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On a polynomial conjecture of Pál Turán

by

Pradipto Banerjee and Michael Filaseta (Columbia, SC)

1. Introduction. P. Turán (see [11]) posed the problem of showing that
there is an absolute constant C such that, if

f(x) =
r∑
j=0

ajx
j ∈ Z[x],

then there is a w(x) =
∑r

j=0 bjx
j ∈ Z[x] with

∑r
j=0 |bj | ≤ C such that

f(x) +w(x) is irreducible over Q. The problem remains open, though it has
been verified by A. Bérczes and L. Hajdu [1, 2], with C = 4, for all f(x)
with r ≤ 24. If we allow for the possibility that degw > r, then the problem
was resolved in general by A. Schinzel in [13]. As a consequence of his work,
we have

Theorem 1 (Schinzel, 1970). For every f(x) =
∑r

j=0 ajx
j ∈ Z[x], there

exist infinitely many polynomials w(x) =
∑s

j=0 bjx
j ∈ Z[x] with

∑s
j=0 |bj |

≤ 3 and f(x) + w(x) irreducible. One of these is such that
s < exp((5r + 7)(‖f‖2 + 3)),

where ‖f‖ =
√∑r

j=0 a
2
j .

In this paper, we establish a version of Schinzel’s theorem where the
dependence on the degree of f(x) in the bound for s is improved from ex-
ponential to linear. The dependence on ‖f‖2 however remains exponential.
Specifically, we prove the following theorem:

Theorem 2. For every f(x) =
∑r

j=0 ajx
j ∈ Z[x], there exist infinitely

many polynomials w(x) =
∑s

j=0 bjx
j ∈ Z[x] such that

∑s
j=0 |bj | ≤ 3 and

f(x) + w(x) is irreducible. One of these is such that
s ≤ 8 max{r + 3, n0} exp((log 5)(8‖f‖2 + 9)),

where n0 is an effectively computable absolute constant.
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Similarly to Schinzel’s work, we consider

w(x) = xm − xn or w(x) = xm − xn ± 1,

where
m ∈ (M, 2M ], n ∈ (N, 2N ].

To obtain our results, we take

(1) N ≥ max{r + 3, n0} and M = 4N exp((log 5)(8‖f‖2 + 9)).

The improvement will follow largely due to estimates given in [6], which can
be viewed as replacing the role of [12] in [13].

The role of n0 is simply to allow us to take N and M large in our
arguments. We will not concern ourselves with justifying that n0 is effectively
computable though that it is will be clear from our arguments.

We note that the estimates in [6] give considerably more easily a similar
result to Theorem 2 if one is willing to settle for 5 as an upper bound on∑s

j=0 |bj |. Getting the bound 3 is somewhat more involved. The bound of 3
may be best possible depending on whether a certain covering system exists,
which is associated with a long outstanding problem posed by P. Erdős and
J. Selfridge (see [5] and [11]).

2. Preliminaries. Define

g(x) =


f(x) if f(0) 6= 0 6= f(1),
f(x)− 1 if f(0) = 0, f(1) 6= 1 or f(0) 6= 1, f(1) = 0,
f(x) + 1 if f(0) = 0, f(1) = 1 or f(0) = 1, f(1) = 0.

This choice of g(x) implies that 0 and 1 are not roots of

G(x) = Gm,n(x) = xm − xn + g(x).

We prove Theorem 2 by showing that for sufficiently large values of M
and N as in (1), there exists a pair (m,n) ∈ (M, 2M ] × (N, 2N ] such that
Gm,n(x) is irreducible. We consider the pairs (m,n) ∈ (M, 2M ] × (N, 2N ]
wherem−n is prime. SinceM ≥ 4N implies that p = m−n > M−2N ≥ 2N
so that p > 2N ≥ n, we easily deduce that gcd(m,n) = 1 with m and n as
indicated.

If a polynomial h(x) ∈ C[x] satisfies h(x) = ±xdeg hh(1/x), we refer to it
as reciprocal. The terminology is partly due to the fact that h(x) is reciprocal
if and only if for every root α of h(x), we have α 6= 0 and 1/α is also a root
of h(x). Every H(x) ∈ Z[x] can be factored uniquely in Z[x] as H1(x)H2(x)
where H1(x) has a positive leading coefficient, every irreducible factor of
H1(x) is reciprocal, every irreducible factor of H2(x) is not reciprocal, and
the content (that is, the greatest common divisor of the coefficients) of H2(x)
is 1. We refer to H2(x) as the non-reciprocal part of H(x). We use N(H(x))
to denote the non-reciprocal part of H(x) (so N(H(x)) = H2(x)).
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The following is an immediate consequence of a theorem of K. Ford,
S. Konyagin and the second author [6]. Recall that, in the introduction, we
noted this result will replace the use of a similar theorem of Schinzel in [12]
for establishing Theorem 1.

Lemma 1. Ifm ≥ 2n exp((log 5)(8‖f‖2+9)), then N(Gm,n) is irreducible
unless at least one of the following holds:

(i) xn − g(x) is a pth power for some prime p |m.
(ii) −xn + g(x) is 4 times a 4th power in Z[x] and 4 |m.

Recall that n > N > r = deg g. Since gcd(m,n) = 1, we deduce that
xn − g(x) is not a pth power for any prime p dividing m. Also, the leading
coefficient of −xn + g(x) is not divisible by 4. We deduce (i) and (ii) above
do not hold, and hence the non-reciprocal part of Gm,n(x) is irreducible
provided m and n satisfy the inequality stated in the lemma.

