∈

∧d
ZpG U

1(Kp).
Moreover, it is independent of the choice of j.

In [So5], sK/k was considered as a (ZpG-linear) map from
∧d

ZpG U
1(Kp)

to QpG. But because of the factor e− in (21), we now have sK/k,S(e−θ) =
e−sK/k,S(θ) = sK/k,S(θ). For this reason, we prefer to consider sK/k,S as a
ZpG-linear map from

∧d
ZpG U

1(Kp)− to QpG
−.

Proposition 2.17. The kernel of sK/k,S is precisely the (Zp-) torsion
submodule of

∧d
ZpG U

1(Kp)− which is finite. The image of sK/k,S is a frac-
tional ideal of QpG

− (i.e. a finitely generated ZpG-submodule of QpG
−

which spans it over Qp).

Proof. In Remark 3.2 of [So5] it was shown that ker(R(j)
K/k,p) is finite

and that im(R(j)
K/k,p) spans Q̄pG over Q̄p. Also, equation (10) implies that

j(a−,∗K/k,S) is a unit of the ring Q̄pG
−. It follows that ker(sK/k,S) lies in

ker(R(j)
K/k,p) and hence in (

∧d
ZpG U

1(Kp)−)tor. The reverse inclusion is clear,
since QpG

− is torsion-free.
For the second statement, finite generation follows from that of U1(Kp)

and we have Q̄pim(sK/k,S) = Q̄pG
−im(sK/k,S) = Q̄pG

−im(R(j)
K/k,p) = Q̄pG

−.
It follows that Qpim(sK/k,S) = QpG

−.
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Definition 2.18. We set SK/k,S = SK/k,S,p := im(sK/k,S,p) ⊂ QpG
−.

(Proposition 2.16 and Remark 2.15 show that SK/k,S is independent of j
and the choice and ordering of the τi’s.)

Thus

(22) SK/k,S = e−
∏

q∈S\S0

(1−Nq−1σq)SK/k

where SK/k = im(sK/k) as in [So5], and if k 6= Q then we can drop the
factor e−. Finally, the dependence of sK/k,S and SK/k,S on S is clear: if
S ⊃ S′ ⊃ S0 then (4) and the definition of a−K/k,S give

(23)

sK/k,S =
∏

q∈S\S′
(1−Nq−1σq)sK/k,S′ ,

SK/k,S =
∏

q∈S\S′
(1−Nq−1σq)SK/k,S′ .

3. Statements of the conjectures. Let us write Sp for Sp(k) and
S1 = S1(K/k) for Sp ∪ S0 = Sp ∪ Sram(K/k) ∪ S∞.

Hypothesis 3.1. S contains S1.

Henceforth, the three conditions p 6= 2, Hypothesis 2.2 and Hypothe-
sis 3.1 will be referred to as the standard hypotheses and will be assumed
to hold unless it is explicitly stated otherwise. Our “Integrality Conjecture”
(IC) reads:

Conjecture IC(K/k, S, p). SK/k,S ⊂ ZpG−.

Remark 3.2. By using [So5, Cor. 2.1] and estimates of logp one can
find explicit values of N such that SK/k,S ⊂ p−NZpG− (cf. the proof of
Prop. 4.2, ibid.). The conjecture says we can take N = 0. Fixing K/k but
letting p (hence S1) vary, one can also show that SK/k,S1,p = ZpG− for all
but finitely many p 6= 2. In fact, this follows easily from Theorem 6.1 below.

Remark 3.3. Equation (22) gives

SK/k,S1 = e−
∏

p∈Sp\Sram

(1−Np−1σp)SK/k = e−
( ∏

p∈Sp\Sram

Np
)−1

SK/k.

(For the second equality, observe that if p lies in Sp \ Sram then Np − σp

is a unit of ZpG.) If k 6= Q we may, as usual, drop the factor e− in the
last equation. It follows in particular that if k 6= Q then IC(K/k, S1, p) is
equivalent to Conjecture 5.2 of [So5, §5.2]. If k = Q the latter conjecture was
proven there. IC(K/Q, S1, p) follows on applying e− and will be reproven in
Theorem 4.3.
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Hypothesis 3.1 implies Hypothesis 2.3 so that the conditions of Conjec-
ture RSC(K+/k, S; Z(p)) are met. Our “Congruence Conjecture” (CC) reads:

Conjecture CC(K/k, S, p, n) (Congruence Conjecture). Suppose that
Conjecture IC(K/k, S, p) holds and that RSC(K+/k, S; Z(p)) holds with
solution ηK+/k,S. If also K ⊃ µpn+1 for some n ≥ 0, then for all θ ∈∧d

ZpG U
1(Kp)− we have

(24) sK/k,S(θ) = κn(τ1 . . . τd)HK/k,n(ηK+/k,S , θ) (in (Z/pn+1Z)G−).

Remark 3.4. The factor κn(τ1 . . . τd) means that the Congruence Con-
jecture is independent of the choice of τ1, . . . , τd. For example, if we replace
τi by τiτ

−1 for some τ ∈ Gal(Q̄/k) then Remark 2.7, Proposition 2.12(i)
and (19) show that the R.H.S. is multiplied by τ |−1

K ∈ G and the same is
true for the L.H.S. by Remark 2.15.

Remark 3.5. CC(K/k, S, p, n) replaces Conjecture 5.4 of [So5]. The
latter is essentially the special case of the CC in which S = S1 and p splits
in k (so that µp ⊂ K forces S0 = S1). In fact, it is a direct consequence of this
case provided one assumes (with no significant loss of generality) that K is
CM, k 6= Q and one replaces

∧d
ZGK

× in Conjecture 5.4 with
∧d

ZḠ US(K+) as
here. The awkwardness in the formulation of Conjecture 5.4 (using I(η+

K/k),
η̃x etc.) has been avoided in the CC thanks to our “extension” of HK,n to
Z(p)Λ0,S .

4. Evidence for the IC and the CC

4.1. The results of [So5]. Conjecture 5.2 of [So5] implies IC(K/k, S, p)
for S = S1 (see Remark 3.3) and hence for all S (using Proposition 5.1, see
below). Therefore Proposition 4.2 of [So5] implies

Theorem 4.1. IC(K/k, S, p) holds whenever p is unramified in K/Q.

By a similar argument, the main result, Theorem 4.1, of [So5] implies

Theorem 4.2. IC(K/k, S, p) holds whenever p splits completely in k/Q
and either Sram(K/k) 6⊂ Sp(k) or µp(K) = {1}.

4.2. The IC and the ETNC. Working on the original version of the
IC in [So5], Andrew Jones has shown that a certain refinement would follow
from the ETNC (see the Introduction). Let Clm(K) be the ray-class group of
K corresponding to the cycle which is the formal product of the finite places
of K above those in S1 and write FittZG(Clm(K)) for its (initial) Fitting
ideal as a ZG-module. In our notation, the first part of [Jo, Theorem 4.1.1]
then says that the relevant case of the ETNC (namely [Bu1, Conj. 4(iv)] for
the pair (h0Spec(K)(1), e−ZG)) implies

(25) SK/k,S1 ⊂ (ZpFittZG(Clm(K)))− (= FittZpG−((Clm(K)⊗ Zp)−))
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for all odd primes p. The inclusion (25), hence the ETNC, clearly implies
IC(K/k, S, p) for S = S1, hence for all S. Of course, it implies considerably
more (for instance, that SK/k,S1 annihilates the p-part of Clm(K)) and in
this sense refines the IC in a different direction from the CC. We note that
the relevant case of the ETNC has been proven in our set-up only when K
is an absolutely abelian field (see below).

4.3. Strengthenings of the IC in the case p - |G|. The second part
of Jones’ Theorem 4.1.1 states that if the above case of the ETNC holds
and also p - |G|, then we have the following strengthening of (25):
(26)

SK/k,S1 =


FittZpG−(µp∞(Kp)−/µp∞(K))FittZpG−((Clm(K)⊗ Zp)−)

if Sram(K/k) ⊂ Sp,
FittZpG−(µp∞(Kp)−)FittZpG−((Clm(K)⊗ Zp)−)

if Sram(K/k) 6⊂ Sp.
Corollary 4.1.8 of [Jo] also establishes (26) when p - |G| without assuming the
ETNC but imposes a mild condition on the characters of G. (The proof uses
results of [Wi] and work of Bley, Burns and others on, roughly speaking, the
compatibility of the ETNC with the functional equations of L-functions.)

Independently, we used the functional equations themselves and more
elementary, index-type arguments to give a different (and unconditional)
formula for SK/k,S whenever p - |G|. This is presented as Theorem 6.1. Corol-
lary 6.2 shows how one may quickly deduce IC(K/k, S, p) in this case. Of
course, it would also follow immediately from Jones’ formula (26). In fact,
there is a direct link between the two formulae, explained in Remark 6.3.

4.4. The case k = Q. When k = Q, the IC follows from Corollary 4.1
of [So5] (or indeed from the work of Jones, see below). In Section 7 we shall
prove the CC in this case, reproving the IC along the way:

Theorem 4.3.

(i) Conjecture IC(K/Q, S, p) holds.
(ii) If K contains µpn+1 for some n≥0, then Conjecture CC(K/Q, S, p, n)

holds.

4.5. The case of absolutely abelian K. As noted in [Jo, Cor. 4.1.7],
the relevant case of the ETNC follows from [B-F, Cor. 1.2] whenever K
is absolutely abelian and k is any totally real subfield (possibly but not
necessarily equal to Q). Thus the inclusion (25) holds and in particular

Theorem 4.4. If K is an abelian extension of Q, then Conjecture
IC(K/k, S, p) holds.
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To state our result for the CC, in this case, we first define a set of rational
primes

Bad(S) := {q ∈ Sram(k/Q) : Sq(k) 6⊂ S}
and formulate

Hypothesis 4.5. p - eq(k/Q) for all q ∈ Bad(S).

In Section 8 we shall show

Theorem 4.6. If K is an abelian extension of Q containing µpn+1 for
some n ≥ 0 and Hypothesis 4.5 is satisfied, then Conjecture CC(K/k, S, p, n)
holds.

(At the same time we shall obtain a second proof of Theorem 4.4 which
assumes Hypothesis 4.5 but is independent of the ETNC.) The proof of The-
orem 4.6 uses induction formulae for L-functions to relate the situation for
K/k to that of F/Q for various CM subfields F of K, and this in two par-
allel applications. The first concerns sK/k,S and works at s = 1. The second
concerns RSC(K+/k, S; Z(p)) and works at s = 0. Popescu introduced the
latter application in [Po]. (In fact, he applied it to his own variant of Ru-
bin’s Conjecture B′ which also implies RSC(K+/k, S; Z).) He worked under
a hypothesis which implies Bad(S) = ∅. This simplifies matters (we only
need to consider F = K) but is rather restrictive (e.g. Bad(S1(K/k)) 6= ∅
whenever a rational prime q 6= p ramifies in k/Q but not in K/k). The
elaboration of Popescu’s techniques which allows us to conclude under our
weaker Hypothesis 4.5 is one ingredient of Cooper’s work on Popescu’s Con-
jecture in [Coo]. Hypothesis 4.5 holds, for example, whenever p - [k : Q] (e.g.
[k : Q] is a power of 2). Alternatively, suppose K = Q(ξf ) and k = K+ where
f = pn+1f ′ 6≡ 2 (mod 4), n ≥ 0 and p - f ′. If we take S = S1(K/k) = S∞∪Sp
then Bad(S) = ∅ ⇔ f ′ = 1, but Hypothesis 4.5 holds provided only p - q− 1
for all q | f ′.

