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explicit reciprocity for Rubin—Stark elements
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1. Introduction. Throughout this paper k will be a number field of
finite degree d over Q and K will be a finite, Galois extension of k£ such
that the group G := Gal(K/k) is abelian. We denote by Soc = Soo(k) and
Sram = Sram (K /k) the sets consisting respectively of the infinite places of k
and those which are finite and ramify in K, and we set S° = S°(K/k) =
Sram U Sso. If S is any finite set of places containing S° and s a complex
number with Re(s) > 1, we define a convergent Euler product in the complex
group ring of G (denoted simply CG) by

(1) Ok /k,s(8) == H(l —Nq o, 1)
q¢S

The product ranges over those places q of k£ which are not in S (here and

henceforth, finite places are identified with prime ideals) and o4 = o4k

denotes the Frobenius element of G for q. If k is totally real and K is a CM

field with complex conjugation ¢ € G, it can be shown that the “minus part”
- 1

K/k75(s) = 5(1 = ¢)Ok/k,s(s) extends to an entire function C — CG.
This paper concerns two conjectures of a p-adic nature about the element
T E (i/ﬁ)d@;{/hs(l) (whose coefficients turn out to be algebraic). For
any number p we denote by U'(K}) the p-semilocal principal units of K
and define a p-adic regulator on the exterior power /\%pG UY(K,). By com-

bining this with pe/,s We obtain a map sk /i g : /\CleG UYNK,) — Q,G.
Assuming for the rest of this Introduction that p # 2 and S contains all
the places above p in k, our first conjecture (the “Integrality Conjecture”
or “IC”) states simply that the image Sk/k,s of Sk, 1s contained in Z,G.
Recall now that if KT denotes the maximal totally real subfield of K then
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(the meromorphic continuation of) O+ ;. 5(s) has a zero of order at least d
at s = 0. Furthermore, a well-known conjecture of Stark (reformulated and
refined by Rubin) states that the coefficient of s? in the Taylor expansion
of O+ /1,5(s) is given by evaluating an (RG-valued) regulator map on an
element of a certain exterior power of the (global) S-units of K*. Impos-
ing further natural conditions makes this element the unique “Rubin—Stark
element” of the title, here denoted ng+ /-

Our second conjecture (the “Congruence Conjecture” or “CC”) assumes
and refines the IC, and in so doing links the minus part of O/, 5(s) at
s = 1 to its plus part at s = 0. It says that if K contains the p"*1th roots of
unity for some n > 0, then, very roughly speaking, the reduction of sg /1 ¢

modulo p"t!

gives an explicit reciprocity law for ng+ /5 g

The idea for these conjectures came from the results of [So4]. We shall not
elaborate on the precise connection in the present paper beyond saying that
if p splits in k then certain rather strong hypotheses considered in [So4] imply
a weak form of the CC at each level in a cyclotomic Z,-tower containing K.
The IC and the CC first appeared explicitly as Conjectures 5.2 and 5.4 at
the end of [Sof] in a form less general and more awkward than the present
versions. That form also used twisted zeta-functions at s = 0 in place of the

more accessible O, 5(1).

The remainder of this paper is organised as follows. Section [2] contains
the precise definitions and basic properties of the main players: the elements
a;(/k’s and ng+ k5, the map s /5, g and the pairing Hg /. , (a determinant of
additive, equivariant Hilbert symbols in terms of which our conjectural reci-
procity law is formulated). Section [3| contains the precise statements of the
two conjectures. Section 4| surveys the current evidence in their favour—now
quite considerable—and includes the statements of the three main results
of this paper which were announced in [So5|: Firstly, in the case pt |G|, we
give a complete characterisation of G/ ¢ in terms of L-functions of odd
characters of G at s = 0. In this case the IC then follows, thanks to a result
of Deligne—Ribet and P. Cassou-Nogues. Secondly, we prove the conjectures
in the case k = Q, using an explicit reciprocity law due to Coleman. Thirdly,
we prove the conjectures when K/Q is abelian (but & is not necessarily Q)
by “base-change” from the previous result. In this case, we require a rela-
tively mild technical hypothesis on K/k, S and p. We also discuss briefly
A. Jones’ recent work showing that a rather different refinement of the IC
would follow from a special case of the Equivariant Tamagawa Number Con-
jecture (ETNC) of Burns and Flach. (On the other hand, there is currently
no known connection between the ETNC and the CC.) Section |5/ examines
the behaviour of the conjectures as S, K and n vary. Sections [6] [7] and
contain the proofs of the three main results referred to above.
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Jones’ refinement of the IC mentioned above predicts that S ;g is
contained in the Fitting ideal (as Z,G-module) of the minus part of the p-
part of a certain ray-class group of K. It would be interesting to investigate
links between Gy ;s and the Fitting ideal of the minus class group itself
(cf. [Gr]). Another goal would be to generalise to arbitrary k the work of [So]
in the case k = Q. The latter links (an extension of) sz /0,5 to the plus part
of the class group via the CC (which is proven in this case) and Iwasawa
Theory.

In addition to those introduced above, we use the following basic nota-
tions and conventions. If R is a commutative ring and H a finite abelian
group, we write RH for the group-ring, and if M is a ZH-module we shall
sometimes abbreviate R ®z M to RM (considered as an RH-module in
the obvious way). For any subgroup D C H, we write Np for the norm
element ) ,.,d € RH. If m is a positive integer, we denote by 1, (R)
the group of all mth roots of unity in R and for any prime number p we
set fipeo (R) = UiZg tyi (R). All number fields in this paper are supposed of
finite degree over Q and are considered as subfields of @, which is the alge-
braic closure of Q within C. We shall write &, for the particular generator
exp(2mi/m) of ju,(Q). For any number field F' and any integer r we shall
write S,(F) for the set of places (prime ideals) of F' dividing r. If S is a
set of places of F' and L is any finite extension of F' we shall write S(L)
for the set of places of L lying above those in S. If S contains Sy (F') (see
above) then the group Ug(F') of S-units of F' consists of those elements of
F* which are local units at every place not in S and we shall often write
simply Us(L) in place of Ugy(L). (Caution: Us and related modules will
sometimes be written additively.)

If L/F is abelian and v is any place of F' we shall write D,(L/F)
for the decomposition subgroup of Gal(L/F) at any prime dividing v
in L and similarly T,(L/F) for the inertia subgroup (if v is finite).
Suppose L D F D M are three number fields such that L/M and F/M
are Galois extensions. Then the restriction map Gal(L/M) — Gal(F/M)
will be denoted 7y, and extended R-linearly to a ring homomorphism
RGal(L/M) — RGal(F/M) for any commutative ring R. We also write
vr/m for the R-linear “corestriction” map RGal(F/M) — RGal(L/M)
which sends g € Gal(F/M) to the sum of its preimages under 7 /p in
Gal(L/M).

2. Dramatis personee

2.1. The function O/, ¢ and the element a;{/k g+ Let G denote the

dual group of G, namely the group of all (irreducible) complex characters
x : G — C* with identity element yq, the trivial character. For any xy € G
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we write e, ¢ for the associated idempotent in the complex group-ring CG:

€x.G * |ZX

geG
Expanding the Euler product ., we get

(2) Ori,s() =D Crms(59)97 =D Lisus(s, X)ex-1.6
QEG XEG

for Re(s) > 1. Here, (i1 (s;9) and L i, (s, x) denote respectively the “S-
truncations” of the partial zeta-function attached to G and the L-function
attached to x. In particular,

(3)  Lk/ks(s,x)
=[Ja-Nax(eg)) ' = ] (1= Na*%((a)L(s,X)

q¢s q€S\Seo
a1 fx
where f, and L(s,x) denote respectively the conductor of x and the L-
function of its associated primitive ray-class character ¥ modulo f,.

REMARK 2.1. The second (but not the first) expression for Lg/j s(s, x)
in . makes sense when S is any finite set of places of k, containing S (k)
but not necessarily Sram(K/k). In fact, it agrees with the definition of the
S-truncated Artin L-function attached to x considered as a character of G
(see for example [Ta, p. 23]).

The analytic behaviour of L(s,x) is well-known. Its (in general) mero-
morphic continuation means that we may use equations and (3) to con-
tinue O/, g to a meromorphic, CG-valued function on C. These equations
then hold as identities between meromorphic functions on C. Similarly, if
S 5 S 5 S then the obvious identity

(4) Okms(s)= [ (1—Na 01Ok ps(s)

qes\s’
for Re(s) > 1 also holds for all s. In fact, the function L(s, x), hence also
the function x(Of/k.5(s)) = Li/ks(s,x 1), is analytic on C\ {1} and

0 if x # xo,
) R T C) e R,
-1 it x = xo-

Moreover, the residue of Xo(Or/k,5(5)) = [Iges\5.. (1 = Na™)Ck(s) at s =1
is well-known (see e.g. [Tal, Théoreme 1.1.1}).

Using the well-known functional equation relating the primitive L-func-
tion L(s, ¥~ ') to L(1 — s,X) one might expect to derive a natural relation
between O ;. 5(s) and O/, (1 — s) by means of (2) and (3). There are
however at least three obstacles to this: firstly the presence of Gauss sums
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in the functional equations and secondly the dependence on x of the second
product in which, thirdly, forces L 5(0,x) = 0 for certain x. Instead,
in [Sob] we used these functional equations to give a precise relation between
Ok /k,s0(s) (there denoted Ofi(s)) and P (1 — s), where the function
Pk i, + C — CG was defined by means of twisted zeta-functions and studied,
together with its p-adic analogues, in [S02HSo05]. For each v € S, we write
¢y for the unique generator of D, (K /k) so that ¢, = 1 unless v is real and
one (hence every) place w of K above v is complex, in which case ¢, is the
complex conjugation associated to any such w.
We define an entire, CD, (K/k)-valued function

Co(s) = exp(ims).l — exp(—ims).c, = 2isin(ws).1 if v is complex,
S Lexp(ims/2).1 + exp(—ims/2).c, if v is real.
Then Theorem 2.1 of [Sob], combined with (4) for S’ = Sy, gives

©) OV T] (= Naog )l )
qeS\ S0
= (m 1 ) ( T o) Oxms(s)

VESeo

where ra(k) denotes the number of complex places of k and dy, its absolute
discriminant. Let @}ths(s) be the function (1 — ey, c)Ok/i s(s), which is
regular at s = 1 by . So @ gives

(M Videl [T 0= Na'or)(1 = exo.6)Pr/k(0)

qeS\ S0
= (2m) 5 (T (=) Okt s (D),

’UESOO

from which it follows that (1— ey, c)®x/x(0) vanishes unless k is totally real
and K is totally complex. On the other hand, multiplying @ by ey, and
letting s — 1, we see that ey, Pk x(0) vanishes unless [S| = 1, i.e. k is
Q or an imaginary quadratic field, in which case it may easily be calculated
from ress—1 (x(s). Thus @/ (0) has little interest unless k is totally real and
K is totally complex. Even then, [[,cg (1 — ¢,) vanishes unless there is a
(unique) CM-subfield K~ of K containing k, in which case we lose little but
complication by replacing K by K~. (See Remark 3.1(i) of [So5| for further
explanations.) For these reasons we shall henceforth make the

HypoOTHESIS 2.2. k is totally real and K is a CM field.

This means that dj is a positive integer and ¢, = ¢, the unique complex
conjugation in G, for all v € S. Let e* denote the two idempotents %(lzlzc)

of CG and let O 5(8) be the entire function e~ O, 5(s) = 6*8}2% 5(8).
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The above remarks, together with a simple calculation of e, Pk /k(O) when
k = Q, show that equation may be rewritten as

(8) A p,g *= <;>d@f_</k,s(1)

[T = Na o)k By (0) if k # Q,
qesS\ S0
p— _ _ 1 B .
I Q- o;HPre0) + 3 [T 0-aYewe k=0
qeS\S0 qeS\{oo}

If R is a commutative ring in which 2 is invertible and if M is any
R{c)-module then we shall write M (resp. M ~) for the R-submodule e* M
(resp. e" M), so that M = M @ M~. In this notation, a1_</k g clearly lies

in CG~ and multiplying by e~ gives

) s = axps=¢ ] 0= Nalog)Vdi@i(0)
qeS\ SO
whether or not kK = Q, but if k¥ # Q then the term e~ may be omitted on

the R.H.S. In fact, PR has algebraic coefficients: Let f(K) be the integral

ideal of Oy, which is the conductor of K/k in the sense of class-field theory
and let f(K) be the positive generator of the ideal f(K) N Z. The product

in @) lies in QG*, therefore @ and [So5l Prop. 3.1] show that O /1.5 has
coefficients in /di, Q(1(x)) and that

(10) a5 s Q)G = Vi Q) )G

Integrality properties of the coefficients of a Jk,5 € given in [R-S2] where

it is shown that they also lie in the Galois closure of K over Q (see ibid.,
Proposition 2 and Remark 6).

2.2. Rubin—Stark elements for K /k. Let us write G for Gal(K* /k)
=G /{c), so that g+ : CG — CG induces an ring isomorphism CG+— CG
sending et O i 5(s) onto Oy, (). To study O+ i, 5(s) at s = 0 we

define an integer rg(¢) for each ¢ € G by
{d+ [{q€ S\ Soc: ¢(Dq(KT/Ek))={1}}] if ¢ is non-trivial,

11 =
(11)  rs(e) d+|5\ Se] —1=19] -1 if ¢ is trivial.