For sufficiently large values of M depending on N , we now see that
N(Gm,n) is irreducible for (m,n) ∈ (M, 2M ] × (N, 2N ]. We will show that
for M and N sufficiently large, there exists at least one pair (m,n) ∈
(M, 2M ]×(N, 2N ] such that Gm,n(x) has no irreducible reciprocal factor. As
a consequence, we deduce that for sufficiently large values ofM and N , there
exists a pair (m,n) ∈ (M, 2M ]× (N, 2N ] such that Gm,n(x) = N(Gm,n) and
hence Gm,n(x) is irreducible.

Most of the remainder of our arguments concerns obtaining results about
irreducible reciprocal polynomials that can divide G(x) = xm − xn + g(x)
where (m,n) ∈ (M, 2M ] × (N, 2N ]. As we will see momentarily, it will
be helpful to separate discussions about cyclotomic factors of G(x), which
are necessarily reciprocal, from information on reciprocal irreducible non-
cyclotomic factors of G(x). We begin, however, by addressing both types of
reciprocal factors.

Lemma 2. Fix a positive integer n ∈ (N, 2N ]. There is a non-zero poly-
nomial V (x) = Vn(x) of degree ≤ 4N such that for every m ∈ (M, 2M ], each
reciprocal divisor of xm − xn + g(x) is also a divisor of V (x).

Proof. For a non-zero polynomial F (x), we set F̃ (x) = xdegFF (1/x).
Observe that if a reciprocal polynomial divides F (x), then it also divides
F̃ (x). Let v(x) = xn − g(x) and G(x) = xm − xn + g(x). Suppose a recipro-
cal polynomial h(x) divides G(x). Then h(x) also divides G̃(x). Thus, h(x)
divides the polynomial

ṽ(x)G(x) + xnG̃(x) = ṽ(x)(xm − v(x)) + xn+m

(
1
xm
− v
(

1
x

))
= ṽ(x)xm − v(x)ṽ(x) + xn− xmṽ(x) = −v(x)ṽ(x) + xn.
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This last expression is non-zero; in fact, the coefficient of xn in v(x)ṽ(x) is
‖v‖2 ≥ 2 so that the coefficient of xn in −v(x)ṽ(x) + xn is non-zero. As the
degree of −v(x)ṽ(x) + xn is ≤ 2n ≤ 4N , the lemma follows by taking this
polynomial to be V (x).

Fix n ∈ (N, 2N ]. Recalling that M ≥ 4N , a simple application of the
Prime Number Theorem implies that the number of m ∈ (M, 2M ] with
m− n prime is asymptotic to M/logM . More precisely, given ε > 0, if N is
sufficiently large, n ∈ (N, 2N ] and M ≥ 4N , then the number of primes in
(M − n, 2M − n] is in the interval

((1− ε)M/logM, (1 + ε)M/logM).

We deduce that the number of pairs (m,n) ∈ (M, 2M ]× (N, 2N ] with m−n
prime is asymptotic to MN/logM . Thus, it is enough to show that for
sufficiently large values of M and N satisfying (1), the number of pairs
(m,n) ∈ (M, 2M ] × (N, 2N ] for which m − n is prime and Gm,n(x) has
a reciprocal irreducible factor is less than ρMN/logM for some constant
ρ < 1.

Now, we consider pairs (m,n) whereGm,n(x) has an irreducible reciprocal
non-cyclotomic factor. The following lemma gives a bound for the number
of such pairs.

Lemma 3. The number of pairs (m,n) ∈ (M, 2M ] × (N, 2N ] such that
Gm,n(x) has a reciprocal irreducible non-cyclotomic factor is ≤ N log3N .

Proof. Let h(x) be a reciprocal irreducible non-cyclotomic polynomial
in Z[x]. We begin by showing that h(x) divides at most one polynomial
Gm,n(x). Assume there are two pairs (m,n) and (m′, n′) of positive integers,
with (m,n) 6= (m′, n′), such that h(x) divides both Gm,n(x) and Gm′,n′(x).
Then h(x) also divides

Gm,n(x)−Gm′,n′(x) = xm − xn − xm′
+ xn

′
.

As h(x) is reciprocal, h(x) 6= x. We deduce that there are integers a, b and
c with a > b > c > 0 and numbers εj ∈ {1,−1} for 1 ≤ j ≤ 3 such that h(x)
divides

F (x) = xa + ε1x
b + ε2x

c + ε3.

As h(x) is reciprocal, it also divides

F̃ (x) = ε3x
a + ε2x

a−c + ε1x
a−b + 1.

Thus, h(x) is a factor of the polynomial

F (x)− ε3F̃ (x) = ε1x
b + ε2x

c − ε2ε3xa−c − ε1ε3xa−b

= (ε1xc − ε2ε3xa−b)(xb−c + ε1ε2).
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If neither of the factors on the right is identically 0, then we obtain a con-
tradiction since h(x) is non-cyclotomic. Therefore, either a = b + c and
ε1ε2ε3 = 1, or b = c and ε1ε2 = −1. In the first of these two cases,

F (x) = xb+c + ε1x
b + ε2x

c + ε1ε2 = (xb + ε2)(xc + ε1);

in the second, F (x) = xa + ε3. In either case, we again have a contradiction
to h(x) being non-cylcotomic. Hence, h(x) divides at most one Gm,n(x).

If m and n are positive integers, now shown to be unique, such that
h(x) divides Gm,n(x), then Lemma 2 implies that h(x) divides a polynomial
Vn(x) of degree ≤ 4N . Since h(x) is a divisor of Gm,n(x), we may and do
suppose that h(x) is monic. Observe that as n ∈ (N, 2N ] varies, there are
N polynomials Vn(x). To obtain our lemma, it therefore suffices to show
that d = deg h(x) necessarily satisfies d ≥ N/log3N , as then, for each n ∈
(N, 2N ], there are at most 4 log3N possibilities for h(x).