4.6. Two “trivial” cases of the congruence (24). SupposeK⊃µpn+1

for some n ≥ 0 and S contains at least d + 2 places and at least one fi-
nite place q that splits completely in K+. Equations (11) and (12) imply
Θ

(d)
K+/k,S

= 0 so that RSC(K+/k, S; Z) holds with ηK+/k,S = 0. The con-
gruence (24) is thus equivalent to sK/k,S(θ) ∈ pn+1ZpG−. The extension
K/K+ = K+(µpn+1)/K+ is unramified outside p, so if q does not divide p
then it cannot lie in S1 (which forces |S| ≥ d + 2). We can then apply the
following result. (For a case with q | p, see the next subsection.)

Proposition 4.7. Suppose K ⊃ µpn+1 and q ∈ S\S1(K/k) splits (com-
pletely) in K+. If IC(K/k, S \ {q}, p) holds (e.g. if p - |G|) then SK/k,S ⊂
pn+1ZpG−. In particular, CC(K/k, S, p, n) holds.
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Proof. By (23) it clearly suffices to show that pn+1 divides (Nq−σq)e−.
Since q splits in K+, σq is either 1 or c, and since q - p, it acts on µpn+1

by Nq. If σq = 1, it also acts trivially, so pn+1 divides Nq − 1 hence also
(Nq − 1)e− = (Nq − σq)e−. If σq = c, it also acts by −1, so pn+1 divides
Nq + 1 hence also (Nq + 1)e− = (Nq− σq)e−.

Next, suppose that θ is a Zp-torsion element in
∧d

ZpG U
1(Kp)−. Then

Proposition 2.17 implies that the L.H.S. of (24) vanishes, so, assuming
RSC(K+/k, S; Z(p)), this congruence is equivalent to HK/k,n(ηK+/k,S , θ) = 0.
If also p - |G|, then this is an immediate consequence of the following result,
to be proved in Section 6. (The verification seems harder if p | |G| (and
d ≥ 2), not least because (

∧d
ZpG U

1(Kp))tor is then harder to characterise.)

Proposition 4.8. Suppose p - |G|, K ⊃ µpn+1 and η is any element of
Z(p)Λ0,S(K+/k) satisfying the eigenspace condition with respect to (S, d, Ḡ).
Then HK/k,n(η, θ) = 0 for all θ ∈ (

∧d
ZpG U

1(Kp))tor.

4.7. The case k = K+. In this case G = {1, c} so p - |G| and the IC
holds for all admissible S. For the CC, we assume K ⊃ µpn+1 with n ≥ 0
so that K = k(µpn+1) and S1 = S∞ ∪ Sp. All places of k split in K+ so if
S 6= S1 then CC(K/k, S, p, n) holds by Proposition 4.7. Also, if |Sp(k)| ≥ 2
then |S| ≥ d+ 2 so once again CC(K/k, S1, p, n) is equivalent to SK/k,S ⊂
pn+1ZpG− (see above). But this will follow from equation (32) in Section 6
(for the unique odd character φ; indeed, the first term on the R.H.S. of (32)
is clearly divisible by (pn+1)|Sp|−1). This leaves only the case S = S∞ ∪ Sp
with |Sp(k)| = 1. Then ηk/k,S1 is non-zero and can be written explicitly in
terms of a Z-basis ε1, . . . , εd for US1(k)/{±1} and the Sp-classnumber of k.
Furthermore, a−K/k,S can be calculated explicitly. Thus CC(K/k, S1, p, n)
reduces to a new and unproven identity in Z/pn+1Z, relating a p-adic regu-
lator of elements of U1(Kp)− to a determinant of their Hilbert symbols with
the εi. This was studied in [Bo]. Results include a proof of a weaker divisi-
bility statement, a proposed analogous identity for p = 2 and full numerical
verification of these identities in more than 100 varied cases.

4.8. Other computational results. RSC(K+/k, S; Q) is not currently
known to hold non-trivially for any S unless either K+ is absolutely abelian
or all the characters χ ∈ ˆ̄G satisfying ords=0LK+/k,S(s, χ) = d are of or-
der 1 or 2. However, if d is not too large, high-precision computation can
identify ηK+/k,S with virtual certainty as the unique solution of (15) in
eS,d,Ḡ

∧d
QḠ QUS(K+). (This was done in [R-S1].) This makes it possible to

check the CC (and simultaneously the IC) on a computer. In [R-S2] we give
details of such numerical verifications for nearly 50 cases of CC(K/k, S1, p, n)
with k real quadratic, n = 0 or 1 and varying K and p.
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5. Changing S, K and n. If q is a prime ideal of k not in Sp then
(1−Nq−1σq) lies in ZpG. Hence (23) gives

Proposition 5.1. If S ⊃ S′ ⊃ S1 then the conjecture IC(K/k, S′, p)
implies IC(K/k, S, p).

Remark 5.2. For the converse one would need e−(1 − Nq−1σq) to be
invertible in ZpG− for each q ∈ S \ S′. But for any such q one has an
isomorphism of ZpG-modules

(27) ZpG/(1−Nq−1σq) ∼= (OK/qOK)× ⊗Z Zp ∼=
⊕
Q

(F×Q ⊗Z Zp)

where Q runs through the primes dividing q in K and FQ denotes OK/Q.
Hence, if c 6∈ Dq(K/k) (respectively, c ∈ Dq(K/k)) then e−(1−Nq−1σq) lies
in (ZpG−)× if and only if p - |F×Q| (respectively, p - |F×Q/(1 + c)F×Q|) for one,
hence any Q. This fails in particular if µp ⊂ K, in which case IC(K/k, S, p)
does not by itself imply IC(K/k, S′, p) for any S ) S′.

Proposition 5.3. Suppose S ⊃ S′ ⊃ S1 and RSC(K+/k, S′; Z(p)) holds
with solution ηK+/k,S′. Then RSC(K+/k, S; Z(p)) holds with solution ηK+/k,S

=
∏

q∈S\S′(1− σ
−1
q,K+)ηK+/k,S′.

Proof. It follows easily from (4) and Proposition 2.6(iii) that the product∏
q(1− σ−1

q,K+)ηK+/k,S′ is a solution of RSC(K+/k, S; Q). The result follows
since Z(p)Λ0,S′ is a ZḠ-submodule of Z(p)Λ0,S .

Proposition 5.4. If K ⊃ µpn+1 for some n ≥ 0 and S ⊃ S′ ⊃ S1 then
CC(K/k, S′, p, n) implies CC(K/k, S, p, n).

Proof. We assume that CC(K/k, S′, p, n) holds so also IC(K/k, S′, p)
and RSC(K+/k, S′; Z(p)). Thus IC(K/k, S, p) and RSC(K+/k, S; Z(p))
hold by Propositions 5.1 and 5.3. Using the latter and Proposition 2.12(i)
we find that, for any θ ∈

∧d
ZpG U

1(Kp)−,

(28) κn(τ1 . . . τd)HK/k,n(ηK+/k,S , θ)

=
∏

q∈S\S′
(1− κ̄∗n(σ−1

q,K+))κn(τ1 . . . τd)HK/k,n(ηK+/k,S′ , θ)

=
∏

q∈S\S′
(1− κ̄∗n(σ−1

q,K+))sK/k,S′(θ) in (Z/pn+1Z)G−.

For each q ∈ S \ S′, equation (19) with g = σ−1
q = σ−1

q,K gives κ̄∗n(σ−1
q,K+) =

e−κn(σq)−1σq, and since q - p it follows that κn(σq) = Nq in Z/pn+1Z. Thus
1 − κ̄∗n(σ−1

q,K+) acts as 1 − Nq−1σq on (Z/pn+1Z)G− and combining (28)
with (23) gives (24), as required.

Now suppose that F is any CM subfield of K containing k. Then p, F
and S satisfy the standard hypotheses. We write GF for Gal(F/k) and NK/F



166 D. Solomon

for the norm map Kp → Fp. (If we identify Kp with
∏

P|pKP and Fp with∏
p|p Fp, then NK/F sends (xP)P to (yp)p, where yp =

∏
P|pNKP/Fp

xP.) We

shall also write NK/F for the Zp-linear map
∧d

ZpG U
1(Kp)→

∧d
ZpGF U

1(Fp)
sending u1 ∧ · · · ∧ ud to NK/Fu1 ∧ · · · ∧ NK/Fud. One checks easily that
πK/F ◦ R

(j)
K/k,p = R

(j)
F/k,p ◦ NK/F and also that πK/F ◦ ΘK/k,S = ΘF/k,S

(as meromorphic functions C → CGF ) so that πK/F (a−K/k,S) = a−F/k,S . We
deduce easily

Proposition 5.5. If K ⊃ F ⊃ k are as above then πK/F ◦ sK/k,S =
sF/k,S ◦ NK/F . In particular, if NK/F :

∧d
ZpG U

1(Kp)− →
∧d

ZpGF U
1(Fp)−

is surjective then πK/F (SK/k,S) = SF/k,S, so the conjecture IC(K/k, S, p)
implies IC(F/k, S, p).

Remark 5.6. The surjectivity condition i s certainly satisfied whenever
NK/F (U1(Kp)) = U1(Fp), which in turn holds iff K/F is at most tamely
ramified at each prime in Sp(F ) (by local class field theory). Of course, it
actually suffices that NK/F (U1(Kp)−) = U1(Fp)−, which can be shown to
be equivalent to the following statement: K/F+ is at most tamely ramified
at each prime in Sp(F+) which splits in F . Also, it is not hard to see that
νK/F ◦ sF/k,S = [K : F ]1−dsK/k,S ◦ iK/F where iK/F is the natural map∧d

ZpGF U
1(Fp)− →

∧d
ZpG U

1(Kp)−, but for present purposes this is only
helpful when p - [K : F ] or d = 1.

Let ḠF = Gal(F+/k). The norm NK+/F+ maps US(K+) into US(F+).
The symbol “NK+/F+” will denote both the map 1⊗NK+/F+ : QUS(K+)→
QUS(F+) and the Q-linear map

∧d
QḠ QUS(K+)→

∧d
QḠF QUS(F+) sending

x1 ∧ · · · ∧ xd to NK+/F+x1 ∧ · · · ∧NK+/F+xd.

Proposition 5.7. Suppose K ⊃ F ⊃ k as above and RSC(K+/k, S; Q)
holds with solution ηK+/k,S. Then RSC(F+/k, S; Q) holds with solution
ηF+/k,S = NK+/F+ηK+/k,S.

