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1. Introduction. Let k be an imaginary compositum of quadratic fields
and suppose −1 is not a square in the genus field K of k in the narrow sense.
This paper resumes the study of the Stickelberger ideal of k that started
in [1], in a similar way as [2] does for circular units of a real compositum of
quadratic fields. The aim of the paper is to prove a divisibility relation for the
relative class number h− of k and, in the case that 2 does not ramify in k/Q,
to construct new explicit annihilators of the class group of k not belonging
to the Stickelberger ideal. These new annihilators are obtained as quotients
of elements of the Stickelberger ideal, the usual source of annihilators, by
suitable powers of 2.

The main result of this paper can be summarized as follows:

Theorem 1.1. Let k be an imaginary compositum of quadratic fields
such that 2 does not ramify in k/Q. Let X ′ be the set of all odd Dirichlet
characters corresponding to k. Let Sk be the Stickelberger ideal of k defined
by Sinnott in [4] and let Tk ⊆ Z[Gal(k/Q)] be the subgroup defined below by
means of explicit generators. Then Sk+2Tk annihilates the ideal class group
Clk of k, and

[(Sk + 2Tk) : Sk] =
∏
χ∈X′

Kχ 6=k∩Kχ

[Kχ : (k ∩Kχ)]
2

,

where Kχ is the genus field of the quadratic field corresponding to χ.

Hence this approach gives explicit new annihilators of Clk if and only
if there is an odd Dirichlet character χ corresponding to k such that the
degree [Kχ : (k ∩Kχ)] ≥ 4.
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2. Definitions and basic results. Recall that k is a compositum of
quadratic fields such that −1 is not a square in the genus field K of k in the
narrow sense. This condition can be written equivalently as follows: either
2 does not ramify in k and k = Q(

√
d1, . . . ,

√
ds), where d1, . . . , ds with

s ≥ 1 are square-free integers all congruent to 1 modulo 4, or 2 ramifies in
k and there is a unique x ∈ {2,−2} such that k = Q(

√
d1, . . . ,

√
ds), where

d1, . . . , ds with s ≥ 1 are square-free integers such that di ≡ 1 (mod 4) or
di ≡ x (mod 8) for each i ∈ {1, . . . , s}. In the former case, let

J = {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k},
and, in the latter case, let

J = {x} ∪ {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k}.
We assume that k is imaginary, i.e. at least one of di’s is negative. For any
p ∈ J , let

n{p} =
{
|p| if p is odd,
8 if p is even.

For any S ⊆ J let (by convention, an empty product is 1)

nS =
∏
p∈S

n{p}, ζS = e2πi/nS , QS = Q(ζS), KS = Q(
√
p; p ∈ S),

and kS = k ∩ KS . It is easy to see that KJ = K and that nJ is the
conductor of k. For any p ∈ J let σp be the non-trivial automorphism in
Gal(KJ/KJ\{p}). Then G = Gal(KJ/Q) can be considered as a (multiplica-
tive) vector space over F2 with F2-basis {σp; p ∈ J}.

For any positive integer n let

θn =
∑

0<t≤n
(t,n)=1

t

n
τ−1
t

be the usual Stickelberger element in the rational group ring over the Galois
group of the nth cyclotomic field; here τt means the automorphism sending
each root of unity to its tth power. For any S ⊆ J we define

αS = corKJ/KS resQS/KS θnS ∈ Q[G],
βS = cork/kS resQS/kS θnS ∈ Q[Gk],

where Gk = Gal(k/Q). Here res and cor mean the usual restriction and
corestriction maps between group rings (see [4]). Let NK =

∑
σ∈G σ ∈ Z[G]

and Nk =
∑

σ∈Gk σ ∈ Z[Gk]. Finally, let S ′K be the G-module generated
in Q[G] by {1

2NK} ∪ {αT ; T ⊆ J} and similarly let S ′k be the Gk-module
generated in Q[Gk] by {1

2Nk} ∪ {βT ; T ⊆ J}. We have proved in [1, p. 159,
Remark] that S ′K and S ′k are precisely the modules S′ for K and k used by
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Sinnott (see [4, p. 189]) to define the Stickelberger ideal, so SK = S ′K ∩Z[G]
and Sk = S ′k ∩ Z[Gk] are the Stickelberger ideals of K and k, respectively.