We establish that d ≥ N/log3N by appealing to a result of E. Dobrowol-
ski [4] on the maximum size of the absolute value of a root of a non-cyclotomic
polynomial. Dobrowolski’s result can be considered as an improvement on a
classical result of L. Kronecker [8] that a monic irreducible non-cyclotomic
polynomial in Z[x] must have a root with modulus > 1. Observe that the
sum of the absolute values of the coefficients of xn − g(x) is bounded above
by ‖f‖2 + 2. Hence, if α is a root of Gm,n(x) with |α| > 1, then

|α|m = |αm −Gm,n(α)| = |αn − g(α)| ≤ |α|n(‖f‖2 + 2).

From (1),

m− n ≥ m− 2N ≥ 2N exp((log 5)(8‖f‖2 + 9)) > N(‖f‖2 + 2).

The maximum value of x1/x for x > 0 is e1/e < 2. Hence, we deduce that

(2) |α| < 21/N .

We use that N is large. As h(x) divides Gm,n(x), the roots of h(x) are roots
of Gm,n(x). We now take α to be the root of h(x) with |α| maximal. Recall
that h(x) is monic. Observe that for any D, there are finitely many monic
non-cyclotomic polynomials of degree ≤ D having each root < 2 in absolute
value. By Kronecker’s theorem mentioned above, each of these has a root
exceeding 1 in absolute value. Since N is large, with D fixed, we may suppose
that the roots for each of these polynomials are not all < 21/N . Hence, we
may consider d large (larger than any fixed number). Dobrowolski’s result
then implies that

|α| > 1 +
1
d

(
log log d

log d

)3

.

Combining this with (2) yields d ≥ N/log3N , and therefore the lemma
follows.
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The significance of the above lemma is clear. We want to show that there
are < ρMN/logM pairs (m,n) ∈ (M, 2M ]× (N, 2N ] for which Gm,n(x) has
a reciprocal factor. The above lemma indicates that there are ≤ N log3N
such pairs when we restrict to irreducible reciprocal factors that are not
cyclotomic. Recall that Theorem 2 has an n0 in the bound for s, allowing us
to consider M large. Since N log3N is very small compared to MN/logM
for M > N large, the contribution of pairs (m,n) for which Gm,n(x) has an
irreducible reciprocal non-cyclotomic factor is insignificant.

We turn now to estimating pairs (m,n) for which Gm,n(x) has a cyclo-
tomic factor. As usual, we denote the lth cyclotomic polynomial by Φl(x).
Recall degΦl = φ(l) where φ is Euler’s φ-function. By Lemma 2, one has
φ(l) ≤ 4N . Schinzel and the second author [7] have shown that if a poly-
nomial in Z[x] has a cyclotomic factor, then it also has a cyclotomic factor
Φl(x) such that every prime divisor of l is less than or equal to the number of
terms of the polynomial. Recall N ≥ deg f + 3. Thus, if Gm,n(x) is divisible
by a cyclotomic polynomial for some (m,n) ∈ (M, 2M ]× (N, 2N ], then it is
divisible by some Φl(x) with l having each prime factor ≤ N and such that
φ(l) ≤ 4N . The condition φ(l) ≤ 4N by itself implies

(3) l ≤ c1N log logN

for some constant c1. In fact, [10, formula (3.42)] easily implies one may
take c1 = 8 for N large. Hence, estimating the number of Gm,n(x), with
(m,n) ∈ (M, 2M ] × (N, 2N ], that are divisible by a cyclotomic polynomial
corresponds to estimating the number of such Gm,n(x) divisible by some
Φl(x) with each prime factor of l being ≤ N and with (3) holding. We now
consider only such l.

Next, we show that if Φl(x) divides Gm,n(x), then Φl(x) does not divide
g(x). Observe that if Φl(x) divides both Gm,n(x) and g(x), then it divides
xm − xn and, hence, xm−n − 1. Recall Gm,n(1) 6= 0. Also, m− n is a prime.
Hence, we deduce l = m − n. But M ≥ 4N and n ≤ 2N imply that l is a
prime ≥ 2N , contrary to the fact that we are only considering l that have
each prime divisor ≤ N .

Denoting the largest prime factor of l by P (l), we are left with estimating
the size of the set

S = {(m,n) ∈ (M, 2M ]× (N, 2N ] : m− n prime, ∃ l ∈ Z satisfying
l ≥ 2, l ≤ c1N log logN, P (l) ≤ N, Φl(x) |Gm,n(x) and Φl(x) - g(x)}.

Recall that M and N are large and the specific conditions on M and N
imply m−n ≥ 2N above so that, in particular, m−n is a large prime. Also,
given the previous paragraph, when we discuss l with Φl(x) |Gm,n(x), the
condition Φl(x) - g(x) necessarily follows. We are interested in establishing
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that
|S| < ρMN/logM for some fixed ρ < 1.

The following lemma will provide us with an upper bound for the number
of pairs (m,n) modulo l such that Gm,n(x) is divisible by Φl(x) for a given
l as above. Note that if Φl(x) divides both Gm,n(x) and Gm′,n′(x), then

ζml − ζnl = ζm
′

l − ζn
′

l 6= 0 where ζl = e2πi/l.

The result of the lemma can be found in [13] (see also the main result in
[14] and Theorem 7 of [3]); we include the details to keep the paper more
self-contained.