~

Since k and K™ are totally real, the functional equation of L(s, ¢) for ¢ € 5
shows that, for any such ¢, we have

(12) ords—0¢(Orc+/1,5(5)) = ords—o L+ /. 5(5, ¢~ ) = r5(e)
(see e.g. [Tal Ch. I, §3]). We shall assume until further notice
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HYPOTHESIS 2.3. |S| > d+ 1 (i.e. S contains at least one finite place).

This implies that rg(¢) > d for ¢ trivial hence for every ¢ € é, SO we
may define

le/k,s(o) = ll_lz% SidQKJr/kaS(s)

(an element of CG which is easily seen to lie in RG). Conjectures of Stark,

as refined by Rubin [Ru], predict that @g?l Ik 5(0) is given by a certain

RG-valued regulator of S-units of K+ defined as follows. We fix once and
for all a set 7, ..., 74 of left coset representatives for Gal(@/ k:) in Gal(Q/Q)

and we define QG linear, real logarithmic maps for i =1, ..., d:
Ag+ki QUs(KT) - RG, a®era Z log |i(ge)| g~ € RG.
geqG

The above-mentioned regulator is the QG-linear map uniquely defined by
Rict it Nog QUS(KY) = RG, @y A+ Awg = det (Age+ ypi(e))1<i1<a-

The following definition generalises the above construction and will be useful
later.

PROPOSITION/DEFINITION 2.4.

(i) Suppose R is a commutative ring, S a commutative R-algebra, and
that M is any (left) RH module for a finite group H. There is
an isomorphism from Homg(M,S) to Homgy(M,SH) given by
f = f7 where fH is defined to be the map m — >, f(R™ m)h.

(ii) Suppose H is abelian andl € N. Then for every l-tuple (f1,..., fi) €
Homp (M, S)! there is an RH-linear determinantal map Aph
uniquely defined by

Ay Nag M — SH,  my A+ Amy — det (f7 (my))} =

Ay, 5 18 S-multilinear and alternating as a function of (f1,. .., fa).
Moreover for eachi=1,...,1 and h € H we have Ay, fion,...f (1)

= Ap ()b for all p e /\lRHM .

For instance, taking R = Q, S = R, M = QUs(K™*) and H = G gives
Ri+ i = Ay, 5, where f; is the map sending a ® ¢ € QUs(K™) to its
logarithmic embedding alog|7;(¢)| in R. If instead we take R = S = Q, then
any d elements fi,..., fq of Homg(QUg(K™),Q) give rise to a QG-linear
map Ayf 5, ¢ /\éé QUs(K') — QG. Let us identify Homz(Ug(K™),Z)
with the lattice in Homg(QUg(K 1), Q) which is its image under the map
f — 1® f. We can then define a ZG submodule Agg = Ags(K1/k) of
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Noe QUs(K*) by

Aos(K*/k) = {1 € Ngg QUS(K ) : Apy,..1,(n) € ZG

Vh, o fa € Homz(Us(K),2) ).

This coincides with “AdUs(K*)” as defined by Rubin’s “double dual” con-
struction in [Rul §1]. It is clear that Ay g contains the lattice which is the nat-
ural image of \Js Us(K™) in Al QUs(K™) (we denote this AJs Us(K+))
but the two are not necessarily equal. In fact, Proposition 1.2 of [Rul implies

PROPOSITION 2.5. If d =1 (i.e. k = Q) then Aps = /\26 Us(K+) =
Us(K*). In general, the index |Ags : /\%é Us(K™)| is finite and supported
on primes dwiding |G|. =

Let us define an idempotent eg 4 &, a priori in CG, by setting €546 =
Z(]ﬁéé, rs(@)=d C6.G- This is the unique element x of CG such that ¢(x) =1

or 0 according as rs(¢) = d or rs(¢) > d. It follows easily from this descrip-
tion and the formula that

1 .
qeS\ S
(13)  esaa= 1 .
L= Dot Vot )+ e IS =d L,
ie. S={q}USw.
Thus eg 4 is an idempotent of QG, so lies in |G|7'ZG. We also deduce
easily:
PROPOSITION 2.6. Let M be any QG-module and m € M. The following
are equivalent:
(i) m € esacM.

(ii) m = €s.q.6m-
(iii) For allq € S\ S,
{0} i |S]>d+1,
(14) NDq(K+/k)m € {

MC if |S|=d+1,ie S={q}USm.
(iv) epa(l@m)=01in Cog M for all ¢ € G such that rs(¢) >d. m

For brevity, we shall sometimes refer to any of these conditions as the
eigenspace condition on m with respect to (S, d, G). Now, given any subring
R of Q, we formulate a version of the Rubin—Stark conjecture “over R”:

CoNJECTURE RSC(K ™ /k,S;R). Let K/k and S be as above, satisfying
Hypotheses and . Then there exists an element n € /\fé@ QUs(K™)
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satisfying the eigenspace condition with respect to (S,d,G) and such that

(15) O30 1.5(0) = Rigs ()
and
(16) 0 € SR A (K k).

Notice that @gi 69(0) lies in the ideal eg,sRG (and in fact gener-

ates it) by equation (12|). Thus if n € /\é(—; QUg(K ™) is any solution of
then eg ; 57 is a solution satisfying the eigenspace condition. On the other
hand, it can be shown that Ry, is injective on eg 4 & /\éé QUg(K™) (this
follows from [Ru, Lemma 2.7]), so a solution of satisfying the eigenspace
condition is unique. For this reason, we call such an element the Rubin—Stark
element for K /k and S and denote it MK+ /k,s Since it is independent of R.
Of course, condition is redundant if R = Q, and for any prime number
p we have

RSC(K™/k,S;Z) = RSC(K*/k,S;Z(,) = RSC(KT/k,S:Q)

(where Z, denotes the localisation {a/b€Q : p{b}). Moreover, RSC(K* /k,
S;7) is equivalent to the conjunction of RSC(K ™ /k, S; Z,)) for all primes p.
We shall mainly be interested in RSC(K* /k, S;Z(,)) when p # 2, in which
case ([16) reduces to n € Z,) Ao s-

REMARK 2.7. Since R+ /;, depends on the choice (and ordering) of the
7;’s, 50 Will g+ /3, g, but in a simple way. For example, if one 7; is replaced by
=1 0
77~ for some 7 € Gal(Q/k) then we must replace ng+ /s by T|x+0K+ /1,5
where 7|x+ € G.

REMARK 2.8. RSC(K*/k,S;Q) and RSC(K™*/k,S;Z) follow from
certain special cases of Conjectures A’ and B’ of [Rul] respectively. Indeed,
if we choose the extension “K/k” of Rubin’s paper to be our K+ /k, his “S”
to be ours, his “r” to be d and his chosen places “wi,...,w,” to be the
real places of KT defined by 71,. .., 74, then Rubin’s Hypotheses 2.1.1-2.1.4
are satisfied. His conjectures also require an auxiliary set 1" of finite places
of k satisfying certain conditions, although for Conjecture A’ the precise
choice of such T does not affect the truth of the conjecture. For simplicity
we take T' = {q} for some prime q ¢ S not dividing 2 and splitting in K+
(infinitely many of these exist by Chebotarev’s theorem). Then Rubin’s
Hypothesis 2.1.5 certainly holds since Ug(K™ )iy = {£1}. Moreover, his
“@g’:gp(O)” is our (1— Nq)@%l/hs(O) and his “AyUs 1" is a sublattice of our
Ao s(K/k) which also spans /\é@ QUs(K™) over Q. It follows easily that
RSC(K ™ /k,S;Q) is equivalent to Rubin’s Conjecture A’ with these choices
and this (hence any) T'. Moreover, if both hold then Rubin’s “cg1” equals



154 D. Solomon

our (1 — Nq)ng+ /k,S» Dy uniqueness. It follows that Rubin’s Conjecture B’
with these choices amounts to the further condition that (1 — Nq)ng+ p.g
lie in his “AfUg” hence in our Ag s(K*/k). But as g varies subject to the
above conditions, Lemme IV.1.1 of [Ta] says that the g.c.d. of the corre-
sponding integers 1 — Nq is |[u(KT)| = 2. Thus the corresponding cases of
Rubin’s Conjecture B’ together imply RSC(K ™ /k, S;Z).

The connection with Stark’s original conjecture in terms of characters
(see [Tal, Conjecture 1.5.1]) is as follows. Propositions 2.3 and 2.4 of [Rul]
show that Stark’s conjecture holds for K+ /k, S and every character ¢ € G
satisfying rs(¢) = d if and only if Rubin’s Conjecture A’ holds (for any T'),
which is equivalent to RSC(K ' /k, S;Q), by the above.

In the next section we shall be interested in determinantal maps ob-
tained from a d-tuple (fi,...,fq) € Homgy(Us(K™'),Z/p""1Z) for some
prime p and n > 0. Taking R = Z, S = Z/p""'Z and M = Us(K™)
in Proposition/Definition gives such a map Ay ¢, : /\%G‘ Us(K") —
(Z/p"T1Z)G. We shall now show that provided p is odd, this map “extends”
naturally to Z,) Ao,s in a sense to be explained below. First, we have

LEMMA 2.9. If p is odd then the following sequence is exact:

n+1

+
0 — Homgz(Us(K %), Z) £— Homgz(Us(K ™), Z)
— Homgz(Us(K 1), Z/p" 1 7Z) — 0.

Proof. As K™ is totally real, Us(K*)/{+1} is Z-free. Thus the sequence
is exact if Ug(K 1) is replaced by Us(K™*)/{£1}. But since Z and Z/p"*1Z
have no 2-torsion, we may identify

Homgz(Us(K™")/{£1},Z) = Homz(Us(K "), Z),
Homgz(Us(K ) /{%1},Z/p" 1 Z) = Homgz(Us(K™T), Z/p" "' Z). u

Thus given f1,...,fg in Homz(Ug(K™),Z/p" ' Z) for p odd, we can
choose lifts fi,..., fg in Homy(Us(K™),Z). As previously, we may regard
these as elements of Homg(QUgs(K ™), Q) and use Proposition/Definition
to COHStI“l_lCt Ap 5 /\féc;v QUs(K™) — QG. If;n € Ap,s then Afl,---,fd(n)
lies in ZG by definition of Ag g and we write Ay r (n) for its image in

(Z/p" T Z)G. The latter is independent of the choice of each lift f;, as one
easily checks using Lemma the linearity of A Fio dy in f; and the fact

that n € Ag,s. Consequently we have a well-defined map ANfl,_._yfd : Aos —
(Z/p™*'Z)G which is linear and so extends uniquely to Z,) Ag,s. It is now

an easy exercise to check the following properties of Ag ;.
PROPOSITION 2.10. Let p be odd and choose
fiso.., fa € Homg(Us(K™),Z/p" 1 2Z).
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(i) The map Ay, g, LipyAo,s(KT [k) — (Z/p" T Z)G is ZG-linear.
(ii) It is also (Z/p"T'Z)-multilinear and alternating as a function of
(f1,--., fa) and for each i = 1,...,d we have Ay, . fioq...£,(n) =
Ay, 5.(mg forallg e G and n € Z(p)/l075(K+/k).
(iii) The following diagram commutes:

NacUs(E¥)

Toeees fd
" /(Z/p”HZ)G
Loy Aos(K+/k)  “neda

where « is the natural map /\%@ Us(Kt) — /\fiQé QUs(K™) with
restricted range. m

REMARK 2.11. This shows in particular that Ay ¢, vanishes on the
kernel of «v in the above diagram. One can show that ker(«) is always finite
and supported on primes dividing 2|G| = |G|. Also, Proposition implies
that im(a) spans Z, Ao s over Zgy whenever pt|G|. So if p{|G| then any
ZG-linear map F : N3s Us(Kt) — (Z/p" ' Z)G vanishes on ker(a) and has
a unique “extension” F : ZpAo,s — (Z./p"tZ)G satistying F = F o o

2.3. Hilbert symbols and the pairing Hg/,. Suppose that L is a
local field containing u,, for some positive integer m coprime to the charac-
teristic of L. We recall that the Hilbert symbol is the map

(', ')L,m L x L™ — m C LX’ (a’ﬁ) — (ﬁl/m)aa,L—l’

where /™ is any mth root of 3 in any abelian closure L2P of L, and Oa,L
denotes the image of o under the reciprocity homomorphism (-, L) of local
class-field theory from L* to Gal(L*/L). The Hilbert symbol is bilinear
and skew-symmetric. For the general theory, see [A-T), Ch. 12], [Nel, V.3] or
[Se, Ch. XIV]. (Note that our notation (a,)rm, is compatible with that
of [A-T] and [Ne] but represents the element denoted (5, «) in [Se] and is
similarly reversed in the notation of [Col|.)

Let p be a prime number and n > 0 an integer. We shall assume until
further notice that K contains fiyn+1 for some n > 0. Let x,, : Gal(Q/Q) —
(Z/p"T1Z)* be the cyclotomic character modulo p™*!, determined by 7(¢) =
¢t for all ¢ e Ppnt1, and T € Gal(Q/Q). Since K contains Ppnt1,
the restriction of x, to Gal(Q/k) factors through a homomorphism G —
(Z/p"*17Z)* which we denote by the same symbol. We also use the short-
hand ¢, for {;n+1 € K. If Ky denotes the completion of K at some prime
ideal 3, we may define a bilinear pairing [, ‘g : K% X K;f} — Z/p" 7 by
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setting
ng((n)[a’m‘pv" = (a,B) gy pn+1  foralla,pe K%

where 13 : K — Kg is the natural embedding. Every g € G induces an
isomorphism K¢ — Ky, also denoted g and such that g ot = typog.
Standard facts from local class field theory imply that (ga, g53) Koqpntl =

9(a, B) gy prt1 In K;q3 for any «, 8 € K% It follows easily that

(17) l9ct, 9Blgxpn = kn(9)[ev, Blpn  forall o, € Kg, g € G.