Proof. πK+/F+(NDq(K+/k)) is a Z-multiple of NDq(F+/k) for all q∈S \S∞.
From this it follows easily that the form (iii) of the eigenspace condition on
ηK+/k,S (with respect to (S, d, Ḡ)) implies the same onNK+/F+ηK+/k,S (with
respect to (S, d, ḠF )). Similarly, since πK+/F+ ◦ ΘK+/k,S = ΘF+/k,S and
πK+/F+ ◦RK+/k = RF+/k ◦NK+/F+ , if we apply πK+/F+ to condition (15)
for ηK+/k,S then we get the equivalent condition on NK+/F+ηK+/k,S .

Before attacking the Congruence Conjecture in this context, we need two
lemmas.

Lemma 5.8. If d = 1 then NK+/F+(Λ0,S(K+/k)) ⊂ Λ0,S(F+/k). If
d > 1, then NK+/F+(Λ0,S(K+/k)) is contained in e−dΛ0,S(F+/k) where
e = exp((US(K+)/US(F+))tor) = 1 or 2.
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Proof. The first statement follows from that of Proposition 2.5. Next, by
sending [ε] to the map g 7→ g(ε)/ε, we see that (US(K+)/US(F+))tor injects
into

Hom(Gal(K+/F+), µ(K+)) = Hom(Gal(K+/F+), {±1})
so e = 1 or 2. Let (US(K+)/US(F+))tor = V/US(F+) where US(K+) ⊃
V ⊃ US(F+). Since US(K+)/V is torsion-free, US(K+) splits over Z as
V ⊕ V ′. The sum US(F+) + V ′ is also direct and contains US(K+)e. There-
fore, any f1, . . . , fd lying in HomZ(US(F+),Z) (considered as a subset of
HomQ(QUS(F+),Q)) extend to f̂1, . . . , f̂d in HomZ(US(F+)+V ′,Z) consid-
ered as a subset of HomQ(QUS(K+),Q) and ef̂i ∈ HomZ(US(K+),Z) for
all i. It is easy to see from the definitions that

(29) πK+/F+(∆f̂1,...,f̂d
(η)) = ∆f1,...,fd(NK+/F+η)

for all η ∈
∧d

QḠ QUS(K+).

Hence, if η ∈ Λ0,S(K+/k) then

∆f1,...,fd(e
dNK+/F+η) = πK+/F+(∆ef̂1,...,ef̂d

(η))

lies in ZḠF . Letting the fi vary shows thatNK+/F+η lies in e−dΛ0,S(F+/k).

The proof shows that e = 1 if, for instance, |Gal(K+/F+)| = [K : F ] is
odd. Suppose now that µpn+1 ⊂ F for some n ≥ 0 and that P ∈ Sp(K) lies
above p ∈ Sp(F ), so we may regard Fp as a subfield of KP. Basic properties
of the Hilbert symbol show that (a, b)KP,pn+1 = (a,NKP/Fp

b)Fp,pn+1 for all
a ∈ F×p and b ∈ K×P . Regarding F as a subset of Kp, we easily see that

(30) [α, β]K,n = [α,NK/Fβ]F,n for all α ∈ F× and β ∈ K×p .

Lemma 5.9. Let η ∈ Z(p)Λ0,S(K+/k) and θ ∈
∧d

ZpG U
1(Kp). Then

NK+/F+η lies in Z(p)Λ0,S(F+/k) and

πK/F (HK/k,n(η, θ)) = HF/k,n(NK+/F+η,NK/F θ).

Proof. By Z(p)-linearity in η and the fact that p 6= 2, we may assume η ∈
eΛ0,S(K+/k) with e as in Lemma 5.8. The latter then shows thatNK+/F+(η)
lies in Λ0,S(F+/k) ⊂ Z(p)Λ0,S(F+/k). Similarly, we may assume that θ =
u1 ∧ · · · ∧ ud with ui ∈ U1(Kp)− for all i. We let fi be the map [ · , ui]K,n ∈
HomZ(US(K+),Z/pn+1Z) and choose a lift f̃i ∈ HomZ(US(K+),Z) for
each i. If g̃i denotes the restriction of f̃i to US(F+) then (30) says that g̃i
lifts the map gi := [ · , NK/Fui]F,n ∈ HomZ(US(F+),Z/pn+1Z). Just as for
(29) we find πK+/F+(∆f̃1,...,f̃d

(η)) = ∆g̃1,...,g̃d(NK+/F+η), and since both
sides lie in ZGF , we can reduce modulo pn+1 to get πK+/F+(∆̃f1,...,fd(η))
= ∆̃g1,...,gd(NK+/F+η). We conclude by applying 2dκ̄∗F,n to both sides and
using κ̄∗F,n ◦ πK+/F+ = πK/F ◦ κ̄∗K,n.
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Proposition 5.10. Suppose K ⊃ F ⊃ k as above and that NK/F :∧d
ZpG U

1(Kp)− →
∧d

ZpG U
1(Fp)− is surjective. If F ⊃ µpn+1 for some n ≥ 0

then CC(K/k, S, p, n) implies CC(F/k, S, p, n).

Proof. We assume that CC(K/k, S, p, n) holds, so also IC(F/k, S, p)
holds and RSC(F+/k, S; Z(p)) holds with solution ηK+/k,S , say. Proposi-
tion 5.5 implies IC(F/k, S, p). Moreover, Proposition 5.7 and Lemma 5.9
imply RSC(F+/k, S; Z(p)) and that for any θ ∈

∧d
ZpG U

1(Kp)− we have

κn(τ1 . . . τd)HF/k,n(ηF+/k,S , NK/F θ)

= κn(τ1 . . . τd)HF/k,n(NK+/F+ηK+/k,S , NK/F θ)

= πK/F (κn(τ1 . . . τd)HK/k,n(ηK+/k,S , θ))

= πK/F (sK/k,S(θ)) = sF/k,S(NK/F θ).

The result now follows from the surjectivity condition.

Finally, if n ≥ n′ ≥ 0 then HK,n(η, θ) ≡ HK,n′(η, θ) (mod pn
′+1) for all

η ∈ Z(p)Λ0,S(K+/k) and θ ∈
∧d

ZpG U
1(Kp)−. (The proof is an exercise using

the definitions of the Hilbert symbol, [·, ·]K,n, ∆̃, Hk,n, κn etc. and the fact

that ζp
n−n′

n = ζn′ !) One deduces easily

Proposition 5.11. If K ⊃ µpn+1 for some n ≥ 0 then CC(K/k, S, p, n)
implies CC(K/k, S, p, n′) for all n′ with n ≥ n′ ≥ 0.

6. The case p - |G|. Let XQp denote the set of irreducible Qp-valued
characters of G which is in natural bijection with Gal(Q̄p/Qp)-conjugacy
classes of absolutely irreducible characters φ ∈ Hom(G, Q̄×p ). (Precisely, if Φ
lies in XQp then its idempotent eΦ ∈ QpG splits in Q̄pG as the sum of the
idempotents eφ where φ runs once through the conjugacy class corresponding
to Φ.) We shall say that the characters φ in this conjugacy class belong to Φ
and we shall call Φ odd if one—hence any—such φ is odd (i.e. φ(c) = −1).
Henceforth we set a := ZpG and aΦ := eΦZpG. Any φ belonging to Φ extends
Qp-linearly to a homomorphism QpG→ Fφ := Qp(φ), which in turn restricts
to isomorphisms from eΦQpG to Fφ and from aΦ to Oφ := Zp[φ], the ring of
valuation integers of Fφ. In particular, aΦ is a complete d.v.r., hence a p.i.d.

For the rest of this section we suppose that the prime p does not di-
vide |G|. This means that the idempotent eΦ lies in ZpG for each Φ ∈ XQp so
that a is a product

∏
Φ∈XQp

aΦ. Any a-module M splits as a corresponding di-
rect sum

⊕
Φ∈XQp

MΦ, whereMΦ denotes the aΦ-module eΦM , andM 7→MΦ

is an exact functor. Since any φ belonging to Φ has order prime to p, a uni-
formiser of Oφ—hence of aΦ—is given by p. The aΦ-order ideal [N ]aΦ of
any finite (= finite length) aΦ-module N is therefore plaΦ where l is the
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length of any aΦ-composition series for N . We shall assume the usual prop-
erties of the order ideal, such as multiplicativity in exact sequences. Each
p-adic-valued character φ ∈ Hom(G, Q̄×p ) corresponds to a unique complex
character χ ∈ Ĝ such that φ = j ◦χ where j is the fixed embedding Q̄→ Q̄p.
We write χ̂ and φ̂ = j ◦ χ̂ respectively for the associated complex and p-adic
primitive ray-class characters, fφ for fχ and Kφ for the field Kker(φ) = Kker(χ)

cut out by φ, so that χ and φ factor through Gφ := Gal(Kφ/k). Work of
Siegel [Si] and Klingen (see also Shintani [Sh, Cor. to Thm. 1]) implies
that ΘKφ/k,S∞(0) lies in QGφ so that L(0, χ̂−1) = χ(ΘKφ/k,S0(Kφ/k)(0)) lies
in Q(χ). Thus j(L(0, χ̂−1)) = φ(ΘKφ/k,S0(Kφ/k)(0)) lies in Fφ and is inde-
pendent of j so, by a slight abuse of notation, we write it simply as L(0, φ̂−1).

Theorem 6.1. If p - |G| then, for any odd Φ∈XQp and φ∈Hom(G, Q̄×p )
belonging to Φ, we have

(31) φ(SK/k,S) = φ([(U1(Kp)tor)Φ]aΦ)
∏

q∈S\S∞
q - pfφ

(1−Nq−1φ̂([q]))L(0, φ̂−1)

(an equality of fractional ideals of Fφ) where L(0, φ̂−1) is as defined above.

Equation (31) for each Φ clearly determines SK/k,S . Before giving the
proof, we reformulate it and deduce some consequences. Firstly, U1(Kp)tor

is nothing but µp∞(Kp) =
∏

P|p µp∞(KP). Next, for given φ as above we
define a ZpGφ-submodule of QpGφ by

Jφ := annZpGφ(µp∞(Kφ))ΘKφ/k,S0(Kφ/k)(0).

Since p - [K : Kφ], we have

φ(νK/Kφ(Jφ)) = φ(anna(µp∞(Kφ))νK/Kφ(ΘKφ/k,S0(Kφ/k)(0)))

= φ(anna(µp∞(Kφ)))[K : Kφ]L(0, φ̂−1)

= φ(annaΦ(µp∞(Kφ)Φ))L(0, φ̂−1)

= φ(annaΦ(µp∞(K)Φ))L(0, φ̂−1)

= φ([µp∞(K)Φ]aΦ)L(0, φ̂−1)

(the last equation because µp∞(Kφ)Φ is cyclic over Z, so over aΦ). Thus we
may reformulate (31) as

φ(SK/k,S) = φ([(µp∞(Kp)/µp∞(K))Φ]aΦ)(32)

×
∏

q∈S\S∞
q - pfφ

(1−Nq−1φ̂([q]))φ(νK/Kφ(Jφ)).