Lemma 4. Fix integers a and b and a positive integer l with ζal −ζbl 6= 0. If
l is odd or l = 2, thenm and n are positive integers such that ζml −ζnl = ζal −ζbl
if and only if m ≡ a (mod l) and n ≡ b (mod l). If l is even and l > 2,
then m and n are positive integers such that ζml − ζnl = ζal − ζbl if and only
if either m ≡ a (mod l) and n ≡ b (mod l), or m ≡ b + l/2 (mod l) and
n ≡ a+ l/2 (mod l).

Proof. One can verify directly that the “if” parts of the statements in
Lemma 4 hold. We concern ourselves therefore simply with the “only if”
parts of the statements.

Let ζ = ζl where l > 2. We denote the real part of a complex number z
and the imaginary part of z by R(z) and I(z), respectively. First, we show
that if u and v are real numbers with ζu − ζv 6= 0 and R(ζu − ζv) = 0, then
ζu and ζv are complex conjugates. We have

R(ζu − ζv) = 0⇒ R(ζu) = R(ζv).

Since ζu and ζv are on the unit circle {z ∈ C : |z| = 1} and both have
the same real part, we deduce that I(ζu) = ±I(ζv). If I(ζu) = I(ζv), then
ζu = ζv contradicting that ζu− ζv 6= 0. Hence, I(ζu) = −I(ζv), establishing
that ζu and ζv are complex conjugates.

Let α = (a+ b)/2. From ζm − ζn = ζa − ζb 6= 0, we obtain

ζm−α − ζn−α = ζ(a−b)/2 − ζ(b−a)/2 6= 0.

The middle expression ζ(a−b)/2 − ζ(b−a)/2 is a difference of two conjugates
and hence has real part 0. Therefore, R(ζm−α − ζn−α) = 0. The previous
paragraph implies that ζm−α and ζn−α are complex conjugates. Setting

A = ζm−α − ζn−α = ζ(a−b)/2 − ζ(b−a)/2,

we see that the two (not necessarily distinct) roots of z2−Az−1 are, on the
one hand, ζ(a−b)/2 and −ζ(b−a)/2 and, on the other hand, ζm−α and −ζn−α.
Hence, either ζ(a−b)/2 = ζm−α or −ζ(b−a)/2 = ζm−α. Rewriting these, we see
that either ζa = ζm or −ζb = ζm. In the former case, we also have ζb = ζn

so that m ≡ a (mod l) and n ≡ b (mod l). In the latter case, ζm−b = −1
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and there are no solutions if l is odd. If l is even, then, since also ζn−a = −1
in this case, we obtain

m ≡ b+ l/2 (mod l) and n ≡ a+ l/2 (mod l).

The above verifies the lemma in every case except l = 2. In this case,
we have ζ = −1. Since ζa − ζb 6= 0, either ζa − ζb = 2 or ζa − ζb = −2. If
ζa − ζb = 2, then ζm − ζn = 2 so that m ≡ 0 (mod 2) and n ≡ 1 (mod 2).
Thus, there is only one solution in m and n modulo 2. A similar analysis
works in the case ζa − ζb = −2, completing the proof.

We note that in the case that l is even and > 2, similar to the case l = 2
above, it is possible that there is only one pair (m,n) modulo l such that
ζml −ζnl = ζal −ζbl in Lemma 4. This occurs precisely when a ≡ b+l/2 (mod l).
The argument for l = 2 above is simply justifying that this congruence must
hold in this case.

Before proceeding, we show that Lemma 4 implies that we can reduce
our consideration of l satisfying (3) to l satisfying a stronger inequality. For
example, we show that we can take

(4) l ≤ N3/4,

where the particular bound on the right is not so important but our argu-
ments later will depend on having l� N θ for some θ < 1. The same estimate
from [10] that led to (3) implies even more directly that

φ(l) ≥ l

1.8 log log l
for l sufficiently large.

In particular, for N large and l > N3/4 satisfying (3), we have

φ(l) ≥ l

2 log logN
>

N3/4

2 log logN
.

We deduce that there can be at most 8N1/4 log logN different Φl(x) with
l > N3/4 that can divide a polynomial of degree ≤ 4N . By Lemma 2,
there are at most 8N5/4 log logN different cyclotomic polynomials Φl(x) with
l > N3/4 that can divide a Gm,n(x) with (m,n) ∈ (M, 2M ] × (N, 2N ]. By
Lemma 4, the total number of such pairs (m,n) for which such a Φl(x)
divides Gm,n(x) is bounded by

8N5/4 log logN · 2
(⌊

N

N3/4

⌋
+ 1
)
·
(⌊

M

N3/4

⌋
+ 1
)
< MN0.8,

for N large. We wish to compare the above bound to MN/logM , but we
do not necessarily know that logM is small compared to a power of N . So
we apply the above estimate only in the case that M ≤ N2. For such M ,
we easily deduce that the total number of pairs (m,n) ∈ (M, 2M ]× (N, 2N ]
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for which Φl(x) divides Gm,n(x) for some l > N3/4 is small compared to
MN/logM .

For M > N2, we do a similar estimate but also use a version of the
Brun–Titchmarsh inequality obtained by H. Montgomery and R. Vaughan [9]
(though a weaker version would suffice). For each fixed l > N3/4 that satisfies
also (3), we appeal to Lemma 4 to deduce that for a fixed n ∈ (N, 2N ] with
N large, there are at most

4M
φ(l) log(2M/l)

≤ 4M · 2 log logN
N3/4

· 3
logM

≤ M

N0.7 logM

integers m ∈ (M, 2M ] such that m− n is prime and Φl(x) divides Gm,n(x).
Therefore, as n and l vary, we deduce that the total number of such pairs
(m,n) for which Gm,n(x) is divisible by some Φl(x) with l > N3/4 is

≤ 8N5/4 log logN · M

N0.7 logM
· 2
(⌊

N

N3/4

⌋
+ 1
)
<
MN0.9

logM
.