Lemma 2.1. For any S ⊆ J and any σ ∈ G we have

(1 + σ) · αS = a ·NK + 2
∑
T⊆S

aT · αT for suitable a, aT ∈ Z.

Proof. This is a direct consequence of [1, Lemma 18], because

(1 + σ)αS = 2αS − (1− σ)αS .

Proposition 2.2. For any S ⊆ J we have [KS : kS ]−1 ·corK/k βS ∈ S ′K .

Proof. It is easy to see that Gal(K/k) is a subspace of the (multiplica-
tive) vector space Gal(K/Q) over F2. Let ρ1, . . . , ρr be a basis of Gal(K/k).
Then corK/k 1 =

∑
σ∈Gal(K/k) σ = (1 + ρ1) · · · (1 + ρr). Using [1, Lemma 17]

we obtain

[K : kKS ] corK/k βS = corK/k resK/k αS = (1 + ρ1) · · · (1 + ρr) · αS .
It is now easy to show by induction on r using Lemma 2.1 that

[K : kKS ] corK/k βS = 2r−1a ·NK + 2r
∑
T⊆S

aT · αT

for suitable a, aT ∈ Z. The proposition follows from [K : k] = 2r and
[kKS : k] = [KS : kS ].

Let τ denote the complex conjugation (both in G and Gk, but there is
no danger of confusion). Following Sinnott, we define

AK = {δ ∈ Z[G]; (1 + τ)δ ∈ NKZ},
Ak = {δ ∈ Z[Gk]; (1 + τ)δ ∈ NkZ}.

We have Sk ⊆ Ak and SK ⊆ AK (see [4, Lemma 2.1]). Moreover, we shall
need

A′K =

{
AK + 1

2NKZ if −3 /∈ J ,
AK + 1

2NKZ + α{−3}Z if −3 ∈ J ,

and

A′k =

{
Ak + 1

2NkZ if −3 /∈ J ,
Ak + 1

2NkZ + β{−3}Z if −3 ∈ J .

Lemma 2.3. The indices [A′K : AK ] and [A′k : Ak] are equal to the
numbers of roots of unity in K and k, respectively.

Proof. First assume that −3 /∈ J . Then ±1 are the only roots of unity
in both K and k and the lemma follows. Now, let −3 ∈ J . Then K has
exactly six roots of unity and α{−3} = corK/Q(

√
−3)(

1
3 + 2

3σ−3). On one
hand, if

√
−3 /∈ k then β{−3} = Nk. On the other hand, if

√
−3 ∈ k then

β{−3} = cork/Q(
√
−3)(

1
3 + 2

3σ−3). The lemma follows in both cases.
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Proposition 2.4. For any S ⊆ J we have γS = [KS : kS ]−1 · βS ∈ A′k.

Proof. One can see immediately from the definitions that SK + 1
2NKZ ⊆

S ′K and that in the case −3 ∈ J we have SK+ 1
2NKZ+α{−3}Z ⊆ S ′K . Sinnott

proved in [4, Proposition 2.1] that [S ′K : SK ] is equal to the number of roots
of unity in K, and a similar discussion to the proof of Lemma 2.3 gives

S ′K =

{
SK + 1

2NKZ if −3 /∈ J ,
SK + 1

2NKZ + α{−3}Z if −3 ∈ J .

This implies that S ′K ⊆ A′K . We can prove similarly S ′k ⊆ A′k. We have
βS ∈ S ′k ⊆ A′k, i.e. [KS : kS ] · γS ∈ A′k. To avoid distinguishing two cases,
in the case −3 /∈ J we put α{−3} = 0. Proposition 2.2 gives that there are
c, d ∈ Z such that

[KS : kS ]−1 · corK/k βS +
c

2
·NK + d · α{−3} ∈ AK .

In both cases we have 3α{−3} ∈ AK and so

3[KS : kS ]−1 · corK/k βS +
3c
2
·NK ∈ AK .

Hence

corK/k

(
3γS +

3c
2
·Nk

)
∈ AK ,

which means 3γS + (3c/2) · Nk ∈ Ak and so 3γS ∈ A′k. The proposition
follows as [KS : kS ] and 3 are relatively prime.