But Jφ is spanned over Zp by annZGφ(µ(Kφ))ΘKφ/k,S0(Kφ/k)(0), which lies
in ZGφ by the well-known result of Deligne–Ribet and (independently)
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P. Cassou-Noguès (see Théorème 6.1 of [Ta, p. 107]). Hence Jφ ⊂ ZpGφ
and so (32) implies that φ(SK/k,S) ⊂ Oφ for all odd φ ∈ Hom(G, Q̄×p ).
Consequently,

Corollary 6.2. If p - |G| then IC(K/k, S, p) holds.

Remark 6.3. We explain the relation between Jones’ formula (26) and
our Theorem 6.1, recast as equation (32) for all odd φ: The ray-class group
Clm(K) appearing in (26) fits into an exact sequence of ZG-modules:

0→ O×K →
∏

q∈S1\S∞

∏
Q|q

(OK/Q)× → Clm(K)→ Cl(K)→ 0

(where the first non-zero term is simply the image of O×K in the second).
Now tensor this sequence with Zp and take minus parts. Using the fact that
(O×K ⊗ Zp)− = µp∞(K) and isomorphisms similar to (27) one finds with
a little work that (26) is equivalent to the following for each odd φ as in
Theorem 6.1:

φ(SK/k,S1) = φ([(µp∞(Kp)/µp∞(K))Φ]aΦ)

×
∏

q∈S1\S∞
q - pfφ

(1−Nq−1φ̂([q]))φ([(Cl(K)⊗ Zp)Φ]aΦ).

Since p - [K : Kφ], one sees that this in turn is equivalent to our (32) (with
S = S1) if and only if φ(Jφ) = φ([(Cl(Kφ) ⊗ Zp)Φ]aΦ) (where Φ and φ are
now considered as odd characters of Gφ). But Theorem 3 of [Wi] establishes
the latter equality subject to a rather mild condition (“Sφ,p = 0”) on the
character φ.

Proof of Theorem 6.1. For each i = 1, . . . , d, we write pi for Pi ∩ k (the
prime ideal in Sp(k) which is defined by the embedding jτi : Q̄ → Q̄p).
The map {1, . . . , d} → Sp(k) sending i to pi is clearly surjective so for
any p ∈ Sp(k) we write I(p) for its fibre over p and choose an element
i(p) ∈ I(p). Thus Pi(p) ∩ k = pi(p) = p for all p ∈ Sp(k), and the extension
KPi(p)

/kp is Galois with group Dp(K/k) of order prime to p. It follows
(e.g. by a theorem of E. Noether, since KPi(p)

/kp is tame) that we may
choose an element bp ∈ OKPi(p)

freely generating OKPi(p)
over OkpDp(K/k).

Let b be the element of OKp :=
∏

P∈Sp(K)OKP
whose component in OKP

is bp whenever P = Pi(p) for some p ∈ Sp(k) and is 0 otherwise. Then b is a
free generator for OKp over OkpG, where Okp denotes the ring

∏
p∈Sp(k)Okp ,

which we identify with Ok ⊗Z Zp. So if c1, . . . , cd is a Z-basis of Ok then
c1⊗ 1, . . . , cd⊗ 1 is a Zp-basis of Okp and a1 := b(c1⊗ 1), . . . , ad := b(cd⊗ 1)
is a free basis for OKp over ZpG = a.

For any P ∈ Sp(K) let P̂ and eP denote respectively the maximal ideal
and the ramification index of KP/Qp. Clearly, eP depends only on p, the
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prime lying below P in K. The exponential series converges on pOKP
= P̂eP

for each P ∈ Sp(K) and defines a ZpDp(K/k)-isomorphism to U eP(KP). To
shorten notation, we write U1 for U1(Kp) and U e for

∏
P∈Sp(K) U

eP(KP)
⊂ U1. It follows from the above that the map Expp =

∏
P∈Sp(K) expp :

pOKp → U e is an a-isomorphism and hence that U e is free over a with basis
w1 := Expp(pa1), . . . , wd := Expp(pad). It is also of finite index in U1, and
since a is a product of the p.i.d.’s aΦ, it follows that U1/U1

tor must also be
a-free of rank d, so, in an additive notation, we get

(33) U1 =U1
tor⊕

d⊕
i=1

aui where ū1, . . . , ūd is any free a-basis of U1/U1
tor.

Now let φ and Φ be as in the statement of the theorem and let M ∈
Md(aΦ) be the matrix representing eΦw̄1, . . . , eΦw̄d in terms of the aΦ-basis
eΦū1, . . . , eΦūd of (U1/U1

tor)Φ. The determinant of M has two different in-
terpretations. On the one hand, if we write U e for the isomorphic image of
U e in U1/U1

tor then the general theory of p.i.d.’s and order ideals gives

det(M)aΦ = [(U1/U1
tor)Φ/(U e)Φ]aΦ = [U1

Φ/U
e
Φ]aΦ [(U1

tor)Φ]−1
aΦ
.

Now, for all p ∈ Sp(k), P ∈ Sp(K) above p and l ≥ 1, there is a well-
known ZpDp(K/k)-isomorphism U l(KP)/U l+1(KP)→ P̂l/P̂l+1 induced by
x 7→ x − 1. This gives an a-isomorphism after taking products of both
sides over the P above p. Applying eΦ and letting p and l vary, a simple
argument with exact sequences shows that U1

Φ/U
e
Φ has the same aΦ-order

ideal as MΦ/(pOKp)Φ where M denotes
∏

P∈Sp(K) P̂ ⊂ Kp. Therefore

det(M)aΦ = [MΦ/(pOKp)Φ]aΦ [(U1
tor)Φ]−1

aΦ
(34)

= [(OKp)Φ/(pOKp)Φ]aΦ [(OKp)Φ/MΦ]−1
aΦ

[(U1
tor)Φ]−1

aΦ

= pd[(OKp)Φ/MΦ]−1
aΦ

[(U1
tor)Φ]−1

aΦ

since OKp is free of rank d over a. On the other hand, Proposition 2.17,
equation (33) and the definition of sK/k,S give

φ(det(M))φ(SK/k,S) = φ(det(M))φ(eΦsK/k,S(u1 ∧ · · · ∧ ud)a)(35)
= φ(det(M)sK/k,S(eΦu1 ∧ · · · ∧ eΦud))Oφ
= φ(sK/k,S(eΦw1 ∧ · · · ∧ eΦwd))Oφ
= j(χ(a−,∗K/k,S))φ(R(j)

K/k,p(w1 ∧ · · · ∧ wd))Oφ

where φ = j ◦ χ. But tracing through the definitions we have

R
(j)
K/k,p(w1 ∧ · · · ∧ wd) = det

(∑
g∈G

logp(δ
(j)
i (g−1Expp(pat)))g

)
1≤i,t≤d
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and

logp(δ
(j)
i (g−1Expp(pat))) = logp(jτi ◦ ιPiExpp(g

−1pat))

= logp(jτi expp(ιPig
−1pat)) = δ

(j)
i (g−1pat)

= pδ
(j)
i (g−1b)jτi(ct),

so that

R
(j)
K/k,p(w1 ∧ · · · ∧ wd) = pd

d∏
i=1

(∑
g∈G

δ
(j)
i (g−1b)g

)
det (jτi(ct))1≤i,t≤d(36)

= ±pdj(
√
dk)

d∏
i=1

δ
(j),G
i (b).

Applying φ to (34) and (36) and combining them with (35) gives

φ(SK/k,S) = φ([(OKp)Φ/MΦ]aΦ)φ([(U1
tor)Φ]aΦ)(37)

× j(
√
dk χ(a−,∗K/k,S))

d∏
i=1

φ(δ(j),G
i (b)).

Now fix p ∈ Sp(k) and write Dp for Dp(K/k) and Tp for Tp(K/k). Con-
sidering

∏
P|p(OKP

/P̂) as an a-submodule of OKp/M, we have natural a-
isomorphisms∏

P|p

(OKP
/P̂) ∼= a⊗ZpDp (OKPi(p)

/P̂i(p))

∼= a⊗ZpDp (ZpDp ⊗ZpTp (Ok/p)) ∼= a⊗ZpTp (Ok/p)

(where the action on Ok/p is trivial and the second isomorphism is from the
normal basis theorem in the residue field extension of KPi(p)

/kp). It follows
easily that (

∏
P|p(OKP

/P̂))Φ is trivial unless Tp ⊂ ker(φ) (i.e. p - fφ), in
which case it has order ideal (Np)aΦ. Taking the product over all p ∈ Sp(k)
yields

(38) φ([(OKp)Φ/MΦ]aΦ) =
( ∏

p∈Sp(k)
p - fφ

Np
)
Oφ.

Furthermore, equations (8), (2) and (3) give√
dk χ(a−,∗K/k,S) =

∏
q∈S\S∞

q - fχ

(1−Nq−1χ̂([q]))
√
dk (i/π)dL(1, χ̂)(39)

=
∏

q∈S\S∞
q - fχ

(1−Nq−1χ̂([q]))(−1)dτ(χ)−1L(0, χ̂−1).
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The second equality follows from Hecke’s functional equation for the L-func-
tion. To be precise, we are using the version stated on p. 36 of [Fr], taking
s = 0 and taking Fröhlich’s complex character “θ̄” on Id(k)—the idèle group
of k—to be the one obtained by composing χ with the map Id(k) → G
coming from class-field theory. Thus τ(χ) denotes the Gauss sum associated
to this character whose definition we shall recall below.

Applying j to (39) and combining with (37) and (38) gives

φ(SK/k,S) = φ([(U1
tor)Φ]aΦ)

∏
p∈Sp(k)

p - fφ

Np
∏

q∈S\S∞
q - fφ

(1−Nq−1φ̂([q]))

×L(0, φ̂−1)j(τ(χ))−1
d∏
i=1

φ(δ(j),G
i (b))

= φ([(U1
tor)Φ]aΦ)

∏
q∈S\S∞

q - pfφ

(1−Nq−1φ̂([q]))

×L(0, φ̂−1)j(τ(χ))−1
d∏
i=1

φ(δ(j),G
i (b))

where we have used the facts that every prime ideal p in Sp(k) is contained
in S and that if, in addition, it does not divide fφ then Np(1−Np−1φ̂([q])) =
(Np− φ̂([q])) lies in O×φ .

The argument so far shows that j(τ(χ))−1
∏d
i=1 φ(δ(j),G

i (b)) lies in Fφ.
The theorem will follow if we can prove that it too lies in O×φ , i.e. that

j(τ(χ)) ∼
d∏
i=1

φ(δ(j),G
i (b))

where “a ∼ b” means that a, b ∈ Q̄×p have the same p-adic absolute value.
Recall that Fröhlich defines τ(χ) as the product

∏
q6∈S∞ τ(χq) where χq :

k×q → Q̄× is the q-component of the complex idèle character associated to χ
and τ(χq) is the “local Gauss sum” (which equals 1 unless q | fχ, so the prod-
uct is finite). For definitions and basic properties of the algebraic integers
τ(χq) see [Fr, pp. 34–35] or [Ma, II-§2]. In particular, [Fr, eq. (5.7), p. 34]
shows that j(τ(χ)) ∼ 1 unless q ∈ Sp(k). Hence j(τ(χ)) ∼

∏
p∈Sp(k) j(τ(χp))

and since {1, . . . , d} is the disjoint union
⋃

p∈Sp(k) I(p) it suffices to show
that

(40) j(τ(χp)) ∼
∏
i∈I(p)

φ(δ(j),G
i (b)) for any p in Sp(k).