For M > N2, we deduce again that the total number of pairs (m,n) ∈
(M, 2M ] × (N, 2N ] for which Φl(x) divides Gm,n(x) for some l > N3/4 is
small compared to MN/logM . Hence, it suffices to show that the number
of (m,n) ∈ (M, 2M ]× (N, 2N ] for which Gm,n(x) is divisible by some Φl(x)
with l satisfying (4) and with m−n prime is < ρMN/logM for some ρ < 1.

Suppose Φl(x) divides some Ga,b(x) with 0 ≤ a, b ≤ l − 1. We count the
number of (m,n) ∈ (M, 2M ] × (N, 2N ] with m − n prime, m ≡ a (mod l)
and n ≡ b (mod l). Observe that for each such (m,n), Φl(x) divides Gm,n(x).
Furthermore, by Lemma 4, each l corresponds to either one or possibly two
different (a, b) depending on whether l is odd or 2, or l is an even number
> 2.

Fix n ∈ (N, 2N ] with n ≡ b (mod l). The number of m in (M, 2M ] such
that m ≡ a (mod l) and m−n is prime is equal to the number of primes p in
(M − n, 2M − n] such that p ≡ a− b (mod l). We consider two possibilities
depending on whether l is small or large. Fix L arbitrarily; in the end, we will
choose L = 20000. For l ≤ L, by an asymptotic form of Dirichlet’s theorem,
we deduce that the number of m in (M, 2M ] as above is either asymptotic
to M/(φ(l) logM) or, in the case that gcd(a − b, l) 6= 1, identically 0 (for
M large). For l > L, we appeal again to the Brun–Titchmarsh inequality
as established in [9] to deduce that the number of such m is bounded by
2M/(φ(l) log(M/l)). From (4), M/l ≥ M/N3/4 ≥ M1/4. Since there are at
most bN/lc + 1 different n ≡ b (mod l), we deduce that for every ε > 0
and for N and, hence, M sufficiently large (depending on ε), the number of
(m,n) ∈ (M, 2M ] × (N, 2N ] with m − n prime, m ≡ a (mod l) and n ≡ b
(mod l) is bounded above by
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Bl = Bl(M,N, ε) =


(1 + ε)MN

lφ(l) logM
+

(1 + ε)M
φ(l) logM

if l ≤ L,

8(1 + ε)MN

lφ(l) logM
+

8(1 + ε)M
φ(l) logM

if l > L.

Recall that we want to show that the total number of pairs (m,n) ∈
(M, 2M ] × (N, 2N ] that arise with Gm,n(x) having a cyclotomic factor is
< ρMN/logM for some constant ρ < 1. To bound the total number of such
pairs, we sum the various bounds Bl above, recalling however that we need
to double the bound above in the case of even l > 2 since in this case Φl(x)
might divide Ga,b(x) for two different pairs (a, b) with 0 ≤ a, b ≤ l − 1.
Recalling (4), it suffices to show that

(5)
L∑
l=2

1
lφ(l)

+
L/2∑
l=2

1
2lφ(2l)

+
∑

L<l≤N3/4

16
lφ(l)

+
∑

2≤l≤N3/4

16
Nφ(l)

< 0.99.

Note that the first three sums above correspond to estimates based on the
first expressions appearing in the bounds given by Bl and the last sum above
incorporates all estimates based on the second remaining expressions ap-
pearing in the bounds given by Bl. For convenience, we have made some
over-estimates here that will not affect our discussion.

The naive idea of simply taking L sufficiently large, computing the first
two sums in (5) directly and estimating the remaining sums fails. One can
easily check that the sum of 1/(lφ(l)) by itself over say 2 ≤ l ≤ 1000 ex-
ceeds 1.2. Sieving could be used to take into account over-counting of pairs
(m,n) divisible by more than one Φl(x), and the authors initially approached
the problem with this in mind. But we found in the end that taking advan-
tage of extra information on pairs (m,n) for which Gm,n(x) can be divisible
by Φl(x) for small values of l was sufficient for improving on this naive idea
enough to obtain the results we wanted. So we turn to obtaining such extra
information to complete the proof with the goal of revising the first two sums
in (5) to account for some over-counting that is currently done there.

3. Refining the estimates. Although we will revise (5) before obtain-
ing our results, it is convenient here to note that the last two sums in this
inequality can be handled without difficulty. We will make use of the same
estimates later for our revised form of (5).

We begin with the last sum in (5). For X > 0, we have∑
X<l≤2X

1
φ(l)

=
∑

X<l≤2X

1
l
∏
p|l(1− 1/p)

=
∑

X<l≤2X

∏
p|l(1 + 1/p)

l
∏
p|l(1− 1/p2)
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≤ ζ(2)
∑

X<l≤2X

1
l

∏
p|l

(
1 +

1
p

)
= ζ(2)

∑
X<l≤2X

1
l

∑
d|l

µ2(d)
d

≤ ζ(2)
X

∑
X<l≤2X

∑
d|l

µ2(d)
d

=
ζ(2)
X

∑
d≤2X

∑
X<l≤2X

d|l

µ2(d)
d

≤ ζ(2)
X

∑
d≤2X

2X
d
· µ

2(d)
d
≤ 2ζ(2)

∞∑
d=1

µ2(d)
d2

= 2ζ(2)
∏
p

(
1 +

1
p2

)
=

2ζ(2)2

ζ(4)
= 5.