If B divides p then i extends to a Qp-algebra map from K, := K ®q Q,
to K. Thus we obtain a pairing

['7 ']K,n : K; X K; - Z/pn+1Z> (Oé,ﬁ) = Z[L‘B(a)? L‘B(ﬂ)]m,n
PBlp

Letting G act on K through K, we still have tpo g = g o151 for any
g € G and P |p, so implies
(18) (90, 9Bk = En(9)la, Bl  foralla,f € K, g €G.
The product map H‘Blp vp r Kp — H‘ﬁ\p Ky is a G-equivariant ring isomor-
phism (where g((zq)q) = (924-19)9 in [[qy, Kp). We shall regard this as an
identification so that tq identifies with the projection H‘Blp Ky — K. Thus
we identify the principal semilocal units [ gy, U'(Kg) with a ZG-submodule
of K and denote it U 1(K,). Regarding each U'(Kp) as a finitely generated
Zy,-module, U'(K),) becomes a finitely generated Z,G-module.

From now on we assume that p is odd. Consider the unique ring auto-
morphism of (Z/p"1Z)G sending g € G to k,(g)g~!. Since k,(c) = —1,
this restricts to a ring isomorphism from (Z/p"™Z)G™ to (Z/p" " Z)G~.
Composing with 27wy i+ : (Z/p" T Z)G — (Z/p"T'Z)G, we obtain a ring
isomorphism &}, = &}, : (Z/p"t'Z)G — (Z/p"T'Z)G~. Explicitly, if h € G
and g € G then
(19) Rp(m) =271 Y ma(W)h™" and so &} (mg i+ (9) = € mnl9)g "

heG
T K+ (h)=h
Given a set S D S as in previous sections, any u € U!(K,) defines a
homomorphism f,, € Homgz(Us(K™), Z/p" 1 Z) by setting fu(c) = [¢,ulkn
(by abuse, we write € for e ® 1 € pr) Using the “A” notation of the last
section we may now define a map

Hyc kst ZipyAo,s (Kt /k) x U Kp)* — (2/p" ' 2)G™,
(3w, - - ug) = 2°R5 (A, g, (0))-
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PROPOSITION 2.12. Suppose that 1 € Zy Ao s(K/k) and uy, ... ,uq €
A

(i) For any x € ZG we have
Hy g sn(on;ut, ... ug) = B (T)Hy jg s (05015 -+ -5 Uq)

where T denotes the image of x in (Z/p"17Z)G.
(i) Hg/k,sn is ZG-multilinear (hence ZyG-multilinear) and alternating
as a function of uy,...,uq.

Proof. Part (i) follows from Proposition . The Z-multilinearity in
part follows from Proposition so it suffices to prove that replacing
u; by gu; (for g € G) multiplies Hg 5., (7;u1,--.,uq) by g, or indeed by
e”g since it lies in the minus part. But if we write h for g/ x+(g) € G then

and Proposition give
R fur o fgugrofug ) = B Af (@) fusoh by ()
= Ry (Afuy o, (M En(g)h™)
= Ry (kn(9)h DER(Ag,, o pu, (1)
=€ gRn(Afuy oty (1))
by and the result follows.
By part of the proposition, Hg/j g, defines a unique pairing (also
denoted Hyps0) from ZgyAos x Ay qU'K,) to (Z/p"*'Z)G~. By

Z,G-linearity in the second variable, it factors through the projection on
/\%pGU Y(K,)~. An important and simple special case is when 7 equals

(1@e)N---AN(1®ey) € /\%é Us(K*). Using Proposition [2.10|fii) and equa-
tion and tracing through the definitions, we find that for all uy, ..., uq
in Ul(Kp)a

Hyjpsn((I®@er) Ao A(1®eq),ur A+ Aug)

— ZdEZ(Aful,m,fud (1 A+ Neg)) =R (det (2 Z[hilsi, Ut}K,nh)
he@

lgi,tgd)

= det <R;§ (Z lg "<, Ut KT Kt (g)) ) 1<it<d

geG

— det (= 3 mulo)ls e tilrng ™)

geG

But > ¢ kn(9)lg7 ei, utlkng ™! clearly lies in the minus part, and

1<ii<d
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allows us to rewrite it as 3 e, gui Kkng . Thus we obtain simply
(20) HK/k,S,n((]-®€1)/\"'/\(1®6d)au1/\"'/\ud)
= det ( . —1> .
€ Z[&Tz guilKng I<it<d

geG

This shows in particular that, on A%g Us(K*) x /\%pGUl(Kp), the pairing
Hp n(of(-), ) agrees with that defined by the pairing Hg (-, -) of [Sobl.

REMARK 2.13. If § © 8’ O S°, we shall always view the natural injec-
tion /\é@ QUg/(K™) — /\%G QUs(K™) as an inclusion. It is then a simple
exercise to check “compatibility of the pairings as S varies” in the sense
that Ao s contains Ag s and Hy g 5, agrees with Hyep or o0 Zpy Ao s X
/\CleGU L(K,). For this reason, we shall usually omit the reference to S and
write simply Hp /-

2.4. The map sk 5. For the time being we drop Hypothesis and
the assumption that K contains p,n+1. We use the element a k.S to define
a generalisation of the map s/, of [Sod| (slightly modified). Let j be any
embedding of Q into a fixed algebraic closure @p of Q. Foreachi =1,...,d,
the composite j7; : Q — Q, defines a prime ideal P; of Ok dividing p,
namely B; = {a € Ok : |jri(a)|, < 1}. (Of course, the ideals Pq,...,Pq
are not in general distinct.) So j7; gives rise to an isometric embedding
Kgq, — Q, (with the appropriately normalised 3;-adic metric on Kp,) whose

image is the topological closure j7;(K'). This embedding is also denoted j7;,
by abuse.
There is a composite homomorphism of Q,-algebras

0; = (5i(j) =jriouy  Kp — (@p
where v, : K, — Kg, is as in the previous section. It follows in particular
that if u lies in U(K,) C K, then |5§J)(u) — 1], < 1 for all 4, hence the

element log/p((SZ(] )(u)) of j7;(K) is given by the usual logarithmic series. In

Proposition/Deﬁnitionwe take R = Zp, S = Q,, M = U'(K,), H =G,
I = d and set fi(u) :=log, (6 (u)) for all u € UL(K,) and i € {1,...,d} to
get a p-adic regulator map Ry/ip = Ay fy /\deG UYK,) — Q,G. (We
will denote it R%)//ap or R%ﬁ;’)"’”) if we need to indicate the dependence
on j and/or 7,...,74.) For any abelian group H and commutative ring R
we define an involutive automorphism (-)* of RH by setting (> aph)* =
S aph~!. The element a[_(/k’s lies in QG~ by , hence so does a[_(’/*k’s and

applying j to the coefficients we obtain an element j (a;{’;kk g) of Q,G~.
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DEFINITION 2.14. For any 0 € /\%pG Ul(Kp) we define sgp, 5(0) =
SK/k,5,p(0) to be the product j(a%fk’S)R%)/hp(H) in Q,G.

REMARK 2.15. It is easy to see that permuting the 7; can only change
()

K/kp -
7; is replaced by 7;7 for some 7 € Gal(Q/k) then both are multiplied by

7|k € G. If clarity demands it we shall indicate this (simple) dependence

on the 7; by writing 5E/k;d instead of sx /1 g

the sign of the regulator R and hence of the map sg/, s and that if

If 5/, denotes the map introduced in Definition 3.1 of [So5] then @
gives

@) sims@ =¢ [ - Naog)i(v/de Pic/(0))RY, (6)
qeS\So

=e H (1—Nq 'oq)sk/x(0)
qeS\So

and if £ # Q then we can even drop the factor e”. Equation and
Proposition 3.4 of [So5] imply the important

PROPOSITION 2.16. sg /5, 5(0) lies in QG for every 6 € /\%pG UYK,).
Moreover, it is independent of the choice of j. m

In [Sod], s/ was considered as a (Z,G-linear) map from /\%pG UYK,)
to Q,G. But because of the factor e™ in , we now have sy, g(e”0) =
e Sk /k,s(0) = sk /k,s(0). For this reason, we prefer to consider sx/; g as a
Zp,G-linear map from /\CleG UYK,)™ to Q,G™.

PROPOSITION 2.17. The kernel of sy s is precisely the (Zy,-) torsion
submodule of /\CleG UY(K,)~ which is finite. The image of SK/k,s 18 a frac-
tional ideal of Q,G~ (i.e. a finitely generated Z,G-submodule of Q,G~
which spans it over Q).

Proof. In Remark 3.2 of [Sob| it was shown that ker(R%)/kp

and that im(R%)/k p) spans Q,G over Q,. Also, equation implies that

) is finite

j(a;(’/*k’s) is a unit of the ring Q,G~. It follows that ker(sg/k,5) lies in

ker(R%},ﬁp
since Q,G~ is torsion-free.

For the second statement, finite generation follows from that of Ut (k)
and we have Qpim (st 5) = QG im(sx k. g) = QpG*im(R%)/k’p) =Q,G™.
It follows that Qpim(sg/k,5) = QpG~. =

) and hence in ( /\%pG UY(Kp) ™ )tor- The reverse inclusion is clear,
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DEFINITION 2.18. We set & /s = Sx k5, = iM(sx/k5p) C QG-
(Proposition and Remark show that &g/ ¢ is independent of j
and the choice and ordering of the 7;’s.)

Thus
(22) Gxms=¢ ] (1—NalogSx
qesS\ S0

where G/, = im(sg ;) as in [Sof], and if k& # Q then we can drop the
factor e”. Finally, the dependence of sx /1, ¢ and Sk g on S is clear: if
S > 8" > S then and the definition of O /1. give

SK/k,S = H (1—Na 'oq)sk/ms
4eS\ S’

Sk/ks = H (1-Nq 'oq)S ks
4ES\ S’

(23)

3. Statements of the conjectures. Let us write S, for Sy(k) and
St = SYK/k) for SpU S = S U Spam(K/k) U Seo.

HyYPOTHESIS 3.1. S contains S?!.

Henceforth, the three conditions p # 2, Hypothesis and Hypothe-
sis will be referred to as the standard hypotheses and will be assumed
to hold unless it is explicitly stated otherwise. Our “Integrality Conjecture”

(IC) reads:
CoNJECTURE IC(K /K, S,p). Sk ks C ZpG™.

REMARK 3.2. By using [So5, Cor. 2.1] and estimates of log, one can
find explicit values of N such that Sg /g C p N ZpG~ (cf. the proof of
Prop. 4.2, ibid.). The conjecture says we can take N = 0. Fixing K/k but
letting p (hence S') vary, one can also show that &y, g1, = ZpG~ for all
but finitely many p # 2. In fact, this follows easily from Theorem below.

REMARK 3.3. Equation (22) gives

~1
Sk/rst =€ H (1—Np~lop)Ski = 67( H NP) Sk k-
pGSp\Sram pesp\sram

(For the second equality, observe that if p lies in S}, \ Sram then Np — oy
is a unit of Z,G.) If k # Q we may, as usual, drop the factor e~ in the
last equation. It follows in particular that if k¥ # Q then IC(K/k, S, p) is
equivalent to Conjecture 5.2 of [Sobl §5.2]. If & = Q the latter conjecture was
proven there. IC(K/Q, S*, p) follows on applying e~ and will be reproven in
Theorem 4.3
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Hypothesis |3.1| implies Hypothesis so that the conditions of Conjec-
ture RSC(K*/k, S; Zy)) are met. Our “Congruence Conjecture” (CC) reads:

COoNJECTURE CC(K/k, S,p,n) (Congruence Conjecture). Suppose that
Conjecture 1C(K/k,S,p) holds and that RSC(K*/k,S;Z(p)) holds with
solution N+ p.s. If also K D ppnt1 for some n > 0, then for all 6 €

/\%pG UYK,)~ we have

(24)  skms(0) = k(1. Ta) Hy /o i+ 1,5,0)  (in (Z/p"T2)G™).

REMARK 3.4. The factor k(7 ...74) means that the Congruence Con-
jecture is independent of the choice of 71,..., 74. For example, if we replace
7; by 771 for some 7 € Gal(Q/k) then Remark Proposition
and show that the R.H.S. is multiplied by 7|, € G and the same is
true for the L.H.S. by Remark

REMARK 3.5. CC(K/k,S,p,n) replaces Conjecture 5.4 of [So5]. The
latter is essentially the special case of the CC in which S = S' and p splits
in k (so that u, C K forces S® = S'). In fact, it is a direct consequence of this
case provided one assumes (with no significant loss of generality) that K is
CM, k # Q and one replaces /\%G K in Conjecture 5.4 with /\CZlGv Us(K™) as
here. The awkwardness in the formulation of Conjecture 5.4 (using Z(n} /k)’

7, etc.) has been avoided in the CC thanks to our “extension” of Hy ,, to
Z(p) A07S'

4. Evidence for the IC and the CC

4.1. The results of [So5]. Conjecture 5.2 of [So5|] implies IC(K /k, S, p)
for S = S1 (see Remark [3.3)) and hence for all S (using Proposition see
below). Therefore Proposition 4.2 of [So5|] implies

THEOREM 4.1. IC(K/k, S, p) holds whenever p is unramified in K/Q. u
By a similar argument, the main result, Theorem 4.1, of [So5] implies

THEOREM 4.2. IC(K/k,S,p) holds whenever p splits completely in k/Q
and either Sram (K/k) & Sp(k) or pp(K) = {1}. =

4.2. The IC and the ETNC. Working on the original version of the
IC in [Sob], Andrew Jones has shown that a certain refinement would follow
from the ETNC (see the Introduction). Let Cly(K) be the ray-class group of
K corresponding to the cycle which is the formal product of the finite places
of K above those in S! and write Fittzq(Cly(K)) for its (initial) Fitting
ideal as a ZG-module. In our notation, the first part of [Jo, Theorem 4.1.1]
then says that the relevant case of the ETNC (namely [Bull Conj. 4(iv)] for
the pair (h°Spec(K)(1),e~ZG)) implies

(25)  Ggypst C (ZpFittza(Cln(K)))™ (= Fitty o ((Clum(K) ® Zy) 7))
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for all odd primes p. The inclusion , hence the ETNC, clearly implies
IC(K/k, S,p) for S = S*, hence for all S. Of course, it implies considerably
more (for instance, that G/, g1 annihilates the p-part of Cly(K)) and in
this sense refines the IC in a different direction from the CC. We note that
the relevant case of the ETNC has been proven in our set-up only when K
is an absolutely abelian field (see below).