But this is essentially (a special case of) Theorem 23 of [Fr]: Take F :=
jτi(p)(k), L := jτi(p)(K) as subfields of Q̄p, isomorphic via jτi(p) to kp and
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KPi(p)
respectively. The extension L/F is thus abelian with Galois group

Γ which we identify via jτi(p) with Dp. We take Fröhlich’s character “χ”
to be our χp : k×p → Q̄×, which factors through the local reciprocity map
k×p → Dp and so may also be regarded as χ restricted to Dp = Γ . Thus
Fröhlich’s “χj” may similarly be identified with our φ restricted to Γ . Since
Γ has order prime to p, L/F is tame so Theorem 23 of [Fr] applies to give
(with these identifications)

j(τ(χp)) ∼ NF/Qp(jτi(p)(bp)|φ)

where the R.H.S. is the norm resolvent (see below) associated to the free
generator jτi(p)(bp) of OL over OFΓ . Thus (40) and hence our theorem will
follow from

(41)
∏
i∈I(p)

φ(δ(j),G
i (b)) ∼ NF/Qp(jτi(p)(bp)|φ).

The proof of (41) is largely a matter of unravelling our definitions and
comparing with Fröhlich’s, so we only sketch it. For any i ∈ I(p) we can
choose gi ∈ G such that giPi = Pi(p) and then σi ∈ Gal(Q̄p/Qp) such that
σijτi(p)(x) = jτig

−1
i (x) for any x ∈ KPi(p)

. Then

φ(δ(j),G
i (b)) =

∑
g∈G

jτiιPi(g
−1b)φ(g) =

∑
h∈Dp

jτig
−1
i h−1(bp)φ(hgi)

= φ(gi)σi
(∑
γ∈Γ

γ−1(jτi(p)(bp))σ−1
i (φ(γ))

)
∼ σi(jτi(p)(bp) |σ−1

i ◦ φ)

where (jτi(p)(bp) |σ−1
i ◦ φ) denotes the resolvent defined for example in

[Fr, eq. (4.4), p. 29]. Equation (41) now follows on taking the product over
i ∈ I(p), using the definition of the norm resolvent in [Fr, eq. (1.4), p. 107]
and the fact (which the reader can easily check) that as i runs through I(p),
σi runs once through a set of left coset representatives for Gal(Q̄p/F ) in
Gal(Q̄p/Qp). (Fröhlich uses right cosets because of his exponential notation
for Galois action.) This completes the proof of Theorem 6.1.

Some of the facts used in the above proof will also be useful in the

Proof of Proposition 4.8. Since p - |G|, we can use (33) to show that any
θ ∈

∧d
ZpG U

1 may be expressed as the sum of xu1 ∧ · · · ∧ud (for some x ∈ a)
and finitely many terms of form z∧v2∧· · ·∧vd with z ∈ U1

tor and vi ∈ U1 for
i = 2, . . . , d. Since we are assuming that θ is Zp-torsion, so also is its image
x(ū1 ∧ · · · ∧ ūd) in

∧d
ZpG(U1/U1

tor) and since ū1 ∧ · · · ∧ ūd freely generates
the latter over a, it follows that x = 0. Thus, by linearity, we may assume
that θ = z ∧ v2 ∧ · · · ∧ vd. On the other hand, p - |G| also implies Z(p)Λ0,S =

Z(p)

∧d
ZḠ US(K+) by Proposition 2.5. If we write ẽ for |Ḡ|eS,d,Ḡ ∈ ZḠ then
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it follows from the eigenspace condition on η that it equals |G|−d(2ẽ)dη and
so may be written as a Z(p)-linear combination of terms of form (1⊗ ẽε1) ∧
· · · ∧ (1 ⊗ ẽεd) with εi ∈ US(K+)2 for all i. By Z(p)-linearity and (20), it
therefore suffices to show that [ẽε, z]K,n = 0 for any ε ∈ US(K+)2 and any
z ∈ U1

tor = µp∞(Kp), say z = (zP)P with zP ∈ µp∞(KP) for each P ∈ Sp(K).
By the definitions of [·, ·]K,n, [·, ·]P,n and (·, ·)KP,pn+1 this reduces further to
the statement that σιP(ẽε),KP

(ζP) = ζP for each P, where ζP := z
1/pn+1

P

is a p-power root of unity in (KP)ab. But ζP actually lies in Qab
p , so local

class field theory tells us that σιP(ẽε),KP
(ζP) = σaP,Qp(ζP) where aP :=

NKP/QpιP(ẽε) = Nkp/QpιP(NDp(K/k)ẽε) and p ∈ Sp(k) lies below P. But
the image of NDp(K/k) in ZḠ is NDp(K+/k) or 2NDp(K+/k). If |S| > d + 1
then, since p lies in S, formula (13) shows that NDp(K+/k)ẽ = 0 in ZḠ, so
aP = 1 for all P and the result follows. Finally, if |S| = d+ 1 then we must
have S = S∞(k)∪Sp(k) = S∞(k)∪{p} and (13) now implies NDp(K+/k)ẽ =
|Dp(K+/k)|NḠ. Hence aP is a power of Nkp/QpιP(NK+/kε) which equals
ιP(Nk/QNK+/kε) = NK+/Qε since Sp(k) = {p}. But ε ∈ US(K+)2 implies
that NK+/Qε, hence also aP, is a power of p and the result follows from
the well-known fact that σp,Qp(ζP) = ζP. (Indeed, p = NQp(ζP)/Qp(1 − ζP)
implies that σp,Qp restricts to the identity on Qp(ζP).)

7. The case k = Q. The following lemmas will be used in the proof of
Theorem 4.3. Let p be an odd prime and f a positive integer. We write f as
f ′pm+1 for some m ≥ −1 and f ′ prime to p. We shall abbreviate Q(ξf ) to
Kf , Gal(Q(ξf )/Q) to Gf and Gal(Q(ξf )+/Q) to Ḡf . For any ā ∈ (Z/fZ)×

we write σa for the element of Gf sending ξf to ξaf .

Lemma 7.1. Let S = {∞} ∪ Sf (Q), which contains S0(Kf/Q). Then,
with the above notations,

(i) Θ
(1)

K+
f /Q,S

(0) = −1
2

∑
ḡ∈Ḡf

log |ḡ((1− ξf )(1− ξ−1
f ))|ḡ−1,

(ii) a−Kf/Q,S = e−.
1
f

∑
g∈Gf

g(ξf/(1− ξf ))g−1.

Proof. For part (i), see e.g. [St, p. 203]. A rather indirect proof of the
equation in (ii) uses [Sh, Prop. 1] to calculate ΦKf/Q(0) as outlined in [So5,
Example 3.1] and returns to s = 1 with (9). In principle, one can also
work “χ-by-χ”, calculating χ(L.H.S.) in (ii) from the usual formula for
L(1, φ) when φ is an odd primitive Dirichlet character. (See e.g. [F-T, The-
orem 67(b)].) However, the imprimitivity of our χ and presence of a Gauss
sum in the formula make the relation to χ(R.H.S.) surprisingly difficult. We
therefore sketch a direct and very elementary proof of (ii), similar in some re-
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spects to that of [F-T, Theorem 67]: Equation (2) shows that Θ−Kf/Q,S(1) =∑f−1
a=1, (a,f)=1 taσ

−1
a where ta = 1

2 lims→1(ζKf/Q,S(s, σa) − ζKf/Q,S(s, σ−a))
and ζKf/Q,S(s, σa) =

∑
n≥1, n≡a (f) n

−s for Re(s) > 1. For any 1 ≤ c ≤ f − 1
the function Z(s, c) :=

∑
n≥1 ξ

cn
f n
−s converges (conditionally) to a continu-

ous function of s ∈ (0,∞]. For each 1 ≤ a ≤ f − 1 with (a, f) = 1 and any
s ∈ (1,∞] we find easily that

(42) ζKf/Q,S(s, σa)− ζKf/Q,S(s, σ−a)

=
1
f

f−1∑
b=1

(ξ−abf − ξabf )Z(s, b) =
1

2f

f−1∑
b=1

(ξ−abf − ξabf )(Z(s, b)− Z(s, f − b)).

But if log denotes the principal branch of logarithm, then Abel’s lemma and
some Euclidean geometry show that Z(1, c) = − log(1− ξcf ) = − log |1− ξcf |
+ iπ(1/2 − c/f). So, letting s → 1+ in (42), substituting for Z(1, b),
Z(1, f − b) and using the identity

f−1∑
b=1

bξabf = − f

1− ξaf
for (a, f) = 1,

we find after rearranging that

ta = − iπ
2f

(
ξaf

1− ξaf
−

ξ−af

1− ξ−af

)
,

which implies (ii).

Let us write K̂f for the field Qp(µf ) ⊂ Q̄p. The proof of Theorem 4.3
depends crucially on the following cyclotomic explicit reciprocity law due
to Coleman. (The case f ′ = 1 was proved much earlier by Artin and Hasse
in [A-H].)

Lemma 7.2. Let ξ̂f be any primitive f th root of unity in K̂f and let
v ∈ U1(K̂f ). Then

b(ξ̂f , v) :=
1
f

TrK̂f/Qp((ξ̂f/(1− ξ̂f )) logp(v))

lies in Zp. Furthermore,

(1− ξ̂f , v)K̂f ,pm+1 = (ξ̂f
′

f )−b(ξ̂f ,v)

(the R.H.S. makes sense because ξ̂f
′

f is a primitive pm+1th root of unity).

Proof. This follows from Corollary 15 of [Col]. We first write ξ̂f uniquely
as ξ̂f = ζ̂pm+1 ζ̂f ′ where ζ̂pm+1 and ζ̂f ′ are generators respectively of µpm+1

and µf ′ in K̂f . We also write H for K̂f ′ , an unramified extension of Qp,
and OH for its ring of integers. Now 1 − ξ̂f = h(um) where h(T ) denotes
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the linear polynomial 1 − ζ̂f ′(1 − T ) ∈ OH [T ] and um := 1 − ζ̂pm+1 . The
Frobenius element ϕ of Gal(H/Qp) may be extended to an automorphism
of OH [T ] (resp. of H(µp∞) ⊂ Q̄p) by acting trivially on T (resp. on µp∞).
Suppose l ≥ 1 and l ≥ i ≥ 0. Since ϕ(ζ̂f ′) = ζ̂pf ′ , one verifies easily that

ϕl−ih(1− (1− T )p
l−i

) =
∏

ζ̂∈µ
pl−i

(1− ζ̂f ′ ζ̂(1− T )).