We take in turn X = 1, 2, 4, 8, . . . , 2t, where t ∈ Z is such that

2t < N3/4 and 2t+1 ≥ N3/4.

Summing over these various values of X, we find for sufficiently large N that

(6)
∑

2≤l≤N3/4

16
Nφ(l)

≤ 80(t+ 1)
N

≤ 90 logN
N

< 0.001.

The third sum in (5) clearly depends on L. Observe that∑
d|l

µ2(d)
φ(d)

=
∏
p|l

(
1 +

1
φ(p)

)
=
∏
p|l

(
1 +

1
p− 1

)
=

1∏
p|l(1− 1/p)

=
l

φ(l)
.

Hence, for X > 0,∑
X<l≤2X

1
lφ(l)

=
∑

X<l≤2X

l

l2φ(l)
≤ 1
X2

∑
X<l≤2X

l

φ(l)

=
1
X2

∑
X<l≤2X

∑
d|l

µ2(d)
φ(d)

≤ 1
X2

∑
d≤2X

∑
l≤2X
d|l

µ2(d)
φ(d)

≤ 1
X2

∑
d≤2X

2X
d
· µ

2(d)
φ(d)

≤ 2
X

∞∑
d=1

µ2(d)
dφ(d)

=
2
X

∏
p

(
1 +

1
p(p− 1)

)
=

2
X
· ζ(2)ζ(3)

ζ(6)
,

where the last equation follows by using the Euler product formulation of
ζ(s). Taking X = L, 2L, 4L, . . . and summing over X gives∑

l>L

1
lφ(l)

≤ 2ζ(2)ζ(3)
ζ(6)

(
1
L

+
1

2L
+

1
4L

+ · · ·
)

=
4ζ(2)ζ(3)
ζ(6)L

.
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We deduce that

(7)
∑

L<l≤N3/4

16
lφ(l)

<
64ζ(2)ζ(3)
ζ(6)L

<
125
L
.

We are now ready to attend to revising (5), in particular to adjust the first
two sums there to give us the desired result. Recall that we are considering
pairs (m,n) for which m− n is a prime ≥M − 2N ≥ 2N and, hence, m− n
is odd.

Lemma 5. Let l ≥ 2 be an integer and p a prime satisfying p ≥ 3 if
l ∈ {2, 4}, and p ≥ 5 otherwise. Suppose Φl(x) divides Gm,n(x) for some
positive integers m and n with m − n odd. If Φpl(x) divides Gm′,n′(x) for
some positive integers m′ and n′ with m′ − n′ odd, then Φl(x) also divides
Gm′,n′(x).

Proof. Since Φl(x) divides xm−xn+g(x) and Φpl(x) divides xm
′−xn′

+
g(x), we deduce that

xm
′ − xn′ − xm + xn = Φpl(x)u(x)− Φl(x)v(x)

for some u(x) and v(x) in Z[x]. Setting x = ζl, we obtain

(8) ζm
′

l − ζn
′

l − ζml + ζnl = Φpl(ζl)u(ζl).

Observe that if the right-hand side is 0, then ζl is a root of Gm′,n′(x). Hence,
in this case, Φl(x) also divides Gm′,n′(x), which is what we want to show.
So suppose the right-hand side of (8) is non-zero. The second author in [5,
Lemma 3] showed that if a, b and t are positive integers and p is a prime for
which a = ptb, then p |Φa(ζb) in Z[ζb]. Taking a = pl and b = l we deduce
that p |Φpl(ζl) in Z[ζl]. Taking norms above, we deduce that pφ(l) divides the
rational integer

NQ(ζl)/Q(ζm
′

l − ζn
′

l − ζml + ζnl ).

We deduce that

pφ(l) ≤
∏

1≤j≤l−1
gcd(j,l)=1

|ζjm
′

l − ζjn
′

l − ζjml + ζjnl | ≤ 4φ(l),

where we have used the fact that the product is non-zero since the right-hand
side of (8) is non-zero. This finishes the proof except for the two cases that
l = 2 and l = 4, both with p = 3.

For these remaining cases, we recall that we are considering m − n and
m′ − n′ odd. For l = 2, the condition ζm′

l − ζn
′

l − ζml + ζnl 6= 0 implies that

ζm
′

l − ζn
′

l − ζml + ζnl = ±4,

which is clearly not divisible by 3 in Z[ζl] = Z. For l = 4, one similarly
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deduces that

ζm
′

l − ζn
′

l − ζml + ζnl ∈ {±2,±2i,±2(1± i)},
and we easily deduce here (for example, by taking norms) that ζm′

l − ζn
′

l −
ζml + ζnl is not a multiple of 3 in Z[ζl] = Z[i]. Hence, the proof is complete.

We note that it is possible to extend the last part of our arguments to
strengthen the lemma, but this will not be needed to obtain Theorem 2. Set

T = {l ∈ Z+ : ∃m,n ∈ Z+ such that gcd(m− n, 6) = 1
and l is the minimal positive integer such that Φl(x) |Gm,n(x)}.

Thus, T consists of those positive integers l for which there are positive
integers m and n with gcd(m− n, 6) = 1 and satisfying Φl(x) |Gm,n(x) and
Φl′(x) - Gm,n(x) for every positive integer l′ < l. The condition gcd(m−n, 6)
= 1 will be used later in establishing Lemma 7, but we note again here
that we are interested in the case where (m,n) ∈ (M, 2M ] × (N, 2N ] and
m − n ≥ M − 2N ≥ 2N is prime. As observed already, we only need to
consider N large. Hence, for all such pairs (m,n) the condition gcd(m−n, 6)
= 1 follows.