4.3. Strengthenings of the IC in the case p{|G|. The second part
of Jones’ Theorem 4.1.1 states that if the above case of the ETNC holds
and also pt|G|, then we have the following strengthening of ([25)):

(26)
Fittz, g (ppee (Kp) ™/ tipee (K))Fittz, g- ((Clm(K) @ Zp) ™)

if Sram (K/k) C S,
Fitty, - (1 (Ky) " Fiitty, o (Cla(K) © Z,)7)

if Syam (K/k) Z S.
Corollary 4.1.8 of [Jo] also establishes when p1|G| without assuming the
ETNC but imposes a mild condition on the characters of G. (The proof uses
results of [Wi] and work of Bley, Burns and others on, roughly speaking, the
compatibility of the ETNC with the functional equations of L-functions.)

Sk kst =

Independently, we used the functional equations themselves and more
elementary, index-type arguments to give a different (and unconditional)
formula for & x4, g whenever p{|G|. This is presented as Theorem Corol-
lary shows how one may quickly deduce IC(K/k, S,p) in this case. Of
course, it would also follow immediately from Jones’ formula . In fact,
there is a direct link between the two formulae, explained in Remark

4.4. The case kK = Q. When k = Q, the IC follows from Corollary 4.1
of [So5] (or indeed from the work of Jones, see below). In Section 7| we shall
prove the CC in this case, reproving the IC along the way:

THEOREM 4.3.

(i) Conjecture IC(K/Q, S,p) holds.
(ii) If K contains pyn+1 for somen>0, then Conjecture CC(K/Q, S, p,n)
holds.

4.5. The case of absolutely abelian K. As noted in [Jo, Cor. 4.1.7],
the relevant case of the ETNC follows from [B-F, Cor. 1.2] whenever K
is absolutely abelian and k is any totally real subfield (possibly but not
necessarily equal to Q). Thus the inclusion holds and in particular

THEOREM 4.4. If K is an abelian extension of Q, then Conjecture
IC(K/k,S,p) holds. m
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To state our result for the CC, in this case, we first define a set of rational
primes
Bad(S) := {q € Sram(k/Q) : Sq(k) ¢ S}
and formulate
HYPOTHESIS 4.5. pteq(k/Q) for all ¢ € Bad(S).

In Section [8 we shall show

THEOREM 4.6. If K is an abelian extension of Q containing pm+1 for
somen > 0 and Hypothesis is satisfied, then Congjecture CC(K/k,S,p,n)
holds.

(At the same time we shall obtain a second proof of Theorem which
assumes Hypothesis but is independent of the ETNC.) The proof of The-
orem [4.6] uses induction formulae for L-functions to relate the situation for
K /k to that of F//Q for various CM subfields F' of K, and this in two par-
allel applications. The first concerns sg/; ¢ and works at s = 1. The second
concerns RSC(K ™ /k, S; Z ) and works at s = 0. Popescu introduced the
latter application in [Po]. (In fact, he applied it to his own variant of Ru-
bin’s Conjecture B’ which also implies RSC(K T /k, S;Z).) He worked under
a hypothesis which implies Bad(S) = (). This simplifies matters (we only
need to consider F' = K) but is rather restrictive (e.g. Bad(S*(K/k)) # 0
whenever a rational prime ¢ # p ramifies in k/Q but not in K/k). The
elaboration of Popescu’s techniques which allows us to conclude under our
weaker Hypothesis is one ingredient of Cooper’s work on Popescu’s Con-
jecture in [Coo|. Hypothesis [4.5| holds, for example, whenever pf[k : Q] (e.g.
[k : Q] is a power of 2). Alternatively, suppose K = Q(§s) and k = K where
f=p"Tf %2 (mod 4),n > 0and pt f'. If we take S = SN (K /k) = SscUS,
then Bad(S) = () & f' = 1, but Hypothesis holds provided only pfq —1
for all ¢| f'.

4.6. Two “trivial” cases of the congruence ([24)). Suppose K D pin+1
for some n > 0 and S contains at least d + 2 places and at least one fi-
nite place q that splits completely in K. Equations and imply

le/k,s = 0 so that RSC(K™*/k, S;Z) holds with ng+ ;g = 0. The con-

gruence is thus equivalent to sx/;, (0) € p"*'Z,G~. The extension
K/K* = K*(pyn+1)/K" is unramified outside p, so if g does not divide p
then it cannot lie in S (which forces |S| > d + 2). We can then apply the
following result. (For a case with q|p, see the next subsection.)

PROPOSITION 4.7. Suppose K O jin+1 and q € S\ S*(K/k) splits (com-
pletely) in K. If IC(K/k,S\ {q},p) holds (e.g. if pt|G|) then S s C
p"1Z,G~. In particular, CC(K/k,S,p,n) holds.
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Proof. By it clearly suffices to show that p"™! divides (Nq—ogq)e™.
Since g splits in K+, o4 is either 1 or ¢, and since qtp, it acts on Hpnt1
by Ngq. If 04 = 1, it also acts trivially, so p"t! divides Nq — 1 hence also
(Ng—1)e™ = (Nq—og)e. If 04 = ¢, it also acts by —1, so p"*! divides
Ng+1 hence also (Nq+1)e” = (Ngq—og)e”. =

Next, suppose that 6 is a Z,-torsion element in /\%pG UY(K,)~. Then
Proposition implies that the L.H.S. of vanishes, so, assuming
RSC(K* [k, S; Z,)), this congruence is equivalent to Hy /. (M5c+ /1,5, 0) = 0.
If also pt |G|, then this is an immediate consequence of the following result,
to be proved in Section [6] (The verification seems harder if p||G| (and
d > 2), not least because ( /\%pG UY(K,))tor is then harder to characterise.)

PROPOSITION 4.8. Suppose p{|G|, K D ppn+1 and n is any element of
Z(p)/lo,S(K+/k) satisfying the eigenspace condition with respect to (S,d,G).
Then Hp . n(n,0) =0 for all 0 € (/\%pG UYNK}))tor-

4.7. The case k = KT. In this case G = {1,c} so pt|G| and the IC
holds for all admissible S. For the CC, we assume K D pipnt1 with n > 0
so that K = k(pyn+1) and St = S U S,. All places of k split in K™ so if
S # S' then CC(K/k, S, p,n) holds by Proposition . Also, if [Sp(k)| > 2
then |S| > d + 2 so once again CC(K/k, S, p,n) is equivalent to Sk/k,s C
p"1Z,G~ (see above). But this will follow from equation in Section [6)
(for the unique odd character ¢; indeed, the first term on the R.H.S. of (32)
is clearly divisible by (p"+1)I%I=1). This leaves only the case S = S U S,
with [S,(k)| = 1. Then 7/, g1 is non-zero and can be written explicitly in
terms of a Z-basis €1, ...,eq for Ug1(k)/{£1} and the Sy-classnumber of k.
Furthermore, a,. Jr,s can be calculated explicitly. Thus CC(K/k, S, p,n)

reduces to a new and unproven identity in Z/p"*1Z, relating a p-adic regu-
lator of elements of U'(K),)™ to a determinant of their Hilbert symbols with
the ;. This was studied in [Bo]. Results include a proof of a weaker divisi-
bility statement, a proposed analogous identity for p = 2 and full numerical
verification of these identities in more than 100 varied cases.

4.8. Other computational results. RSC(K ™ /k, S; Q) is not currently
known to hold non—triviallyAfor any S unless either KT is absolutely abelian
or all the characters y € G satisfying ords—o L+ /i,5(8,x) = d are of or-
der 1 or 2. However, if d is not too large, high-precision computation can
identify ng+ /¢ with virtual certainty as the unique solution of (15) in
€s.4.G /\6@ QUgs(K™). (This was done in [R=S1].) This makes it possible to
check the CC (and simultaneously the IC) on a computer. In [R-S2] we give
details of such numerical verifications for nearly 50 cases of CC(K/k, S*, p,n)
with k real quadratic, n = 0 or 1 and varying K and p.
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5. Changing S, K and n. If q is a prime ideal of £ not in S, then
(1 — Ng~'og) lies in Z,G. Hence gives

PROPOSITION 5.1. If S D S O S then the conjecture IC(K/k,S',p)
implies IC(K /k,S,p). m

REMARK 5.2. For the converse one would need e (1 — Nq~log) to be
invertible in Z,G~ for each q € S\ S’. But for any such q one has an
isomorphism of Z,G-modules
(27) ZpG /(1 — Nq_loq) = (Ok/q40k)”* ®z Ly = @(FS ®z Lp)

]
where £ runs through the primes dividing q in K and Fgq denotes O /Q.

Hence, if ¢ ¢ Dq(K/k) (respectively, c € Dq(K/k)) then e (1— Nq~toy) lies
in (Z,G~)* if and only if pt[Fg]| (respectively, pt[F5/(1 + ¢)F§|) for one,
hence any Q. This fails in particular if u, C K, in which case IC(K/k, S, p)
does not by itself imply IC(K/k, S’ p) for any S 2 S’.

PROPOSITION 5.3. Suppose S O 5" D S' and RSC(K ™ /k, S'; Z,)) holds
with solution N+ g1 Then RSC(K /K, S5 Zy)) holds with solution 1+ /i, s

= [lqes\sr(1 = U;}{+>77K+/k,8’~

Proof. It follows easily from and Proposition that the product
Hq(l — U;;(+)77K+/k,51 is a solution of RSC(K ™ /k, S; Q). The result follows
since Z,) Ao,sr is a ZG-submodule of ZipAo,s- m

PROPOSITION 5.4. If K D piyn+1 for somen >0 and S O S' D St then
CC(K/k,S',p,n) implies CC(K/k,S,p,n).

Proof. We assume that CC(K/k,S’,p,n) holds so also IC(K/k,S’,p)

)

and RSC(K™*/k,S;Z,). Thus IC(K/k,S,p) and RSC(K™*/k,S;Z
hold by Propositions and Using the latter and Proposition 2.12:

we find that, for any 6 € /\%pG UYK,)™,

(28)  KnlT1 - Ta) Hic o (MKt 1,55 0)

= H (1_R;(U;;ﬁ-))ﬁn(Tl"'Td)HK/k,n(nK+/k,S’76)

qes\ s’
= I =R e srsms (@) n (Z/p"PZ)G.
qesS\s’
For each q € S\ 5, equation with g = aq_l = a;igives R:‘L(a;}(+) =
e kn(0q) toq, and since qfp it follows that r,(cq) = Nq in Z/p"*'Z. Thus
1 — g*(g L _ -1 n+1 — S
mn(aq’KJr) acts as 1 — Nq~oq on (Z/p""7Z)G~ and combining
with gives , as required. m
Now suppose that F' is any CM subfield of K containing k. Then p, F'
and S satisfy the standard hypotheses. We write G for Gal(F'/k) and N/ p
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for the norm map K, — F,. (If we identify K, with H“BIP Ky and F), with
Hp|p Fy, then Ng/p sends () to (yp)p, where yp, = Hgmp NK&B/pr‘B') We
. . d d

shall also write N, for the Z-linear map /\ZpG UNK,) — /\ZpGF UYF,)
sending uy A -+ Aug to Ngspui A -+ A Ng/puq. One checks easily that
- o RY  — RpU

K/F K/k,p F/k,p
(as meromorphic functions C — CGp) so that TrK/F(a;{/kﬁ) = ag g We

deduce easily

o Ngr and also that mr/p o Or/ps = OFis

PROPOSITION 5.5. If K D F D k are as above then g /p o Sk/k5 =
sp/k,s © Niyp- In particular, if Ng/p /\CzlpG UYK,)~ — /\%pGF UNF,)~
is surjective then mg/p(Sx/k,s) = Spyp.s, so the conjecture IC(K/k, S, p)
implies IC(F'/k,S,p). m

REMARK 5.6. The surjectivity condition i s certainly satisfied whenever
NK/F(Ul(Kp)) = U!(F,), which in turn holds iff K/F is at most tamely
ramified at each prime in S,(F") (by local class field theory). Of course, it
actually suffices that Ny, p(U'(Kp)~) = U(F,)~, which can be shown to
be equivalent to the following statement: K/F™ is at most tamely ramified
at each prime in Sy(F1) which splits in F. Also, it is not hard to see that
VK/F © SF/ks = K¢ F]lfdsK/k,S o iy /p where iy p is the natural map
/\CleGF UYF,)” — /\CleG UY(K,)~, but for present purposes this is only
helpful when p{[K : F| or d = 1.