Lemma 2.5. For any S ⊆ J and any σ ∈ Gk we have

(1− σ) · γS = a ·Nk + 2
∑
T⊆S

aT · γT for suitable a, aT ∈ Z.

Proof. In [1, proof of Lemma 19] we have derived the identity

(1− σ) · βS = a[kKS : k] ·Nk + 2
∑
T⊆S

aT [kKS : kKT ] · βT

with a, aT ∈ Z. Dividing by [kKS : k] = [KS : kS ] gives the lemma.

Lemma 2.6. Let p ∈ S ⊆ J . Then

(1 + resKJ/k σp)γS = (1− Frob(|p|, k))γS\{p} + [QS : KS ]Nk,

where Frob(|p|, k) is any extension to k of the Frobenius automorphism of
|p| in kJ\{p}/Q.

Proof. [1, Lemma 20] states

(1 + resKJ/k σp)βS = (1− Frob(|p|, k))[kKS : kKS\{p}]βS\{p}
+ [QS : KS ][kKS : k]Nk.

Since [kKS : kKS\{p}] = [kKS : k][kKS\{p} : k]−1, the lemma follows.
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Lemma 2.7. For any non-empty S ⊆ J we have

(1 + τ)γS = [QS : KS ]Nk.

Proof. The lemma follows from the identity (1 + τ)βS = [QS : kS ]Nk

given by [1, Lemma 21].

3. Divisibility of the relative class number h− of k by a power
of 2. Let

X = {ξ ∈ Ĝ; ξ(τ) = 1, ξ(σ) = 1 for all σ ∈ Gal(KJ/k)},
X ′ = {ξ ∈ Ĝ; ξ(τ) = −1, ξ(σ) = 1 for all σ ∈ Gal(KJ/k)},

where Ĝ is the character group of G. Then X and X ′ can be viewed also as
the sets of all even and of all odd Dirichlet characters corresponding to k,
respectively. For any χ ∈ X ∪X ′ let

Sχ = {p ∈ J ; χ(σp) = −1},
hence nSχ is the conductor of χ.

Let T ′k be the Gk-module generated in Q[Gk] by {1
2Nk} ∪ {γS ; S ⊆ J}.

Proposition 2.4 states that T ′k ⊆ A′k.
Theorem 3.1. The set B = {γSχ ; χ ∈ X ′} ∪ {1

2Nk} is a Z-basis of T ′k
and

[A′k : T ′k ] =
h−

Q
·
(

2
[K : K ′] · [K : k]

)[k:Q]/4

,

where K ′ is the genus field in the narrow sense of k+ = k∩R, h− = hk/hk+

is the relative class number of k, and Q is the Hasse unit index of k, that
is, Q = [E : (E ∩R)W ], where E and W are the group of units of k and the
group of roots of unity in k, respectively.

Proof. We can prove that B is a system of generators of T ′k in the same
way as [1, Lemma 22] was proved—it is enough to use Lemmas 2.5–2.7
instead of Lemmas 19–21 of [1]. In [1, Theorem 3] we have proved that the
set

B′ = {βSχ ; χ ∈ X ′} ∪ {1
2Nk}

is a basis of S ′k. As S ′k ⊆ T ′k and the sets B and B′ have the same number of
elements, we see that B is in fact a basis of T ′k . The transition matrix from
B′ to B is the diagonal matrix whose diagonal consists of [KSχ : kSχ ], for
all χ ∈ X ′, and 1. Thus

[T ′k : S ′k] =
∏
χ∈X′

[KSχ : kSχ ].

Lemma 2.3 and [4, Proposition 2.1] give that both [A′k : Ak] and [S ′k : Sk]
are equal to the number of roots of unity in k and so [A′k : S ′k] = [Ak : Sk].
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This equality and [1, Theorem 3] imply

[A′k : S ′k] =
h−

Q
· (#X ′)−

1
2
(#X′)

∏
χ∈X′

[k : kSχ ],

therefore

[A′k : T ′k ] =
h−

Q
· (#X ′)−

1
2
(#X′)

∏
χ∈X′

[k : kSχ ]
[KSχ : kSχ ]

=
h−

Q
· [k+ : Q]−[k+:Q]/2

∏
χ∈X′

[k : Q]
[KSχ : Q]

.