The definition of T implies that we can restrict our attention to l ∈ T in
(5) so that all we need to show is the inequality∑

2≤l≤L
l∈T

1
lφ(l)

+
∑

2≤l≤L/2
l∈T

1
2lφ(2l)

+
∑

L<l≤N3/4

16
lφ(l)

+
∑

2≤l≤N3/4

16
Nφ(l)

< 0.99.(9)

From Lemma 5, we find that if l ≥ 2 and l ∈ T , then pl 6∈ T for all primes
p ≥ 5. Further, if 2 ∈ T , then 6 6∈ T ; and if 4 ∈ T , then 12 6∈ T .

Next, we give another improvement that allows us to further reduce the
size of the second sum in (9). Recall that the second sum is present since for
even l > 2, Lemma 4 only allows us to conclude that there are at most two
different pairs (a, b) with 0 ≤ a, b ≤ l − 1 such that Φl(x) divides Ga,b(x).
We show that some of these pairs are already accounted for in the case that
Φ2(x) divides some Gm,n(x). More precisely, we prove the following:

Lemma 6. Suppose 2 ∈ T . Let l = 4k where k is a positive integer.
Suppose a and b are integers in [0, l − 1] for which Φl(x) divides Ga,b(x).
Then either Φ2(x) divides Gm,n(x) for any positive integers m and n with
m ≡ a (mod l), n ≡ b (mod l) and m−n odd, or Φ2(x) divides Gm,n(x) for
any positive integers m and n with m ≡ b+ l/2 (mod l), n ≡ a+ l/2 (mod l)
and m− n odd.

Proof. Since Φ2(x) = x+ 1 divides some Gm′,n′(x) with m′−n′ odd and
Gm′,n′(−1) = ±2+g(−1), we deduce that g(−1) = 2 or −2. Note that l even
implies that any m and n as in the lemma satisfy m − n ≡ a − b (mod 2).
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Since also m−n is odd, we may and do suppose that a−b is odd. We deduce
that either

(−1)a − (−1)b = 2 and (−1)b+l/2 − (−1)a+l/2 = −2

or

(−1)a − (−1)b = −2 and (−1)b+l/2 − (−1)a+l/2 = 2.

As g(−1) = ±2, at least one of (m,n) = (a, b) and (m,n) = (b+ l/2, a+ l/2)
satisfies Gm,n(−1) = 0. The lemma easily follows.

The above lemma implies that if Φ2(x) divides some Gm,n(x), then one
of the two solutions given by Lemma 4 when l is a multiple of 4 corresponds
to pairs (m,n) for which Gm,n(x) is divisible by Φ2(x). We need not consider
the contribution of such pairs (m,n) twice. In other words, we can replace
(9) with showing both∑

2≤l≤L
l∈T

1
lφ(l)

+
∑

2≤l≤L/2
l∈T , 2 - l

1
2lφ(2l)

+
∑

L<l≤N3/4

16
lφ(l)

+
∑

2≤l≤N3/4

16
Nφ(l)

< 0.99(10)

and ∑
3≤l≤L
l∈T

1
lφ(l)

+
∑

2≤l≤L/2
l∈T

1
2lφ(2l)

+
∑

L<l≤N3/4

16
lφ(l)

+
∑

2≤l≤N3/4

16
Nφ(l)

< 0.99,(11)

where the first of these corresponds to the case that Φ2(x) divides some
Gm,n(x) and the second to the case that Φ2(x) divides no Gm,n(x).

Our next lemma will allow us to reduce the size of the left-hand sides of
(10) and (11) a little further. This lemma is the closest we get to executing
our original sieve approach (or perhaps more appropriately an inclusion-
exclusion approach). It basically takes into account the fact that if l and l′
are relatively prime elements of T , then there are many pairs (m,n) ∈ S
for which Gm,n(x) is divisible by both Φl(x) and Φl′(x). The lemma clar-
ifies, however, that we only need to take this into account for the pairs
(l, l′) ∈ {(2, 3), (3, 4)}. Note that a more serious sieve approach would need
to take into account further commonality of cyclotomic divisors of Gm,n(x);
more precisely, we would also want information about (m,n) ∈ S for which
Gm,n(x) is divisible by Φl1(x), . . . , Φlk(x) for arbitrary positive integers
l1, . . . , lk. We prove simply

Lemma 7. Suppose both 2 and 3 are in T . Then there exist asymptoti-
cally MN/(12 logM) distinct pairs (m,n) ∈ S such that Gm,n(x) is divisible
by both Φ2(x) and Φ3(x). Similarly, if both 3 and 4 are in T , then there
exist asymptotically either MN/(48 logM) or MN/(24 logM) distinct pairs
(m,n) ∈ S such that Gm,n(x) is divisible by both Φ3(x) and Φ4(x) depending
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on whether there are one or two pairs (a, b), with 0 ≤ a, b ≤ 3, such that
Φ4(x) divides Ga,b(x), respectively.

Proof. Consider the case that 2 and 3 are in T . By Lemma 4, there are
positive integer pairs (a2, b2) and (a3, b3) such that Φ2(x) divides Gm,n(x) if
and only if m ≡ a2 (mod 2) and n ≡ b2 (mod 2), and Φ3(x) divides Gm,n(x)
if and only ifm ≡ a3 (mod 3) and n ≡ b3 (mod 3). Observe that 2 and 3 in T
imply gcd(a2−b2, 2) = 1 and gcd(a3−b3, 3) = 1. By the Chinese Remainder
Theorem, there is a unique integer pair (a, b) with 0 ≤ a, b ≤ 5 such that
a ≡ a2 (mod 2), a ≡ a3 (mod 3), b ≡ b2 (mod 2) and b ≡ b3 (mod 3).
We deduce that both Φ2(x) and Φ3(x) divide Gm,n(x) if and only if m ≡ a
(mod 6) and n ≡ b (mod 6). Since gcd(a2−b2, 2) = 1 and gcd(a3−b3, 3) = 1,
we deduce

gcd(a− b, 6) = 1.