Let Gp = Gal(FT/k). The norm Ng+/p+ maps Us(K™) into Ug(F™T).
The symbol “Ng+/p+” will denote both the map 1@ Ng+ /p+ : QUs(K™) —
QUg(F*) and the Q-linear map /\féé QUs(K™) — Aéép QUg(FT) sending
1 N Nxg to NK+/F+ZE1 JANKRN /\NK+/F+55d-

PROPOSITION 5.7. Suppose K D F D k as above and RSC(K*1/k, S; Q)
holds with solution N+, s. Then RSC(FT/k,S;Q) holds with solution
N+ ks = N+ F+NK+ kS -

Proof. mrc+ jp+ (Np, (k+ k) 18 @ Z-multiple of Np,_ g+ /i) for all g€ 5\ Seo.
From this it follows easily that the form of the eigenspace condition on
NK+ ks (With respect to (S, d, G)) implies the same on Ngc+ /p+ 1+ /5,5 (With
respect to (S,d,Gr)). Similarly, since T+/r+ © O+ ks = Op+p,5 and
T+ /p+ © R+ i = Rp+ g © N+ yp+, if we apply mg+ g+ to condition
for ng+ /1,5 then we get the equivalent condition on N+ p+1g+ /.5

Before attacking the Congruence Conjecture in this context, we need two
lemmas.

LEMMA 5.8. If d=1 then NK+/F+(/1075(K+/]<:)) C Ao’s(F+/k‘). If

d>1, then Ny p+(Aos(KT/k)) is contained in e~@Ags(FT/k) where
e =exp((Us(K™)/Us(FF))tor) =1 or 2.
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Proof. The first statement follows from that of Proposition Next, by
sending [¢] to the map g — g(g) /e, we see that (Us(K1)/Ug(F*))or injects
into

Hom(Gal(K/FT), u(K™")) = Hom(Gal(K"/FT), {#+1})

so e =1or 2 Let (Us(K")/Us(F*))tor = V/Ug(FT) where Ug(K*+) D
V D Ug(F™T). Since Ug(K™)/V is torsion-free, Us(K™) splits over Z as
V @& V'. The sum Ug(F 1)+ V' is also direct and contains Ug(K*)¢. There-
fore, any f1,..., fs lying in Homy(Ug(F1),Z) (considered as a subset of
Homg(QUs(F*),Q)) extend to fi, ..., fs in Homz(Us(F*)+V’,Z) consid-
ered as a subset of Homg(QUs(K ), Q) and ef; € Homgy(Us(K*),Z) for
all 4. It is easy to see from the definitions that

(29) e pe (A5, (1) = A (Nt pem)
for all 7 € AQe QUs(K).
Hence, if n € Ag (K /k) then

Apy g (@Ngs ypen) = T e (Ao, ()
lies in ZGr. Letting the f; vary shows that N+ /p+n lies in e Mo s(F/k).

The proof shows that e = 1 if, for instance, |Gal(Kt/F1)| = [K : F] is
odd. Suppose now that pi,n+1 C F for some n > 0 and that P € Sp(K) lies
above p € S,(F), so we may regard F}, as a subfield of K. Basic properties
of the Hilbert symbol show that (a,b) gy, pn+1 = (a, Ny /5, 0) , o+ for all

a€ Fyand b e K% Regarding F' as a subset of Kj,, we easily see that
(30) [, Bl = [, Ng/pBlrn  for alla € F* and § € K.

LEMMA 5.9. Let 1 € ZgyAos(K*+/k) and 0 € N} U (Kp). Then
N+ ypn lies in Ly Ao s(F*/k) and

T/ F(HE/kn(0,0)) = Hpjgn(Ng+ 7 p+n, Ny p0).

Proof. By Z)-linearity in 1 and the fact that p # 2, we may assume 7 €
elos(K/k) with e as in Lemma The latter then shows that N+ g+ (1)
lies in Ags(F*/k) C ZgyAo,s(FT/k). Similarly, we may assume that 6 =
up A -+ Aug with u; € UN(K),)™ for all . We let f; be the map [+, wi]xn €
Homy(Us(K*),Z/p" ' Z) and choose a lift f; € Homg(Us(Kt),Z) for
each i. If §; denotes the restriction of f; to Ug(F*) then (30) says that §;
lifts the map g; := [+, Ng/puirpn € Homy(Ug(F1),Z/p"*'Z). Just as for
') we find 7TK+/F+(Af1,...,fd(77)) = A@l,.-.,gd(NK+/F+n)v and since both
S " to get Tt (A, (1)
= Ag,,...qa(Ng+/p+1). We conclude by applying QdE}}m to both sides and
using Kp,, © T+ /p+ = T /F O K, ®

sides lie in ZGF, we can reduce modulo p
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PROPOSITION 5.10. Suppose K D F D k as above and that Ni/p :
/\CleG UYK,)~ — /\CleG U'(F,)~ is surjective. If F D pn+1 for some n >0
then CC(K/k, S, p,n) implies CC(F/k,S,p,n).

Proof. We assume that CC(K/k,S,p,n) holds, so also IC(F/k,S,p)
holds and RSC(F™*/k, S ; Z(py) holds with solution 7+ /4 g, say. Proposi-
tion implies IC(F/k, S, p). Moreover, Proposition and Lemma
imply RSC(F*/k, S;Z,)) and that for any 6 € /\%pG UYK,)~ we have

Kn(T1 - Ta)Hp /i (ME+ /1,55 Nicyp0)
= k(71 Ta) Hp o (Nt pi i+ /i,55 Nicyp0)
=g/ r(Fn(T1 - Ta) Hg o (N 1,55 0))

=7k/r(5Kk/k,5(0)) = 5p/,5(NK/p0).
The result now follows from the surjectivity condition. m
Finally, if n > n/ > 0 then Hy ., (n,0) = Hg v (n,60) (mod p™*1) for all
1N € Ly Ao,s(K*/k) and 6 € /\%pG UY(K,)~. (The proof is an exercise using
the definitions of the Hilbert symbol, [-, |k n, A, Hyp, kn etc. and the fact
that an—n’ = (') One deduces easily

PROPOSITION 5.11. If K D pyn+1 for some n > 0 then CC(K/k, S, p,n)
implies CC(K/k,S,p,n’) for all n’ withn >n'>0. u

6. The case pf|G|. Let Xp, denote the set of irreducible Q-valued
characters of G which is in natural bijection with Gal(Q,/Q,)-conjugacy
classes of absolutely irreducible characters ¢ € Hom(G, Q)). (Precisely, if &
lies in X, then its idempotent e € Q,G splits in @pG as the sum of the
idempotents e, where ¢ runs once through the conjugacy class corresponding
to ®@.) We shall say that the characters ¢ in this conjugacy class belong to ¢
and we shall call ¢ odd if one—hence any—such ¢ is odd (i.e. ¢(c) = —1).
Henceforth we set a := Z,G and ag := e¢Z,G. Any ¢ belonging to @ extends
Qp-linearly to a homomorphism Q,G — Fy := Q,(¢), which in turn restricts
to isomorphisms from egQ,G to Fy and from ag to Oy := Zy[¢], the ring of
valuation integers of Fy. In particular, ag is a complete d.v.r., hence a p.i.d.

For the rest of this section we suppose that the prime p does not di-
vide |G|. This means that the idempotent eg lies in Z,G for each & € Ap, so
that a is a product [ ]4¢ g, 00 Any a-module M splits as a corresponding di-

rect sum ®¢6X@ Mg, where Mg denotes the ag-module eg M, and M +— Mg
P

is an exact functor. Since any ¢ belonging to @ has order prime to p, a uni-
formiser of Og—hence of ag—is given by p. The ag-order ideal [Nlq, of
any finite (= finite length) ag-module N is therefore p'ag where [ is the
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length of any ag-composition series for N. We shall assume the usual prop-
erties of the order ideal, such as multiplicativity in exact sequences. Each
p-adic-valued character ¢ € Hom(G,Q)) corresponds to a unique complex

character x € G such that ¢ = jox where j is the fixed embedding Q — (@p.
We write x and ngS = j o respectively for the associated complex and p-adic
primitive ray-class characters, f4 for f, and K ¢ for the field K*er(®) = fker(x)
cut out by ¢, so that x and ¢ factor through Gy := Gal(K?/k). Work of
Siegel [Si] and Klingen (see also Shintani [Shl Cor. to Thm. 1]) implies
that Oy g (0) lies in QG so that L(0, X = X(Oko i, 50(kc4 /1) (0)) lies
in Q(x). Thus j(L(0,X™1)) = ¢(Oke i 50k /1) (0)) lies in Fy and is inde-
pendent of j so, by a slight abuse of notation, we write it simply as L(0, éil).

THEOREM 6.1. If pt|G| then, for any odd & € Xg, and ¢ € Hom(G, Q))
belonging to @, we have

~

(31)  ¢(Gxms) = (U Eplor)olas) [ (1= Na'o([a])L(0,¢7)
q€S\ S
qtpfe

(an equality offmctional ideals of Fy) where L(0 0,671 is as defined above.
Equation (31) for each @ clearly determines Gy g. Before giving the
proof, we reformulate it and deduce some consequences. Firstly, U! (Kp)tor
is nothing but gy (Kp) = [lgy, tpee (Kip). Next, for given ¢ as above we
define a Z,Gg-submodule of Q,G4 by
Jg = ananG¢(Mp°°(K¢))@K¢/k,50(1{¢/k)(0)-
Since pf[K : K?], we have
¢ srce(Js)) = dlanng(ppee (K))vig o (O o sk s0(i0 1 (0)))
( (K)))[K : K¢] (0,71
(anna, (ppe (K?)g))L(0,67")
(anngg (ppe (K)a)) L(0, 1)
([ppoe (K)é]a@)L(O:¢_l)
e

(the last equation becaus iy (K®)g is cyclic over Z, so over ag). Thus we
may reformulate as

)
anng( iy (K?)
¢

S S S S

(32 ¢<6K/k,s> = ([t () 1= (K)o
x TT (0= Na d(a)) (s me ()
i

But Jy is spanned over Z, by annzg, (M(K¢))9K¢/k750(;(¢/k)(0), which lies
in ZG4 by the well-known result of Deligne-Ribet and (independently)
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P. Cassou-Nogues (see Théoreme 6.1 of [Tal p. 107]). Hence Jy C Z,G
and so implies that ¢(&x/xs) C Oy for all odd ¢ € Hom(G, Q).
Consequently,

COROLLARY 6.2. If pt|G| then IC(K/k,S,p) holds.

REMARK 6.3. We explain the relation between Jones’ formula and
our Theorem recast as equation for all odd ¢: The ray-class group
Clw(K) appearing in fits into an exact sequence of ZG-modules:

0- 05— [[ IOx/Q* — Clu(K) — CUK) 0
qeST\Seo Qlg
(where the first non-zero term is simply the image of Oy in the second).
Now tensor this sequence with Z, and take minus parts. Using the fact that
(O) @ Zp)~ = ppe(K) and isomorphisms similar to one finds with
a little work that is equivalent to the following for each odd ¢ as in
Theorem

(S k/r,51) = O[(1pe (Bp) [ 1po= (K)) ] o)
x T = Na'((a)e([(CUK) © Zy)a]as)-

ge5M\Seo
atpfe
Since pf[K : K?], one sees that this in turn is equivalent to our (with
S = SY) if and only if ¢(Jy) = ¢([(CHK?) @ Zp)p|ap) (Where & and ¢ are
now considered as odd characters of Gg). But Theorem 3 of [Wi] establishes
the latter equality subject to a rather mild condition (“Sy, = 0”) on the
character ¢.

Proof of Theorem . For each i = 1,...,d, we write p; for B; Nk (the
prime ideal in S,(k) which is defined by the embedding j7; : Q — Q).
The map {1,...,d} — Sp(k) sending ¢ to p; is clearly surjective so for
any p € Sp(k) we write I(p) for its fibre over p and choose an element
i(p) € I(p). Thus Py(p) Nk = pip) = p for all p € Sp(k), and the extension
K, /kp is Galois with group Dy(K/k) of order prime to p. It follows
(e.g. by a theorem of E. Noether, since Ky, /kp is tame) that we may
choose an element by, € OK%(p) freely generating OK‘BM,) over Oy, Dy(K/k).

Let b be the element of Ok, := Hme Sy (K) OK&B whose component in (’)K(13
is by whenever P = P;(,,) for some p € Sp(k) and is 0 otherwise. Then b is a
free generator for Ok, over O, G, where Oy, denotes the ring Hpe Sy (k) Ok, »
which we identify with Oy ®z Z,. So if c1,...,¢cq is a Z-basis of Oy then
c1®1,...,cq®1is a Zy-basis of O, and a1 :=b(c1 ®1),...,aq := b(cg®1)
is a free basis for Ok, over Z,G = a.

For any P € S,(K) let ‘i3 and e denote respectively the maximal ideal
and the ramification index of Kgq/Q,. Clearly, ey depends only on p, the
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prime lying below B in K. The exponential series converges on pOk,, = ‘.]5‘6‘13
for each P € S,(K') and defines a Z, Dy (K /k)-isomorphism to U** (Kg). To
shorten notation, we write U! for U'(K},) and U< for [pes, (k) U™ (Kp)
c UL It fol.lows erm the above that the map Ex.pp = H&BGSP(K) expy,
pOk, — U*¢is an a-isomorphism and hence that U€ is free over a with basis
wy = Exp,(pai), ..., wq := Exp,(paq). It is also of finite index in U, and
since a is a product of the p.i.d.’s ag, it follows that U'/U{  must also be
a-free of rank d, so, in an additive notation, we get

d
(33) U'=U}, @ EB au; where 1y, ..., g is any free a-basis of U/UL,.