Substituting T = ul = (1− ζ̂pl+1) for any generator ζ̂pl+1 of µpl+1 , it is easy to
see that the R.H.S. becomes the norm from H(µpl+1) to H(µpl−i+1) of h(ul).
Thus h(T ) lies in the subgroup of OH((T ))× denoted M(l) by Coleman,
and this for any l ≥ 1. Indeed, this follows from the equation at the foot of
p. 376 of [Col] after correcting the misprint “φn−i” to read “φi−n” (which
is necessary for consistency with Coleman’s equation (1) on p. 377). Now
we can apply Coleman’s Corollary 15, p. 396, after first correcting another
obvious misprint: the meaningless “λ(α)” in the main equation should be
replaced by λ(1− α) (= − logp(α)). If we take Coleman’s “n” to be our m,
his “u” to be our um (so that his “Hn” is our K̂f ), his “α” to be our
v and his “g” to be our h (so that δh(T ) = (1 − T )h(T )−1dh(T )/dT =
ζ̂f ′(1 − T )/(1 − ζ̂f ′(1 − T ))) then the R.H.S. of the main equation in his
Corollary 15 equals−f ′b(ξ̂f , v). The corollary implies that this lies in Zp, and
(taking into account Coleman’s definitions of “Indum” and of “(x, y)m”, the
latter agreeing with our (y, x)K̂f ,pm+1) it also implies that (1−ξ̂f , v)K̂f ,pm+1 =
(1− um)−f

′b(ξ̂f ,v), from which our lemma follows immediately.

Proof of Theorem 4.3. Let K be an absolutely abelian CM field and
suppose that f = f ′pm+1 is the conductor of K, i.e. the smallest positive
integer such that K ⊂ Kf . Then Sram(K/Q) = Sram(Kf/Q) = Sf (Q). Since
p is odd, µpn+1 ⊂ K implies (e.g. by ramification) that n ≤ m. Therefore, if
m = −1 then the Congruence Conjecture does not apply and IC(K/Q, S, p)
follows from Theorem 4.1. So we may assume m ≥ 0. By Propositions 5.1
and 5.4 we may further assume that S = S1(K/Q) = {∞} ∪ Sf (Q) (which
is also equal to S0(K/Q) and to S1 = S0(Kf/Q)). If m = 0 then Kf/Q is
tamely ramified at p. If m ≥ 1 then (since p 6= 2) the ramification group
Tp(Kf/Q) = Gal(Kf/Q(ξf ′)) has a unique minimal subgroup of order p,
namely Gal(Kf/Q(ξf/p)). This cannot be contained in Gal(Kf/K) by min-
imality of the conductor f . Thus, in any case, Kf/K is at most tamely
ramified above p. So by Remark 5.6 it suffices to prove CC(Kf/Q, S1, p,m)
and apply Propositions 5.11 and 5.10.

We start with RSC(K+
f /Q, S

1; Z(p)) (see also [Ta, p. 79]). The algebraic
integer (1− ξf )(1− ξ−1

f ) = (1− ξf )1+c lies in K+
f and the norm relations for

cyclotomic numbers (see for example [So1, Lemma 2.1]) show that, for any
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q ∈ Sf (Q), the number NDq(Kf/Q)(1− ξf ) equals p or 1 according as f ′ = 1
or f ′ 6= 1. It follows firstly that (1 − ξf )1+c lies in US1(K+

f ) (and even in
US∞(K+

f ) for f ′ 6= 1) and secondly, using Proposition 2.6, that ηf := −1
2 ⊗

(1 − ξf )1+c ∈ 1
2

∧1
ZḠf US1(K+

f ) = 1
2US1(K+

f ) satisfies the eigenspace condi-
tion with respect to (S1, 1, Ḡf ). Moreover, RK+

f /Q
= λK+

f /Q,1
, so taking τ1 to

be the identity, Lemma 7.1(i) shows that ηf is the unique solution ηK+
f /Q,S1

of RSC(K+
f /Q, S

1; Z). For any u ∈
∧1

ZpGf U
1(Kf,p)− = U1(Kf,p)−, it fol-

lows from (20) and (18) that

HKf/Q,m(ηf , u) = −2̄−1
∑
g∈Gf

[(1− ξf )(1+c), gu]Kf ,mg
−1(43)

= −2̄−1
∑
g∈Gf

[1− ξf , gu(1−c)]Kf ,mg
−1

= −
∑
g∈Gf

[1− ξf , gu]Kf ,mg
−1

=
∑
g∈Gf

( ∑
P∈Sp(Kf )

−[1− ξf , ιP(gu)]P,m
)
g−1

(where 1− ξf is identified with its natural images (1− ξf )⊗1 and ιP(1− ξf )
in Kp and KP respectively). Next we need to calculate the map sKf/Q,S1 .

Fix a choice of j : Q̄→ Q̄p. It follows easily from the definitions of R(j)
Kf/Q,p

and sKf/Q,S1 and from Lemma 7.1(ii) that for any u ∈ U1(Kf,p)−,

sKf/Q,S1(u) =
∑
g∈Gf

ag(u)g−1 where(44)

ag(u) =
1
f

∑
h∈Gf

jh(ξf/(1− ξf )) logp(δ
(j)
1 (hgu)).

Let D denote Dp(Kf/Q), identified with Gal(Kf,P/Qp) for every P ∈
Sp(Kf ). Recall that P1 ∈ Sp(Kf ) is the ideal defined by the embedding
j = jτ1, which therefore gives rise to an isomorphism (also denoted j)
from Kf,P1 to j(Kf ) = K̂f . This in turn induces an isomorphism from
D to D̂ := Gal(K̂f/Qp) sending d ∈ D to d̂ say, where jd = d̂j. For each
P ∈ Sp(Kf ) we choose hP ∈ Gf such that hP(P) = P1 so that hP extends
to an isomorphism from Kf,P to Kf,P1 . Thus G =

⋃
P hPD and for any d

in D, jhPd = d̂jhP defines an isomorphism from Kf,P to K̂f . It follows that
if u ∈ U1(Kf,p)− and g ∈ G, then logp(δ

(j)
1 (hPdgu)) = logp(jιP1(hPdgu)) =
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logp(jhPdιP(gu)) = d̂ logp(jhPιP(gu)). Consequently, we find

ag(u) =
∑

P∈Sp(Kf )

1
f

∑
d∈D

jhPd(ξf/(1− ξf )) logp(δ
(j)
1 (hPdgu))(45)

=
∑

P∈Sp(Kf )

1
f

TrK̂f/Qp(jhP(ξf/(1− ξf )) logp(jhPιP(gu)))

=
∑

P∈Sp(Kf )

b(ξ̂f,P, vg,P)

where, for each P ∈ Sp(Kf ), we have set ξ̂f,P := jhP(ξf ) and vg,P :=
jhPιP(gu) and where b(ξ̂f,P, vg,P) is as defined in Lemma 7.2. The first state-
ment of this lemma therefore shows that ag(u) ∈ Zp for all u ∈ U1(Kf,p)−

and g ∈ G, i.e. IC(Kf/Q, S1, p) holds. Also, the definition of the pairing
[·, ·]P,m+1 gives

ιP(ξf
′

f )[1−ξf ,ιP(gu)]P,m+1 = (1− ξf , ιP(gu))KP,pm+1 .

Applying jhP to both sides and using the second statement of Lemma 7.2,
we get

(ξ̂f
′

f,P)[1−ξf ,ιP(gu)]P,m+1 = (1− ξ̂f,P, vg,P)K̂f ,pm+1 = (ξ̂f
′

f,P)−b(ξ̂f,P,vg,P),

which implies that b(ξ̂f,P, vg,P) ≡ −[1− ξf , ιP(gu)]P,m+1 (mod pm+1). Sum-
ming this congruence over all P ∈ Sp(Kf ) and combining with (45), (44)
and (43), we obtain sKf/Q,S1(u) ≡ HKf/Q,m(ηf , u) (mod pm+1) for any
u ∈ U1(Kf,p)−, giving CC(Kf/Q, S1, p,m).

8. The case of K absolutely abelian. If L/M is any Galois exten-
sion of number fields and φ any complex character of Gal(L/M), then the
T -truncated Artin L-function LL/M,T (s, φ) is defined for any finite set T of
places of M containing S∞(M) but not necessarily Sram(L/M). If Gal(L/M)
is abelian and φ is irreducible (i.e. φ ∈ ̂Gal(L/M)) then, as noted in Re-
mark 2.1, the definition agrees with the third member in (3). In particular,
there is no conflict with previous notation in the case T ⊃ Sram(L/M) and
we always have

LL/M,T (s, φ) =
∏

q∈T\S∞(M)
q - fφ

(1−Nq−sφ̂([q]))L(s, φ̂)(46)

=
∏

q6∈T∪Sram(Lφ/M)

(1−Nq−sφ̂(q))−1
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where φ̂ denotes the associated primitive ray-class character modulo fφ,
Lφ = Lker(φ) and the infinite product converges only for Re(s) > 1.

Lemma 8.1. Suppose L/M and T are as above, with Gal(L/M) abelian,
and suppose l is any intermediate field, L ⊃ l ⊃ M . Then for any χ ∈

̂Gal(L/l), we have an identity of meromorphic functions on C:

LL/l,T (l)(s, χ) =
∏

φ∈ ̂Gal(L/M)
φ|Gal(L/l)=χ

LL/M,T (s, φ).

Proof. This follows from the usual induction and “additivity” proper-
ties for Artin L-functions (see [Ta, p. 15]) and the fact (e.g. by Frobenius
reciprocity) that IndGal(L/M)

Gal(L/l) χ =
∑

φ∈ ̂Gal(L/M)
φ|Gal(L/l)=χ

φ.

Lemma 8.2. Let B be a finite abelian group, C any subgroup of B and
x any element of CB. We write x|CB for the endomorphism of CB, con-
sidered as a free CC-module, determined by multiplication by x. For any
χ ∈ Ĉ, we have

χ(detCC(x|CB)) =
∏
φ∈B̂
φ|C=χ

φ(x)

(all characters extended linearly to homomorphisms from the complex group-
rings to C).

Proof. Choose any CC-basis B = {y1, . . . , yn} for CB (where n =
|B : C|) and let T = (tij)i,j ∈ Mn(CC) be the matrix of x|CB with re-
spect to B. If eχ,C denotes the idempotent attached to χ in CC, then x|CB
acts on the submodule eχ,CCB, and its matrix with respect to the C-basis
{eχ,Cy1, . . . , eχ,Cyn} of the latter is clearly χ(T ) := (χ(tij))i,j ∈ Mn(C).
Hence χ(detCC(x|CB)) = χ(det(T )) = det(χ(T )) = detC(x|eχ,CCB). On
the other hand, eχ,CCB also has a C-basis consisting of the CB-idempotents
eφ,B for the characters φ ∈ B̂ such that φ|C = χ. (This follows easily from
the fact that eχ,C is the sum of the corresponding eφ,B’s.) The result follows,
since xeφ,B = φ(x)eφ,B.