We are interested now in estimating the number of pairs (m,n) ∈ (M, 2M ]×
(N, 2N ] with m ≡ a (mod 6), n ≡ b (mod 6) and m − n prime. Fixing
n ∈ (N, 2N ] with n ≡ b (mod 6) in one of bN/6c+O(1) ways, we count the
number of primes p ∈ (M − n, 2M − n] with p ≡ a − b (mod 6). Since we
have gcd(a − b, 6) = 1, the Prime Number Theorem implies that there are
asymptotically M/(2 logM) such primes. The first part of the lemma easily
follows. The second part follows along similar lines.

We are now ready to complete the proof of Theorem 2. We begin here by
finishing our justification that there is an integer pair (m,n) ∈ (M, 2M ] ×
(N, 2N ] such that Gm,n(x) is free of reciprocal factors by considering several
cases. To simplify notation, we clarify that whenever p appears below, it rep-
resents a prime. We make use of (10) and (11) with L = 20000 throughout.

Case 1: Each of 2, 3 and 4 is in T . By Lemma 5, numbers of the form
2p and 4p for primes p ≥ 3 are not in T . We are interested in verifying
inequality (10) except that Lemma 7 allows us to subtract 1/12 from the
left-hand side due to double counting of cases where both Φ2(x) and Φ3(x)
divide Gm,n(x). Recalling L = 20000 and using (6) and (7), we see that the
left-hand side of (10) minus 1/12 is

≤
∑

2≤l≤20000
l 6∈{2p,4p : p≥3}

1
lφ(l)

+
∑

2≤l≤10000
2 - l

l 6∈{p : p≥3}

1
2lφ(2l)

+
125

20000
+ 0.001− 1

12
< 0.99.

Hence, we are done in this case.

Case 2: Each of 2 and 3 is in T but 4 6∈ T . Lemma 5 implies here that
the numbers of the form 2p for primes p ≥ 3 are not in T either. Lemma 7
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allows us again to subtract 1/12 from the left-hand side of (10). Since∑
2≤l≤20000
l 6∈{2p : p≥2}

1
lφ(l)

+
∑

2≤l≤10000
2 - l

l 6∈{p : p≥3}

1
2lφ(2l)

+
125

20000
+ 0.001− 1

12
< 0.9,

this case is also settled.

Case 3: Each of 2 and 4 is in T but 3 6∈ T . Lemma 5 implies here that
numbers of the form 2p and 4p for primes p ≥ 3 are not in T , but we cannot
apply Lemma 7. On the other hand, since 3 6∈ T , we do not need to consider
1/(3φ(3)) = 1/6 in the first sum in (10). Hence, we can use here the same
estimate as in Case 1 but with −1/12 replaced by −1/6. The estimate in
Case 1 therefore completes this case.

Case 4: The number 2 is in T but 3 and 4 are not in T . This case is
the same as Case 2, but analogously to Case 3, we can replace −1/12 in the
estimate in Case 2 with −1/6. Hence, we are done in this case.

Case 5: The numbers 2 and 4 are not in T . In this case, we verify (11)
using (6) and (7). Since∑

3≤l≤20000
l 6=4

1
lφ(l)

+
∑

3≤l≤10000

1
2lφ(2l)

+
125

20000
+ 0.001 < 0.85,

this case is complete.

Case 6: The number 2 is not in T but 3 and 4 are in T . Lemma 5
implies numbers of the form 3p for primes p ≥ 5 and numbers of the form
4p for primes p ≥ 3 are not in T . Lemma 7 implies that we can subtract at
least 1/48 from the left-hand side of (11) due to over-counting Gm,n(x) that
are divisible by both Φ3(x) and Φ4(x). Hence, the estimate∑

3≤l≤20000
l 6∈{3p : p≥5}
l 6∈{4p : p≥3}

1
lφ(l)

+
∑

2≤l≤10000
l 6∈{2p : p≥3}

1
2lφ(2l)

+
125

20000
+ 0.001− 1

48
< 0.99

resolves this case. (Although it is not needed, we note that this estimate is
easily improved. Lemma 7 actually allows us either to subtract 1/24 from
the left-hand side of (11) or to remove the term 1/(4φ(4)) = 1/8 from the
second sum.)

Case 7: The numbers 2 and 3 are not in T but 4 is in T . This case is
settled by the inequality∑

4≤l≤20000
l 6∈{4p : p≥3}

1
lφ(l)

+
∑

2≤l≤10000
l 6∈{2p : p≥3}

1
2lφ(2l)

+
125

20000
+ 0.001 < 0.86.
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To finish Theorem 2, we simply apply Lemma 1. For N and M as in (1),
we have justified that there exist n ∈ (N, 2N ] and m ∈ (M, 2M ] for which
the non-reciprocal part of Gm,n(x) is Gm,m(x) itself. As noted after the
statement of Lemma 1, (i) and (ii) of that lemma do not hold. Observe that

m ≥M = 4N exp((log 5)(8‖f‖2 + 9)) ≥ 2n exp((log 5)(8‖f‖2 + 9)).

Hence, Gm,n(x) is irreducible. By taking w(x) = Gm,n(x) − f(x), the first
part of Theorem 2 follows. Since m ≤ 2M = 8N exp((log 5)(8‖f‖2 +9)), the
second part of Theorem 2 follows by taking N = max{r + 3, n0}.
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