Now let ¢ and @ be as in the statement of the theorem and let M €
Mgy(ag) be the matrix representing egws, . .., egwy in terms of the ag-basis
epi, . . ., eplg of (U'JUL )g. The determinant of M has two different in-
terpretations. On the one hand, if we write U¢ for the isomorphic image of
U¢in U'/UL, then the general theory of p.i.d.’s and order ideals gives

det(M)ag = (U /Uior)a/(U)olas = [Us/Uglas | (Uior)#lam

Now, for all p € Sy(k), P € S,(K) above p and I > 1, there is a well-
known Z, Dy (K /k)-isomorphism U!(Kg) /U (Kg) — P! /BH induced by
x — x — 1. This gives an a-isomorphism after taking products of both
sides over the 3 above p. Applying eg and letting p and [ vary, a simple
argument with exact sequences shows that Uq% / Uq% has the same ag-order

ideal as Ma/(pOk,)e where M denotes [ [gpe Sy(K) P C K. Therefore

(34)  det(M)ag = [Ma/ (PO, )e)as [(Usor)a)ay

= [(OKp)é/(POKp)é] [(OK,)a/Ma)o, [(Uor)alay

P[(Ok,)a/Mala, [(Uior) o]y
since Of, is free of rank d over a. On the other hand, Proposition
equation and the definition of sy g give
(35)  @(det(M))d(Skyr,s) = ¢(det(M))d(easr/k,s(ur A= -+ Aug)a)
= (de ( )5K/k S(egpul VANV e¢ud))(9¢
= d(s5x/k,s(epwi A -+ A eéwd))(%

= y(x(aK/k,s>>¢<R§<}k,p<w1 M- Nwa))Oy

where ¢ = j o x. But tracing through the definitions we have

R (Wi Ao Awg) = det (D log, (67 (67 Exp, (par))g )

1<it<d
geG -
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and
log, (6" (97" Exp, (par))) = log, (j7i © 195, FExp, (9™ ' par))
= log, (j7i expp(tg,9~ "par)) = 67 (g pay)
= po? (g7 1b)jmi(c),
so that

d
(36) R%)/k,p(wl Ao Nwg) = pf H(Z 5§j)(g_1b)9> det (j7i(ct))1<ip<a

i=1 geqG
d
= +p%j(v/do) [T o).
i=1
Applying ¢ to and and combining them with gives
(37) $(Sx/k.5) = (0K, )o/Malas)S([(Uor)#las)

d .
% (Vi x(ag ) [T 207 0)).
=1

Now fix p € S,(k) and write D, for Dy(K/k) and Ty for T,(K/k). Con-
sidering [ oy, (Ory /PB) as an a-submodule of Ok, /M, we have natural a-
isomorphisms

H(OKq;g /q}) =a ®Zpr (OKmi(p) /i}l(p))
Plp
= a ®z,p, (ZpDy @z,1, (O1/P)) = a ®z2,1, (O1/P)
(where the action on O /p is trivial and the second isomorphism is from the
normal basis theorem in the residue field extension of K, - /kp). It follows
easily that (][g,(Oky /P))e is trivial unless T, C ker(¢) (i.e. p{fe), in
which case it has order ideal (Np)ag. Taking the product over all p € S, (k)
yields
(38) 0[Ok, )o/Malag) = ( [T Np)0s.
peSp (k)
ptfe

Furthermore, equations , and give
(39) Veix(agys)= 11 (0= Na7"%(a))v/dx i/m) L1, %)

i
q17x
=TI a=Na'%(a)(=D)* (0" LO, ).
i
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The second equality follows from Hecke’s functional equation for the L-func-
tion. To be precise, we are using the version stated on p. 36 of [Fr], taking
s = 0 and taking Frohlich’s complex character “0” on Id(k)—the idele group
of k—to be the one obtained by composing x with the map Id(k) — G
coming from class-field theory. Thus 7() denotes the Gauss sum associated
to this character whose definition we shall recall below.

Applying j to and combining with (37) and ( . gives

¢(6K/k,5) :(b Utor H Np H 1_Nq [q]))
pesp(k) €S\ S0
Pt qtfe
d .
x (0,6~ 1)j(r () [T 6697 (b))
=1
= ¢([(Ubalas) [] (01— Na~té(la])
qeS\ S0
qtpfs .
< L(0, 6~ 1) (r () [] (6 (0)
=1

where we have used the facts that every prime ideal p in Sy(k) is contained
in S and that if, in addition, it does not divide f, then Np(1—Np~1¢([q])) =
(Np — ((q])) lies in O |

The argument so far shows that j(7(x))~! Hle ¢(5§])’G(b)) lies in F.
The theorem will follow if we can prove that it too lies in O, i.e. that

d .
) ~ [] 667 @)
=1

where “a ~ b” means that a,b € @; have the same p-adic absolute value.
Recall that Frohlich defines 7(x) as the product [[ s 7(xq) where xq :
kg — Q* is the g-component of the complex idele character associated to x
and 7(xq) is the “local Gauss sum” (which equals 1 unless q| fy, so the prod-
uct is finite). For definitions and basic properties of the algebraic integers
T(Xq) see [Ex, pp. 34-35] or [Mal, II-§2]. In particular, [Fx, eq. (5.7), p. 34]
shows that j(7(x)) ~ 1 unless q € Sp(k). Hence j(7(x)) ~ [Ipes, @) J(T(xp))
and since {1,...,d} is the disjoint union peg () I(p) it suffices to show
that

(40) i) ~ T ¢(67¢v))  for any p in S,(k).
i€l(p)

But this is essentially (a special case of) Theorem 23 of [F]: Take F' :=
JTip)(K), L := j7ipy(K) as subfields of Qp, isomorphic via j7;,) to kp and
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Kgp“p) respectively. The extension L/F' is thus abelian with Galois group
I' which we identify via j7) with Dy. We take Frohlich’s character “x”
to be our xp : k:X — @, which factors through the local reciprocity map
kX — Dy and so may also be regarded as x restricted to Dy, = I'. Thus
Fréhlich’s “x?” may similarly be identified with our ¢ restricted to I". Since
I' has order prime to p, L/F' is tame so Theorem 23 of [Fr] applies to give
(with these identifications)

3(7(xp)) ~ Ny, (iTigp) (0p)|)
where the R.H.S. is the norm resolvent (see below) associated to the free

generator j7;p(bp) of Op over OpI'. Thus and hence our theorem will
follow from

(41) IT #: ~ Nryq, (7ip) (0p)|9)-

i€I(p)

The proof of (41)) is largely a matter of unravelling our definitions and
comparing with Fréhlich’s, so we only sketch it. For any 7 € I(p) we can
choose g; € G such that ¢;B; = P;(,) and then o; € Gal(Q,/Qp) such that

O‘ijT-(p)(iL') = j7ig; H(x) for any z € Kgp. . Then
07 C) = 3 gy, (g7 0)6(g) = S jrigr h (bp)blhge)

9eG heDy

= 6(9:)0s (37 (i) (o)) (9(1)) ~ 03Ty (bp) | 770 )

yel’

where (j7;p)(bp) |05 16 ¢) denotes the resolvent defined for example in
[EY, eq. (4.4), p. 29]. Equation now follows on taking the product over
i € I(p), using the definition of the norm resolvent in [Fr, eq. (1.4), p. 107]
and the fact (which the reader can easily check) that as ¢ runs through I(p),
o; Tuns once through a set of left coset representatives for Gal(Q,/F) in
Gal(Q,/Qp). (Frohlich uses right cosets because of his exponential notation
for Galois action.) This completes the proof of Theorem "

Some of the facts used in the above proof will also be useful in the

Proof of Proposition[4.8 Since pt|G|, we can use to show that any
0 € /\%pG U' may be expressed as the sum of zui A--- Aug (for some x € a)
and finitely many terms of form zAwvg A« - -Avg with 2 € UL, and v; € U for
i =2,...,d. Since we are assuming that 6 is Z,-torsion, so also is its image
x(ay A -+ ANag) in /\%pG(Ul/Utlor) and since 4 A --- A ug freely generates
the latter over a, it follows that = 0. Thus, by linearity, we may assume
that 0 = 2 Ava A -+ Avg. On the other hand, pf|G| also implies Z,)Ag,s =

Z(p)/\%é Us(K*) by Proposition . If we write € for |Gleg 4 € ZG then
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it follows from the eigenspace condition on 7 that it equals |G|~%(2¢)% and
so may be written as a Z-linear combination of terms of form (1 ® ée1) A

A (1 ® éeq) with g; € Ug(K™T)? for all i. By Z-linearity and ( ., it
therefore suffices to show that [ée, 2]k, = 0 for any ¢ € Us(K*+)? and any
z € UL, = pipo (Kp), say z = (z)q with zg € pryee (Kgp) for each P € Sp(K).

By the definitions of [, |k n, [, -Jgn and (-, ) gy, pr+1 this reduces further to

the statement that O-Lrp(es) Ky (C‘I?) = Cm for each (,B7 where QB L Z(‘lp/pnﬂ

is a p-power root of unity in (Kgp)ab But (g actually lies in Q , so local
class field t~he0ry tells us that o, (¢). Ky (Cp) = 0Oay #@p(g‘ﬁ) Where ap =
NKm/Qqug(es) = Nkp/Qme(-ZYDp(K/k)es) and p € Sp(k) lies below sl; But
the image of ND,,(K/k:) in ZG is NDP(K*'/k) or 2NDp(K+/k)' If|S| >d+1
then, since p lies in S, formula l) shows that Np,_ (x+/)€ =0 in ZG, so
asp = 1 for all P and the result follows. Finally, if |S| = d + 1 then we must
have S = S (k) U Sp(k) = Soo(k) U {p} and now implies Np,_ g+ /)€ =
|Dp(K*/k)|Ng. Hence agp is a power of Ny /g, tqp(Ng+/ke) which equals
vp(Ni/oNk+kE) = Ni+jge since Sp(k) = {p}. But e € Us(K™)? implies
that Ng+/ge, hence also ag, is a power of p and the result follows from
the well-known fact that opq,(C(p) = (g (Indeed, p = Ng,(¢p)/0,(1 — (p)
implies that o, q, restricts to the identity on Q,((yp).) =

7. The case k = Q. The following lemmas will be used in the proof of
Theorem Let p be an odd prime and f a positive integer. We write f as
St for some m > —1 and f’ prime to p. We shall abbreviate Q(&y) to
Ky, Gal(Q(&r)/Q) to G and Gal(Q(&f)T/Q) to Gy. For any a € (Z/fZ)*
we write o, for the element of Gy sending ; to f;‘?.

LEMMA 7.1. Let S = {oo} U Sf(Q), which contains S°(Ky/Q). Then,
with the above notations

() Ok q.5(0) = 5 > Toala((1 - €)1 - & lg
ger
(ii) a;(f/Q7S = f Z (&r/(1=&5))g™
gGGf

Proof. For part (i), see e.g. [Stl p. 203]. A rather indirect proof of the
equation in (ii) uses [Sh, Prop. 1] to calculate @f, /p(0) as outlined in [Sof,
Example 3.1] and returns to s = 1 with @D In principle, one can also
work “y-by-x”, calculating x(L.H.S.) in (ii) from the usual formula for
L(1,¢) when ¢ is an odd primitive Dirichlet character. (See e.g. [F-T) The-
orem 67(b)].) However, the imprimitivity of our x and presence of a Gauss
sum in the formula make the relation to x(R.H.S.) surprisingly difficult. We
therefore sketch a direct and very elementary proof of (ii), similar in some re-
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spects to that of [F T| Theorem 67] Equation ({2) shows that © /0, g(1) =

Zi—l (a.f)=1 a0 I where t, = hms—>1(CKf/Q7S(3 Oa) — CKf/Q’S(S 0_a))
and CKf/Q,s(S,O'a) =2 n>1n=a(n® ° for Re(s) > 1. Forany 1 <c< f—1
the function Z(s,c) :=3_, -, {§'n"* converges (conditionally) to a continu-
ous function of s € (0,00]. For each 1 < a < f — 1 with (a, f) = 1 and any
s € (1,00] we find easily that

(42)  Cry/0.5(8:0a) — Cx,/0,5(8:0-a)

-1 f-1
= LS ) 25,b) = o S — €9)(Z(5,b) — Z(s, £~ b).
f b=1 2f b=1

But if log denotes the principal branch of logarithm, then Abel’s lemma and
some Euclidean geometry show that Z(1,c) = —log(1 —¢{f) = —log |1 — &§|
+im(1/2 — ¢/f). So, letting s — 1+ in (42), substituting for Z(1,b),
Z(1, f —b) and using the identity

f—1
D bt =~ / — for (a,f) =1,
b=1

we find after rearranging that

, __m< § & )
a 2f 1—5? 1_6;(1 ’
which implies (ii). m

Let us write K ¢ for the field Q,(uy) C @p. The proof of Theorem
depends crucially on the following cyclotomic explicit reciprocity law due
to Coleman. (The case f' = 1 was proved much earlier by Artin and Hasse
in [A-H|.)

LEMMA 7.2. Let ff be any primitive fth root of unity in Kf and let
v e Ul(f(f). Then

b(éf,’()) =
lies in Zy. Furthermore,
(1-¢&;, Vi, pm+1 = (ff R

the R.H.S. makes sense because £ is a primitive p™ T th root of unity).
f

ch Tri, g, ((€5/(1 = &5)) log, (v))

Proof This follows from Corollary 15 of [Col]. We first write § ¢ uniquely
as 5 r = §pm+1C ¢ where Cpm+1 and C s are generators respectively of pi,m+1
and py in K 7. We also write H for K t, an unramified extension of Qp,
and Op for its ring of integers. Now 1 — §f = h(uy,) where h(T') denotes
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the linear polynomial 1 — ff/(l —T) € Og[T] and up, =1 — épm+l. The
Frobenius element ¢ of Gal(H/Q,) may be extended to an automorphism
of Oy[T] (resp. of H(up=) C Q,) by acting trivially on T (resp. on fiyee).
Suppose [ > 1 and [ >4 > 0. Since ap(éf/) = é?,, one verifies easily that

)= ] a-{pc-1)).