For the rest of this section, we fix K/k, S and p satisfying the standard
hypotheses with K absolutely abelian. Thus G = Gal(K/k) is a subgroup
of the abelian group Γ := Gal(K/Q). We define a set of places SQ of Q by

SQ = {∞} ∪ {q prime such that Sq(k) ⊂ S}.
Thus p ∈ SQ and SQ(k) is the maximal Gal(k/Q)-stable subset of S. The
definition of Bad(S) in Subsection 4.5 gives

Sram(K/Q) = Bad(S)
.
∪ (Sram(K/Q) ∩ SQ)
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(disjoint union). Let us write A for the subgroup
∏
q∈Bad(S) Tq(K/Q) of Γ

(trivial if Bad(S) = ∅). If F is any subfield of K, it follows that

(47) F ⊂ KA ⇔ all primes q ∈ Bad(S) are unramified in F

⇔ Sram(F/Q) ⊂ SQ.

We denote by XQ(A) the set of irreducible Q-valued characters of A. Each
A ∈ XQ(A) corresponds to a Gal(Q̄/Q)-conjugacy class of characters α ∈ Â
which “belong” to A. We set ker(A) := ker(α) for one (hence any) such α
and KA := Kker(A) ⊃ KA. We define

SA = SQ ∪ Sram(KA/Q) ⊃ S1(KA/Q)

and write ν̃A for the “averaged corestriction” map |ker(A)|−1νK/KA , which
is a (non-unital) homomorphism from CGal(KA/Q) to CΓ . Finally, let eA
denote the idempotent of QA corresponding to A. With these notations, we
define a meromorphic function

xK/k,S : C→ CΓ , s 7→
∑

A∈XQ(A)

eAν̃A(ΘKA/Q,SA(s)).

Proposition 8.3. With the above hypotheses and notations,

(48) ΘK/k,SQ(k)(s) = detCG(xK/k,S(s)|CΓ )

(as CG-valued meromorphic functions of s ∈ C).

Proof. By meromorphic continuation, it suffices to prove χ(L.H.S.) =
χ(R.H.S.) in (48), for Re(s) > 1 and for all χ ∈ Ĝ. Equation (2) and
Lemma 8.1 give

χ(L.H.S. of (48)) = LK/k,SQ(k)(s, χ
−1) =

∏
φ∈Γ̂
φ|G=χ

LK/Q,SQ(s, φ−1),

and evaluating χ(R.H.S. of (48)) via Lemma 8.2, it suffices to show that
LK/Q,SQ(s, φ−1) = φ(xK/k,S(s)) for any φ ∈ Γ̂ . Suppose αφ := φ|A be-
longs to Aφ ∈ XQ(A), so that ker(αφ) = A ∩ ker(φ) and KAφ = KAKφ.
On the one hand, this means that φ factors through Gal(KAφ/Q) and
φ(eAφ ν̃Aφ(y)) = φ(y) for all y ∈ CGal(KAφ/Q), while φ(eA) = 0 for any
A 6= Aφ. On the other hand, the equality KAφ = KAKφ implies that
Sram(KAφ/Q) = Sram(KA/Q) ∪ Sram(Kφ/Q). Now, crucially for our argu-
ment, (47) implies that Sram(KA/Q) ⊂ SQ so SAφ = SQ ∪ Sram(Kφ/Q).
Putting this together, (2), (3) and (46) give, for Re(s) > 1,

φ(xK/k,S(s)) = φ(eAφ ν̃Aφ(Θ
K
Aφ/Q,SAφ

(s))) = L
K
Aφ/Q,SAφ

(s, φ−1)

=
∏

q 6∈SQ∪Sram(Kφ/Q)

(1− q−sφ̂−1(q)) = LK/Q,SQ(s, φ−1).
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Let us write X−Q (A) for the set {A ∈ XQ(A) : c 6∈ ker(A)} (= XQ(A) if
c 6∈ A) and x−K/k,S for the function e−xK/k,S : C→ CΓ−. If A ∈ XQ(A) lies
in X−Q (A) then KA is CM. Otherwise e−eA = 0. Therefore x−K/k,S(s) equals∑
A∈X−Q (A) eAν̃A(Θ−

KA/Q,SA
(s)) and is entire as a function of s. Now take

s = 1, multiply by i/π and apply the involution (·)∗ : CΓ → CΓ (which
fixes each eA) to get

(49)
(
i

π

)
x−K/k,S(1)∗ =

∑
A∈X−Q (A)

eAν̃A(a−,∗
KA/Q,SA

),

which lies in Q̄Γ by (10). On the other hand, multiplying ΘK/k,SQ(k)(s) by
(i/π)de− = ((i/π)e−)|Γ :G| in the previous proposition and letting s→ 1 im-
plies that a−K/k,SQ(k) is the CG-determinant of (i/π)x−K/k,S(1) acting on CΓ .
It follows easily from this that

(50) a−,∗K/k,SQ(k) = detQ̄G

((
i

π

)
x−K/k,S(1)∗|Q̄Γ

)
.

For each A ∈ X−Q (A) the data KA/Q, SA and p satisfy the standard hy-
potheses. In particular, we have a well-defined ZpGal(KA/Q)-linear map
sid
KA/Q,SA from U1(KAp )− to QpGal(KA/Q)− (where “id” denotes the iden-

tity element of Gal(Q̄/Q)). Both the norm map NK/KA : U1(Kp)→ U1(KAp )
and the averaged corestriction ν̃A : QpGal(KA/Q)→ QpΓ take minus parts
to minus parts. The automorphism τi ∈ Gal(Q̄/Q) restricts to an element
γi := τi|K of Γ for i = 1, . . . , d such that {γ−1

1 , . . . , γ−1
d } is a set of coset

representatives for G in Γ , hence also a basis for RΓ over RG, for any
commutative ring R. We can now state:

Theorem 8.4. With the above hypotheses and notations, suppose that
u1, . . . , ud are any elements of U1(Kp)−. Then

s
τ1,...,τd
K/k,SQ(k)(u1 ∧ · · · ∧ ud) = det (ci,l)1≤i,l≤d

where ci,l ∈ QpG
− is the coefficient of γ−1

i when the element∑
A∈X−Q (A)

eAν̃A(sid
KA/Q,SA(NK/KAul))

of QpΓ
− is expressed in the QpG-basis {γ−1

1 , . . . , γ−1
d } of QpΓ .

Proof. Choose an embedding j : Q̄ → Q̄p inducing a prime ideal P ∈
Sp(K), say, and write λp for the (1× 1) regulator R(j;id)

K/Q,p : U1(Kp)→ Q̄pΓ .
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If u ∈ U1(Kp) then, by definition,

λp(u) =
d∑
i=1

∑
g∈G

logp(j ◦ ιP(γig−1u))(gγ−1
i )

=
d∑
i=1

(∑
g∈G

logp(jτi ◦ ιPi(g
−1u))g

)
γ−1
i

where jτi induces Pi ∈ Sp(K). Now
∧d

Q̄pG Q̄pΓ is Q̄pG-free of rank one on
γ−1

1 ∧· · ·∧γ
−1
d and it follows easily from the last equation and the definition

of R(j;τ1,...,τd)
K/k,p that

(51) λp(u1) ∧ · · · ∧ λp(ud)

= R
(j;τ1,...,τd)
K/k,p (u1 ∧ · · · ∧ ud)γ−1

1 ∧ · · · ∧ γ−1
d in

∧d
Q̄pG Q̄pΓ .

On the other hand, R(j;id)

KA/Q,p ◦NK/KA = πK/KA ◦λp for each A ∈ X−Q (A) so

that sid
KA/Q,SA(NK/KAul) = j(a−,∗

KA/Q,SA
)πK/KA(λp(ul)) for each A and l. It

follows that
d∑
i=1

ci,lγ
−1
i =

( ∑
A∈X−Q (A)

eAν̃A(j(a−,∗
KA/Q,SA

))
)
λp(ul)

= j((i/π)x−K/k,S(1)∗)λp(ul)

by (49). Using (50), we deduce easily that

det (ci,l)1≤i,l≤d γ
−1
1 ∧ · · · ∧ γ−1

d

= (j((i/π)x−K/k,S(1)∗)λp(u1)) ∧ · · · ∧ (j((i/π)x−K/k,S(1)∗)λp(ul))

= j(a−,∗K/k,SQ(k))λp(u1) ∧ · · · ∧ λp(ul)

and combining this with (51), the result follows from the definition of
s
τ1,...,τd
K/k,SQ(k).

Proof of Theorem 4.4 under Hypothesis 4.5. By Proposition 5.1 it suffices
to prove IC(K/k, SQ(k), p), i.e. that sK/k,SQ(k)(u1∧· · ·∧ud) lies in ZpG for all
ui, . . . , ud ∈ U1(Kp)− and this will clearly follow from Theorem 8.4 provided
we can show

(52) eAν̃A(sKA/Q,SA(NK/KAul)) ∈ ZpΓ, ∀l, ∀A ∈ X−Q (A).

But Theorem 4.3(i) implies that sKA/Q,SA(NK/KAul) lies in ZpGal(KA/Q).
Furthermore, if q ∈ Bad(S) then |Tq(K/Q)| = eq(k/Q) and Hypothesis 4.5
implies that this is prime to p for all such q, hence that p - |A|. Consequently,
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p - [K : KA] for every A so that eA ∈ Z(p)A and ν̃A(sKA/Q,SA(NK/KAul))
∈ ZpΓ , establishing (52).

Turning to the Congruence Conjecture, we suppose from now on that
K contains µpn+1 for some n ≥ 0. Since Sram(Q(µpn+1)/Q) = {p} ⊂ SQ, it
follows from (47) that KA contains Q(µpn+1), so is CM and X−Q (A) = XQ(A).
We write Γ̄ for Gal(K+/Q).

K

2

QQQQQQQQQQQQQQQQ

Γ

G

Q(ξfA)

K+

QQQQQQQQQQQQQQ

Γ̄

Ḡ

KA

2

UUUUUUUUUUUUUUUUUUUUUU

rrrrrrrrrr

KA,+

UUUUUUUUUUUUUUUUUUUU KA

2sssssss

sssssssssssssssss

KA,+

k Q(µpn+1)

nnnnnnnnnnnnnn

Q

Now RSC(KA,+/Q, SA; Q) holds for eachA ∈ XQ(A). Indeed, let us write fA
for the conductor of KA so that pn+1 | fA and S1(KA/Q) = S1(Q(ξfA)/Q)
= {∞} ∪ SfA(Q). Then the determination of ηQ(ξfA )+/Q,S1(Q(ξfA )/Q) in the
proof of Theorem 4.3, together with Propositions 5.7 and 5.3, implies that
the solution ηKA,+/Q,SA of RSC(KA,+/Q, SA; Q) (with τ1 = id) is

ηA :=
( ∏
q∈SA\S1(KA/Q)

(1−σ−1
q,KA,+/Q)

)
NQ(ξfA )+/KA,+(ηQ(ξfA )+/Q,S1(Q(ξfA )/Q))

=
( ∏
q∈SA\S1(KA/Q)

(1−σ−1
q,KA,+/Q)

)
NQ(ξfA )+/KA,+

(
1
2
⊗ (1− ξfA)1+c

)
.