CAGszfi

l—1i

P (1 - (1-T)"

Substituting 7' = u; = (1 —épl+1) for any generator 6pl+1 of pu,+1, it is easy to
see that the R.H.S. becomes the norm from H (pi,+1) to H (p,-i+1) of h(w).
Thus A(T) lies in the subgroup of Oy ((T))* denoted M® by Coleman,
and this for any [ > 1. Indeed, this follows from the equation at the foot of
p. 376 of [Col] after correcting the misprint “¢" %" to read “¢‘~"" (which
is necessary for consistency with Coleman’s equation (1) on p. 377). Now
we can apply Coleman’s Corollary 15, p. 396, after first correcting another
obvious misprint: the meaningless “A(a)” in the main equation should be

({3 }]

replaced by A(1 — a) (= —log,(a)). If we take Coleman’s “n” to be our m,

his “u” to be our u,, (so that his “H,” is our K'f), his “a” to be our
v and his “g” to be our h (so that §h(T) = (1 — T)h(T) " *dh(T)/dT =
ff/(l -T)/(1 - CAf/(l —T))) then the R.H.S. of the main equation in his
Corollary 15 equals — f'b(& #,v). The corollary implies that this lies in Z,,, and
(taking into account Coleman’s definitions of “Ind,,,,” and of “(x,y),,”, the
latter agreeing with our (y,x) & 7pm+1) it also implies that (1—¢ £,0) Ryt =
(1 — )€ | from which our lemma follows immediately.

Proof of Theorem [{.3 Let K be an absolutely abelian CM field and
suppose that f = f'p"*! is the conductor of K, i.e. the smallest positive
integer such that K C K. Then Sam(K/Q) = Sram(K/Q) = S¢(Q). Since
p is odd, pym+1 C K implies (e.g. by ramification) that n < m. Therefore, if
m = —1 then the Congruence Conjecture does not apply and IC(K/Q, S, p)
follows from Theorem So we may assume m > 0. By Propositions
and we may further assume that S = S*(K/Q) = {oo} U S¢(Q) (which
is also equal to S°(K/Q) and to S' = S%(K;/Q)). If m = 0 then K;/Q is
tamely ramified at p. If m > 1 then (since p # 2) the ramification group
Ty(K;/Q) = Gal(K;/Q(&)) has a unique minimal subgroup of order p,
namely Gal(K;/Q({s/p,)). This cannot be contained in Gal(Ky/K) by min-
imality of the conductor f. Thus, in any case, K;/K is at most tamely
ramified above p. So by Remark it suffices to prove CC(K;/Q, St p,m)
and apply Propositions and

We start with RSC(K;F/Q, S Z ) (see also [Tal p. 79]). The algebraic
integer (1 —¢&¢)(1— f;l) = (1—¢&p)!* lies in K;{ and the norm relations for
cyclotomic numbers (see for example [Soll Lemma 2.1]) show that, for any
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q € S¢(Q), the number NDq(Kf/Q)(l —&y) equals p or 1 according as ' =1
or f' # 1. It follows firstly that (1 — &;)'* lies in Ugi(K7) (and even in
USOO(K]T) for f' # 1) and secondly, using Proposition that ny := —% ®
(1—=¢p)ltee %/\%Gf Usl(}'{}!—) = 3Uq (K}F) satisfies the eigenspace condi-
tion with respect to (S1,1, Gf). Moreover, RK+/Q = >‘K+/Q 1» 80 taking T to

be the identity, Lemma .. ) shows that 7y is the unique solution 7 K}/Q,8!
of RSC(K+/Q S, Z). For any u € Ag, G UNKyp)~ = UNKyy)™, it fol-
lows from and . ) that

(43) HKf/Q,TfL("?f? =-2" ! Z ’Sf 1+C ,gU]Kf my -1
gEG’f
=271 =&, gu kg
QEGf
== 1 =& guli,mg ™
QEGf

=3 (X 0 mlon)lpn)e

9geGy PeSy(Ky)

(where 1 —¢; is identified with its natural images (1 —&7) ® 1 and vp(1 —&f)
in K, and Ky respectively). Next we need to calculate the map sy +/Q,51-

©)

Fix a choice of j : Q — Qp It follows easily from the definitions of RK /0P

and sy, /g 51 and from Lemma . ) that for any u € U (Ky,)™,

(44) g, /0,61 (u) = Z ag(u)g~!  where
gEGf
) = 30 /(1 = &0)1og, 6 (hgo).
hGGf

Let D denote D,(K;/Q), identified with Gal(Kyg/Q),) for every P €
Sp(Ky). Recall that By € S,(Ky) is the ideal defined by the embedding
j = j71, which therefore gives rise to an isomorphism (also denoted j)
from Ky, to j(Kf) = K ¢. This in turn induces an ibomorphism from
D to D := Gal(Kf/Qp) sending d € D to d say, where jd = dj. For each
B € Sp(Ky) we choose hgg € Gy such that hgp(B) = By so that hy extends
to an isomorphism from Ky g to Ky, . Thus G = g hgD and for any d

in D, jhypd = dj he defines an isomorphism from Ky g to K 7. It follows that
if u e UYKy,)™ and g € G, then logp(dgj)(hgpdgu)) = log, (jisp, (hypdgu)) =
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log,, (jheypdiyp(gu)) = Jlogp(jhcpbqg(gu)). Consequently, we find

(45) agw)= 3 }Zjhmd@f/(l—sf»logp(a%”(hmdgu))

PeS,y(K;) ! deD

-3 J{ﬂkf/quhqB(sf/(l—§f>>logp<jhw<9“>>>
PESp(Ky)

= Y b(rpvgp)

PESp(Ky)

where, for each B € S,(Ky), we have set gffb = jhyp(&r) and vy =
Jheptgp(gu) and where b(é 7.9, Ug,p) Is as defined in Lemma,7.2l The first state-
ment of this lemma therefore shows that a,(u) € Z, for all u € U (Ky,)~
and g € G, i.e. IC(K/Q, S, p) holds. Also, the definition of the pairing
[ Jpmt1 gives

Lm(&}c )Uigf’bm (9wl m+1 = (1 - €f7 Lm(gu))Kgg Jpmtle

Applying jhg to both sides and using the second statement of Lemma
we get

(é}cm)[l—fwm (gw)lp,ms1 — ( _ (é}{m)—b(ﬁf,m»vgm),

1 - gf?%’ Ug7‘,B)Kf’pm+1

which implies that b(éfm, vg.p) = —[1—&f, ep(gu)]pmtr (mod p™ ). Sum-

ming this congruence over all P € S,(K¢) and combining with ,
and , we obtain 5Kf/Q,S1(U) = HKf/Q,m(UfaU) (mod pm+1) for any
ue U (Kyp)™, giving CC(Kf/Q,Sl,p, m). m

8. The case of K absolutely abelian. If L/M is any Galois exten-
sion of number fields and ¢ any complex character of Gal(L/M), then the

T-truncated Artin L-function Ly 7(s,¢) is defined for any finite set T" of
places of M containing So (M) but not necessarily Syam(L/M). If Gal(L/M)

is abelian and ¢ is irreducible (i.e. ¢ € Gal(L/M)) then, as noted in Re-
mark the definition agrees with the third member in . In particular,
there is no conflict with previous notation in the case T' D Syam(L/M) and
we always have

(46) Lymr(s,¢)= [ (1= Na=é((a])L(s, ¢)
CIGT;?;;(M)

= I1 (1—Nq—*¢(q)™"

a¢TUSram (L? /M)
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where qg denotes the associated primitive ray-class character modulo fg,
L¢ = [**(9) and the infinite product converges only for Re(s) > 1.

LEMMA 8.1. Suppose L/M and T are as above, with Gal(L/M) abelian,
and suppose | is any intermediate field, L D 1 D M. Then for any x €

Gal(L/l), we have an identity of meromorphic functions on C:

Liprox) = [ Lomr(s,¢).
$€Gal(L/M)
Blaal(r /=X
Proof. This follows from the usual induction and “additivity” proper-
ties for Artin L-functions (see [Tal, p. 15]) and the fact (e.g. by Frobenius
Gal(L/M) 5 5.
Gal(L/ly X = Zugeqannin P ™
Blaai(L/ny=x
LEMMA 8.2. Let B be a finite abelian group, C any subgroup of B and
x any element of CB. We write z|CB for the endomorphism of CB, con-
sidered as a free CC-module, determined by multiplication by x. For any
x € C, we have

reciprocity) that Ind

(det(cc z|CB)) H o(x
peB
dle=x
(all characters extended linearly to homomorphisms from the complex group-
rings to C).

Proof. Choose any CC-basis B = {y1,...,yn} for CB (where n =
|B : C) and let T' = (tij)i; € Mp(CC) be the matrix of z|CB with re-
spect to B. If e, ¢ denotes the idempotent attached to x in CC, then z|CB
acts on the submodule e, ¢CB, and its matrix with respect to the C-basis
{ex.cyt,...,ex.cyn} of the latter is clearly x(T) := (x(tij))i; € Mn(C).
Hence x(detcc(z|CB)) = x(det(T)) = det(x(T)) = detc(z|ey,cCB). On
the other hand, e, ¢CB also has a C-basis consisting of the CB-idempotents
eq,p for the characters ¢ € B such that ¢|c = x. (This follows easily from
the fact that e, ¢ is the sum of the corresponding ey p’s.) The result follows,
since zey p = ¢(T)eg p. =

For the rest of this section, we fix K/k, S and p satisfying the standard
hypotheses with K absolutely abelian. Thus G = Gal(K/k) is a subgroup
of the abelian group I" := Gal(K/Q). We define a set of places Sg of Q by

Sg = {oo} U {q prime such that S,(k) C S}.

Thus p € Sgp and Sg(k) is the maximal Gal(k/Q)-stable subset of S. The
definition of Bad(S) in Subsection gives

Spam(K/Q) = Bad() (Sram (K/Q) N Sg)
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(disjoint union). Let us write A for the subgroup [],cpaa(s) Tq(K/Q) of I'
(trivial if Bad(S) = 0). If F is any subfield of K, it follows that

(47) F c K* < all primes ¢ € Bad(S) are unramified in F
& Sam(F/Q) C So.
We denote by Xgp(A) the set of irreducible Q-valued characters of A. Each
A € Xp(A) corresponds to a Gal(Q/Q)-conjugacy class of characters a € A
which “belong” to A. We set ker(A) := ker(a) for one (hence any) such «
and K4 := K*'(A) 5 K4 We define
Sa = Sg U Sram(K1/Q) D S'(K4/Q)
and write 774 for the “averaged corestriction” map |ker(A)|~ vy /KA, Which

is a (non-unital) homomorphism from CGal(K“/Q) to CI". Finally, let e4
denote the idempotent of QA corresponding to A. With these notations, we
define a meromorphic function

Tr/ps:C—CI, s Z eAVA(Oa/g.s,(5))-
AeXy(A)
ProrosiTION 8.3. With the above hypotheses and notations,

(48) Ok /k,So(k)(8) = detca (T gk, 5(5)|CT)
(as CG-valued meromorphic functions of s € C).

Proof. By meromorphic continuation, it suffices to prove x(L.H.S.) =
x(R.H.S.) in , for Re(s) > 1 and for all x € G. Equation and
Lemma [8.1] give

L H.S. Of . LK/k So(k )( _1) = H LK/Q,S@(£)¢_1)7

pel’

Bla=x
and evaluating x(R.H.S. of (48)) via Lemma it suffices to show that
LK/Q,SQ(S,¢*1) = ¢(zg/k,5(s)) for any ¢ € I'. Suppose ay := ¢|a be-
longs to Ay € Xg(A), so that ker(ag) = A Nker(¢) and K4 = KAK?.
On the one hand, this means that ¢ factors through Gal(K#¢/Q) and
Plea,va,(y) = ¢(y) for all y € CGal(K*4¢/Q), while ¢(eq) = 0 for any
A # Ag. On the other hand, the equality KA = KAK? implies that
Seam (K% /Q) = Spam(K4/Q) U Sram(K¢/Q) Now, crucially for our argu-
ment, implies that Sram(K /Q) C Sg so Sa, = S@ U Sram(K?/Q).
Putting this together, and (46) give, for Re(s) >

¢(xK/k,S( s)) = ¢(€A¢VA¢ (QKA¢/Q:SA¢( s))) = LKA‘i’/Q,SAd) (s, ¢71)
- 11 (1-q 0" (q) = Li)g,so(s:¢7"). =

q¢SqUSram (K?/Q)
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Let us write Xy (A) for the set {A € Xp(A4) : ¢ & ker(A)} (= Ap(4) if
c¢ A) and TR ks for the function e~ 2k g : C — CI'". If A € A(A) lies
in X (A) then KA is CM. Otherwise e"e4 = 0. Therefore x;(/kvs(s) equals
ZAGXQT(A) GAI;A(@;(A/Q’SA(S)) and is entire as a function of s. Now take
s = 1, multiply by i/m and apply the involution (-)* : CI' — CI" (which
fixes each e4) to get

T\ _ N .

AeXy (A)

which lies in QI" by . On the other hand, multiplying O s, (k) (s) by
(i/m)% = ((i/m)e” )Gl in the previous proposition and letting s — 1 im-
plies that aj. . ) is the CG-determinant of (i/ﬂ)m;(/hs(l) acting on CI.
It follows easily from this that

—, % { — * | M)
(50) O Sah) = detQG<(W>wK/k,s<1) \QF).

For each A € X (A) the data KA/Q, S4 and p satisfy the standard hy-

potheses. In particular, we have a well-defined Z,Gal(K*/Q)-linear map
5}§A/Q73A from Ul(KIf‘)* to Q,Gal(K*/Q)~ (where “id” denotes the iden-
tity element of Gal(Q/Q)). Both the norm map N4 : U'(K,) — Ul(KI;‘l)
and the averaged corestriction 74 : Q,Gal(K A/Q) — QpI" take minus parts
to minus parts. The automorphism 7; € Gal(Q/Q) restricts to an element
vi := Ti|g of I" for i = 1,...,d such that {'yl_l,...,'yd_l} is a set of coset
representatives for G in I, hence also a basis for RI" over RG, for any
commutative ring R. We can now state:

THEOREM 8.4. With the above hypotheses and notations, suppose that
ui,...,uq are any elements of U(K,)~. Then

S g (e (UL A Aug) = det (cip)i<ii<d
where ¢;; € QpG™ s the coefficient of ’yi_l when the element

Z eADA(siIC(lA/Q,SA (Ng/xaw))
AeXy (A)

of QpI'™ is expressed in the Q,G-basis {vfl, e ,751} of QpI".
Proof. Choose an embedding j : Q — @, inducing a prime ideal f €

Sp(K), say, and write A, for the (1 x 1) regulator R%;/g)p :UNKy) — QpT.
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If u € U'(K}) then, by definition,

= Z Z log,,(j o vp(vig ) (gy; )
i=1 geG
d

(3= tom,(imi 0 3 (g~ g ) !
i=1 geG
where j7; induces B; € Sp(K). Now A%pe Q,I" is Q,G-free of rank one on
v A /\'yd_ and it follows easily from the last equation and the definition

of R%/Tkl’ “Td) that

(51)  Ap(ur) A== A Ap(ua)
_ R%/’;lv 77_4)(“/1 A A ud)f)/l_l A - /\’}/c?l in /\%pG @pF

71d —
On the other hand, R%A/)Q’p o Ng A = T A0 Ap for each A € A (A) so

that Silch/QﬁA(NK/KAUZ) = j(a;(.’:/QVSA)WK/KA()\p(Ul)) for each A and [. It
follows that

d
St =( Y earalilogh g ) wlu)
=1

AeXy (4)
— (6™ () Ap()
by . Using , we deduce easily that
det (cin)1<ig<ay A AYg "
= (/) s (DA n)) A= A GGy 5 (1) Aplr))
= Jag, So(e)) A (1) A A dp(u)
and comblnlng this with , the result follows from the definition of

5‘1'17 -Td
K/k,Sq (k)"

Proof of Theorem[].] under Hypothesis[{.5. By Proposition[5.1]it suffices
to prove IC(K/k, Sg(k),p), i.e. that sg/x 5o (k) (u1/A- - -Aug) lies in Z,G for all
Ui, . .., uqg € UL(K,)™ and this will clearly follow from Theorem. provided
we can show

(52) €A5A(5KA/Q SA(NK/KA’LL[)) S Z I, Vi, VA € X_(A)

But Theorem [4.3(f) implies that Sra/0,5,(Ni/aw) lies in Z ,Gal(K4/Q).
Furthermore, if ¢ € Bad(S) then |Tj, (K/Q)| = e4(k/Q) and Hypothesis
implies that this is prime to p for all such ¢, hence that pt|A|. Consequently,
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pt[K : K4] for every A so that ey € ZpyA and DUa(sgasqg,s, (Ni/xaur))
€ ZpI', establishing (52). =

Turning to the Congruence Conjecture, we suppose from now on that
K contains pin+1 for some n > 0. Since Sram(Q(pyn+1)/Q) = {p} C Sg, it
follows from 1' that K4 contains Q(p,n+1), so is CM and Xg (A4) = Ag(4).
We write I" for Gal(KT/Q).

Q(ffA)

Now RSC(KA+/Q, S4; Q) holds for each A € Xp(A). Indeed, let us write f4
for the conductor of K so that p"*!| f4 and SY(K4/Q) = SY(Q(¢r,)/Q)
= {oo} U Sf,(Q). Then the determination of (e, ) /0,51 @y ,)/Q) 10 the
proof of Theorem together with Propositions and implies that
the solution nga+ /g5, of RSC(KAT/Q, S4;Q) (with 7 =id) is

. —1
A= ( II (-0 kas /@)> Noeg o+ x4+ (Nages ) /0,81 @ /)
q€SA\SH(K4/Q)

_ 1 c
= ( H (1_O—q,;(A’+/Q)>NQ(5fA)+/KA’+ <2®(1—§fA)1+ )
qESA\SH (KA/Q)

In fact, 1 — &y, lies in Uy) (Q(&y,)) unless f4 is a power of a prime, neces-
sarily p, in which case it lies in Uyq ;1 (Q(&f,)). Thus for all A € Xp(A), the

element 14 lies in U 0 (KAY) C QU{OOJ,}(KA’*). Let us write i 4 for the
natural injection QUyw 3 (KA4F) = QU 3 (K ) and i for [ker(A)| i
We define

Asgy = D eaialna),
A€Xg(A)

NSg(k) = Wflas@(k) ARERNA ngas@(k),
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from which it is clear that gy lies in \A|_2%U{Oo7p}(K+) and ngy () In

(‘A| 21) /\ZGU{oo,p}(K )

PROPOSITION 8.5. With the above hypotheses, RSC(K T /k, Sg(k); Q)
holds with solution N+ k5o (k) = Nsg(k)-

We defer the proof. The final ingredient in the proof of Theorem is

LEMMA 8.6. Suppose o is an element of Ui,y (KT) so that ’yfloz A

- Ay la lies in the subset /\%GUSQ(k)(K+) of A%GQUSQ(k)(K+)- Then,
for any uy, ..., uq € UY(K,)™, we have

Fn(T1 ... Td)HK/k,n('yfla A A ’y;loz,ul N Nug) =det (d;g)1<ii<d

where d;; € (Z/p" ' Z)G™ is the coefficient of ;' when Hpc (o, up) €
(Z/p"*YZ)[~ is expressed in the (Z/p"T'Z)G-basis {vi',....7;'} of
(z/p"'z)T

Proof. Tf & = 1®¢ for some € € Uy, ) (KT) then v e = 1@~ e with

yte € Ufcopy (KT) C Us(K) for all i. Equations and applied to
K/Q give

M‘“

(Z € /7lgul Kng 1)7;1

i=1 geG

— Z (/-cn(n) S hyite gul]K’ng—l),yi—l

=1 geG

HK/Qn o, up)

U

~

since v; = 74| k. Thus d;; = kn(7;) deG[fy- €, 9] k.ng~ . Now use for
K/k. u

Proof of Theorem [{.6 By Proposition it suffices to establish
CC(K/k, Sg(k),p,n) under Hypothesis But the latter has already been
shown to imply IC(K/k, Sg(k),p) and pt|A|. In particular, ng,x) lies in

d
Z») Nz Utooy (K) © Zp) Ao,
and so is the solution of RSC(K™/k, SQ( ); Z(p)) by Proposition It
remains to prove that the congruence holds with g+ /x5 = Nsy(k)
and 0 = u; A -+ A ug with u; € Ul(Kp)* for all 7. (Such 6 generate
/\CleG UY(K,)~.) For each A € Xp(A) we may write 294 as 1 ® 4 where

e4 lies in Upoo py (K4T). From with ' = K4 and (with d = 1!) it
follows easily that

Hicjgun(ia(2na),w) = v ga(Hyasgn (204, Ngjgaw)).
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Therefore, using the ZI-linearity of Hg /g ,(-,-) in the first variable and the
fact that |Ale4 € ZI', we have, for each I,

Hicjon@lAPasywyu) = Y (JA]|A: ker(A)|ea) Hijgn(ia(2n), w)

AeXy(A)
= Z (JA[]A: ker(A)’eA)VK/KA(HKA/Q,n(277A,NK/KAUl))
AEXQ(A)
= Z 2(|A[ A ker(A)|6A>VK/KA (5;(3'A/Q,SA (NK/KAUl))
AcXg(A)

d
= Y 20APeatalia s, Niyraw) = Y 2|APc ;7 (mod p™th)
AeXg(A) i=1

where ¢;; is precisely as defined in Theorem [8.4] Note that the first congru-
ence above comes from Theorem which also shows that the last three
expressions lie in Z,I". It follows from Lemma [8.6] and the above that

= kn(T1 ) Hig (1 ClAP sy ) A A ClAPasg 1) un A+ Ag)
= det (2] A[2ciy)1<ii<d

in (Z/p"TZ)G. As pt2|A|, we may cancel the factor (2|A|2)d € (Z/p"T1Z)*
on both sides above and combining with Theorem [8.4] we obtain the required
equation

S gy (U A - Aug) = det (1) 1<ii<d

= Fn(T1 - Ta) Hi pkn (Mg k), v A+ Aug). m

REMARK 8.7. Burns has proven Conjecture B’ of [Ru] whenever K is
absolutely abelian (see [Bu2, Theorem A]). It follows from Remark [2.8|that
NSq(k) = MK+ /k,Sq(k) Must also lie in %A07SQ(;€)(K+/I€), although this is not
obvious from our expression for Nsg(k) and Burns’ results do not appear to
provide an explicit expression. On the other hand, Cooper obtains essentially
our expression 7y, 1OZSQ(k) ARRRWA 'yd_lozSQ(k) in [Coo]. (Indeed, we adapt his
methods in the proof of Proposition below.) By manipulating it cleverly
and using the norm relations for cyclotomic numbers, he shows explicitly

that if A is cyclic and of odd order, then ng ) lies in 2_d/\%@ Uoopy (KT).
(This follows from [Cod, Theorem 5.2.2].)

Proof of Proposition The arguments are mostly familiar by now:
Applying e™ to one deduces that O+ 1. 5, (k) () is the CG-determinant
of 3 yealker(A)[ T v+ ras (Ogas jgs,(s) acting on CI', where we are
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identifying A with Gal(K+/K“T) by restriction. Now O+ /g.5,(0) = 0

and 9224, /0, SA(O) has real coefficients for each A, so
(r)
53) 6 0 5i(©

= detig (Y ealker(A) v cas (Ogh 1 g 6, (0)[RT)
A

= det (e;1)1<i1<d

say, where (6i,l)§l,l:1 is the matrix of multiplication by > ,... on RI" with
respect to the RG-basis "yfl, i=1,...,d (where 4 := |+ = 1| g+). Fix
[ and take 7 = id. Using for each extension K% /Q and the relation
VK+ KA+ © AKA,+/Q71 = AK*/Q,I o iK+/KAv+7 we get

> ealker(A)| v s (O g 5, (07
A

= Z ealker(A)| " vger s gac (A ea 01 AV = Ay (Qsg) %
A

But for any element @ = a ® € of QUg(K ™) (with a € Q) we have

Arct o ()3t = Ag+ )01 () @)

d d
—a Y (Ytog g elg™ )t = D A a3 )
=1

i=1 geG

and combining with the previous equation, we find e;; = Agc+ /1,5 (%, Lo So(k))-
Substituting this in , it follows that ng, ) satisfies condition 1) for
K/k* and Sg(k).

To show that ng, ) satisfies the eigenspace condition with respect to
(Sg(k),d,G), one could adapt the argument of [Coo| (based on [Pd, Propo-
sition 3.1.2]) using condition of Proposition We sketch a more
“algebraic” argument based on the equivalent condition : Suppose q €
So(k) \ Seo(k) lies above ¢ € Sg \ {oo}, write D for Dy(K/Q) and ® for
Dy(K/k) = DNG. Let py,...,p: be a set of representatives for D mod D,
hence for DG mod G, and let o1,...,0,, be a set of representatives for I
mod DG. Then d = mt and both {o,p}ap and {7; '}; are sets of represen-
tatives for I' mod G. Writing also n and « for NS (k) and « So(k) respectively,
it follows that n = £g A", /\z:1 oappe for some g € G. (The unordered
“wedge product” (over QG) on the R.H.S. is defined only up to sign.) Since
Np, &+ k)N equals $Non or N7, condition for m =n and S = Sg(k)

will follow if we can show that Ngn is fixed by G (hence by G) and is zero
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if |Sg(k)| > d + 1. But

m t
(54)  Non==£|D|'"g /\ /\ oo Npppor
a=1b=1

m
= i]@|1*dg /\ (caNpa A ogNopaae A - - N\ 0g Npprav)

a=1
(the second equality since o, Npa = 3", 04 Npppa for each a). If |Sg| > 2
then |S4] > 2 for each A € Apy(A) so the eigenspace condition on 74 as a so-
lution of RSC(KA*/Q, S4; Q) implies that it is annihilated by Np,(kA+/Q):
hence by Np. It follows that Npa = 0 hence Non = 0 by . Otherwise,
|So| = 2, Sg = {00,q} (so ¢ = p) and |Sg(k)| is precisely d + m. In this
case, the eigenspace condition on 74 still shows that N Dy(KA+/Q)NA 18 fixed
by Gal(K4F/Q) for all A and it follows as above that Npa is fixed by G.
So implies that Ngn is fixed by G and, if m > 1, that it is zero, since
then o1 Npa = 09 Npa. =
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