In fact, 1− ξfA lies in U{∞}(Q(ξfA)) unless fA is a power of a prime, neces-
sarily p, in which case it lies in U{∞,p}(Q(ξfA)). Thus for all A ∈ XQ(A), the

element ηA lies in 1
2U{∞,p}(K

A,+) ⊂ QU{∞,p}(KA,+). Let us write iA for the
natural injection QU{∞,p}(KA,+)→ QU{∞,p}(K+) and ĩA for |ker(A)|−1iA.
We define

αSQ(k) :=
∑

A∈XQ(A)

eAĩA(ηA),

ηSQ(k) := γ−1
1 αSQ(k) ∧ · · · ∧ γ−1

d αSQ(k),
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from which it is clear that αSQ(k) lies in |A|−2 1
2U{∞,p}(K

+) and ηSQ(k) in(
|A|−2 1

2

)d∧d
ZḠ U{∞,p}(K+).

Proposition 8.5. With the above hypotheses, RSC(K+/k, SQ(k); Q)
holds with solution ηK+/k,SQ(k) = ηSQ(k).

We defer the proof. The final ingredient in the proof of Theorem 4.6 is

Lemma 8.6. Suppose α is an element of U{∞,p}(K+) so that γ−1
1 α ∧

· · · ∧ γ−1
d α lies in the subset

∧d
ZḠUSQ(k)(K+) of

∧d
QḠQUSQ(k)(K+). Then,

for any u1, . . . , ud ∈ U1(Kp)−, we have

κn(τ1 . . . τd)HK/k,n(γ−1
1 α ∧ · · · ∧ γ−1

d α, u1 ∧ · · · ∧ ud) = det (di,l)1≤i,l≤d

where di,l ∈ (Z/pn+1Z)G− is the coefficient of γ−1
i when HK/Q,n(α, ul) ∈

(Z/pn+1Z)Γ− is expressed in the (Z/pn+1Z)G-basis {γ−1
1 , . . . , γ−1

d } of
(Z/pn+1Z)Γ .

Proof. If α = 1⊗ ε for some ε ∈ U{∞,p}(K+) then γ−1
i α = 1⊗γ−1

i ε with
γ−1
i ε ∈ U{∞,p}(K+) ⊂ US(K+) for all i. Equations (20) and (18) applied to
K/Q give

HK/Q,n(α, ul) =
d∑
i=1

(∑
g∈G

[ε, γigul]K,ng−1
)
γ−1
i

=
d∑
i=1

(
κn(τi)

∑
g∈G

[γ−1
i ε, gul]K,ng−1

)
γ−1
i

since γi = τi|K . Thus di,l = κn(τi)
∑

g∈G[γ−1
i ε, gul]K,ng−1. Now use (20) for

K/k.

Proof of Theorem 4.6. By Proposition 5.4 it suffices to establish
CC(K/k, SQ(k), p, n) under Hypothesis 4.5. But the latter has already been
shown to imply IC(K/k, SQ(k), p) and p - |A|. In particular, ηSQ(k) lies in

Z(p)

∧d
ZḠ U{∞,p}(K

+) ⊂ Z(p)Λ0,SQ(k)

and so is the solution of RSC(K+/k, SQ(k); Z(p)) by Proposition 8.5. It
remains to prove that the congruence (24) holds with ηK+/k,S = ηSQ(k)

and θ = u1 ∧ · · · ∧ ud with ui ∈ U1(Kp)− for all i. (Such θ generate∧d
ZpG U

1(Kp)−.) For each A ∈ XQ(A) we may write 2ηA as 1 ⊗ εA where
εA lies in U{∞,p}(KA,+). From (30) with F = KA and (20) (with d = 1!) it
follows easily that

HK/Q,n(iA(2ηA), ul) = νK/KA(HKA/Q,n(2ηA, NK/KAul)).
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Therefore, using the ZΓ -linearity of HK/Q,n(·, ·) in the first variable and the
fact that |A|eA ∈ ZΓ , we have, for each l,

HK/Q,n(2|A|2αSQ(k), ul) =
∑

A∈XQ(A)

(|A| |A : ker(A)|eA)HK/Q,n(iA(2ηA), ul)

=
∑

A∈XQ(A)

(|A| |A : ker(A)|eA)νK/KA(HKA/Q,n(2ηA, NK/KAul))

≡
∑

A∈XQ(A)

2(|A| |A : ker(A)|eA)νK/KA(sid
KA/Q,SA(NK/KAul))

≡
∑

A∈XQ(A)

2|A|2eAν̃A(sid
KA/Q,SA(NK/KAul)) ≡

d∑
i=1

2|A|2ci,lγ−1
i (mod pn+1)

where ci,l is precisely as defined in Theorem 8.4. Note that the first congru-
ence above comes from Theorem 4.3, which also shows that the last three
expressions lie in ZpΓ . It follows from Lemma 8.6 and the above that

(2|A|2)dκn(τ1 . . . τd)HK/k,n(ηSQ(k), u1 ∧ · · · ∧ ud)
= κn(τ1 . . . τd)HK/k,n(γ−1

1 (2|A|2αSQ(k))∧· · ·∧γ−1
d (2|A|2αSQ(k)), u1∧· · ·∧ud)

= det (2|A|2ci,l)1≤i,l≤d

in (Z/pn+1Z)G. As p - 2|A|, we may cancel the factor (2|A|2)d ∈ (Z/pn+1Z)×

on both sides above and combining with Theorem 8.4 we obtain the required
equation

s
τ1,...,τd
K/k,SQ(k)(u1 ∧ · · · ∧ ud) = det (ci,l)1≤i,l≤d

= κn(τ1 . . . τd)HK/k,n(ηSQ(k), u1 ∧ · · · ∧ ud).

Remark 8.7. Burns has proven Conjecture B′ of [Ru] whenever K is
absolutely abelian (see [Bu2, Theorem A]). It follows from Remark 2.8 that
ηSQ(k) = ηK+/k,SQ(k) must also lie in 1

2Λ0,SQ(k)(K+/k), although this is not
obvious from our expression for ηSQ(k) and Burns’ results do not appear to
provide an explicit expression. On the other hand, Cooper obtains essentially
our expression γ−1

1 αSQ(k) ∧ · · · ∧ γ−1
d αSQ(k) in [Coo]. (Indeed, we adapt his

methods in the proof of Proposition 8.5 below.) By manipulating it cleverly
and using the norm relations for cyclotomic numbers, he shows explicitly

that if A is cyclic and of odd order, then ηSQ(k) lies in 2−d
∧d

ZḠ U{∞,p}(K+).
(This follows from [Coo, Theorem 5.2.2].)

Proof of Proposition 8.5. The arguments are mostly familiar by now:
Applying e+ to (48) one deduces that ΘK+/k,SQ(k)(s) is the CḠ-determinant
of
∑
A eA|ker(A)|−1νK+/KA,+(ΘKA,+/Q,SA(s)) acting on CΓ̄ , where we are
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identifying A with Gal(K+/KA,+) by restriction. Now ΘKA,+/Q,SA(0) = 0

and Θ
(1)

KA,+/Q,SA
(0) has real coefficients for each A, so

(53) Θ
(r)
K+/k,SQ(k)

(0)

= detRḠ

(∑
A
eA|ker(A)|−1νK+/KA,+(Θ(1)

KA,+/Q,SA
(0))

∣∣∣RΓ̄)
= det (ei,l)1≤i,l≤d

say, where (ei,l)di,l=1 is the matrix of multiplication by
∑
A . . . on RΓ̄ with

respect to the RḠ-basis γ̄−1
l , i = 1, . . . , d (where γ̄l := γl|K+ = τl|K+). Fix

l and take τ1 = id. Using (15) for each extension KA,+/Q and the relation
νK+/KA,+ ◦ λKA,+/Q,1 = λK+/Q,1 ◦ iK+/KA,+ , we get∑
A
eA|ker(A)|−1νK+/KA,+(Θ(1)

KA,+/Q,SA
(0))γ̄−1

l

=
∑
A
eA|ker(A)|−1νK+/KA,+(λKA,+/Q,1(ηA))γ̄−1

l = λK+/Q,1(αSQ(k))γ̄
−1
l .

But for any element α = a⊗ ε of QUS(K+) (with a ∈ Q) we have

λK+/Q,1(α)γ̄−1
l = λK+/Q,1(γ̄−1

l α)

= a

d∑
i=1

(∑
ḡ∈Ḡ

log |γ̄iḡγ̄−1
l ε|ḡ−1

)
γ̄−1
i =

d∑
i=1

λK+/k,i(γ̄
−1
l α)γ̄−1

i

and combining with the previous equation, we find ei,l = λK+/k,i(γ̄
−1
l αSQ(k)).

Substituting this in (53), it follows that ηSQ(k) satisfies condition (15) for
K/k+ and SQ(k).

To show that ηSQ(k) satisfies the eigenspace condition with respect to
(SQ(k), d, Ḡ), one could adapt the argument of [Coo] (based on [Po, Propo-
sition 3.1.2]) using condition (iv) of Proposition 2.6. We sketch a more
“algebraic” argument based on the equivalent condition (iii): Suppose q ∈
SQ(k) \ S∞(k) lies above q ∈ SQ \ {∞}, write D for Dq(K/Q) and D for
Dq(K/k) = D ∩G. Let ρ1, . . . , ρt be a set of representatives for D mod D,
hence for DG mod G, and let σ1, . . . , σm be a set of representatives for Γ
mod DG. Then d = mt and both {σaρb}a,b and {γ−1

i }i are sets of represen-
tatives for Γ mod G. Writing also η and α for ηSQ(k) and αSQ(k) respectively,
it follows that η = ±g

∧m
a=1

∧t
b=1 σaρbα for some g ∈ G. (The unordered

“wedge product” (over QḠ) on the R.H.S. is defined only up to sign.) Since
NDq(K+/k)η equals 1

2NDη or NDη, condition (iii) for m = η and S = SQ(k)
will follow if we can show that NDη is fixed by G (hence by Ḡ) and is zero
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if |SQ(k)| > d+ 1. But

NDη = ±|D|1−dg
m∧
a=1

t∧
b=1

σaNDρbα(54)

= ±|D|1−dg
m∧
a=1

(σaNDα ∧ σaNDρ2α ∧ · · · ∧ σaNDρtα)

(the second equality since σaNDα =
∑t

b=1 σaNDρbα for each a). If |SQ| > 2
then |SA| > 2 for each A ∈ XQ(A) so the eigenspace condition on ηA as a so-
lution of RSC(KA,+/Q, SA; Q) implies that it is annihilated by NDq(KA,+/Q),
hence by ND. It follows that NDα = 0 hence NDη = 0 by (54). Otherwise,
|SQ| = 2, SQ = {∞, q} (so q = p) and |SQ(k)| is precisely d + m. In this
case, the eigenspace condition on ηA still shows that NDq(KA,+/Q)ηA is fixed
by Gal(KA,+/Q) for all A and it follows as above that NDα is fixed by G.
So (54) implies that NDη is fixed by G and, if m > 1, that it is zero, since
then σ1NDα = σ2NDα.
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