In [2, Lemma 8] we have proved∏
χ∈X

[KSχ : Q] = [K ′ : Q][k
+:Q]/2

and we can prove ∏
χ∈X∪X′

[KSχ : Q] = [K : Q][k:Q]/2

in the same way. Therefore

(3.1)
∏
χ∈X′

[KSχ : Q] = [K : K ′][k
+:Q]/2 · [K : Q][k

+:Q]/2

and the theorem follows.

Corollary 3.2. The relative class number h− of k is divisible by the
following power of 2:

Q · ([K : K ′][K : k]/2)[k:Q]/4 |h−.

Proof. This follows from T ′k ⊆ A′k.

Remark. Let us mention that the strength of Corollary 3.2 consists
mainly in the algebraic interpretation of the divisibility result, because if
[k : Q] ≥ 8 then one can get the stronger divisibility result (3.2) below using
the analytical class number formula and genus theory as follows. For any
χ ∈ X ′ let B1,χ be the first generalized Bernoulli number and kχ be the
imaginary quadratic field corresponding to χ. Let hχ and wχ be the class
number of kχ and the number of roots of unity in kχ, respectively. The
analytical class number formula (for example, see [5, Theorem 4.17]) gives

h− = Qw
∏
χ∈X′

(−1
2B1,χ) and hχ = wχ(−1

2B1,χ),

where w = #W ∈ {2, 6} is the number of roots of unity in k. It is easy to
see that each wχ equals 2 with at most one exception. This exceptional case
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wχ = 6 appears if and only if w = 6, and in any case

h− = 2Q
∏
χ∈X′

hχ
2
.

The genus field of kχ is KSχ , so genus theory gives

1
2 [KSχ : Q] = [KSχ : kχ] |hχ,

and using (3.1) we obtain

(3.2) 2Q
∏
χ∈X′

[KSχ : Q]
4

= 2Q ·
(

[K : K ′][K : Q]
16

)[k:Q]/4 ∣∣∣∣h−.
4. The case of tame ramification. Let us assume that k/Q is not

wildly ramified, i.e. 2 does not ramify in k, which means that the conductor
n = nJ of k is odd. Thus the parity of a character χ ∈ X ∪X ′ is determined
by its conductor nSχ . Moreover nS for all S ⊆ J runs over all positive
divisors of n without repetition. So we shall simplify our notation and if
d = nS we shall write Kd, kd, Qd, αd, βd, γd instead of KS , kS , QS , αS , βS ,
γS etc.

We want to construct annihilators of the class group Clk of k outside
of the Stickelberger ideal Sk. Let Tk = T ′k ∩ Z[Gk]. The aim of this section
is to show that elements of Tk annihilate the principal genus PGk of k, i.e.
the subgroup of Clk of all classes containing the prime ideals of k whose
Frobenius on K/k is trivial. (Note that PGk is also sometimes called the
“non-genus part” of Clk.)

Lemma 4.1. Each ideal class in the principal genus PGk contains in-
finitely many prime ideals above primes p ≡ 1 (mod n).

Proof. As K is the maximal absolutely abelian subfield of the Hilbert
class field Hk of k, and K is a subfield of the nth cyclotomic field Qn, we
have Hk ∩ Qn = K. Therefore for any class C ∈ PGk there is an element
in Gal(HkQn/k) whose restriction to Qn is trivial and restriction to Hk is
the Artin symbol of C. The lemma follows from the Chebotarev density
theorem.

Let us fix a class C ∈ PGk and a prime ideal P ∈ C above p ≡ 1
(mod n). Of course, to show that elements of Tk annihilate C we shall use
Stickelberger factorization of Gauss sums. Let χ: (Z/pZ)∗ → Q∗n be the nth
power residue symbol modulo a prime ideal P of Qn above P, i.e. for any
t ∈ Z relatively prime to p we have χ(t) ≡ t(p−1)/n (mod P). For any a ∈ Z
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with n - a, we consider the Gauss sum

xa = −
p−1∑
t=1

χ(t)−aζtp,

where ζp is a fixed primitive pth root of unity. If n | a ∈ Z we put xa = 1.

Lemma 4.2. For any positive integer r |n and any a ∈ Z we have
r−1∏
i=0

xa+in/r = χ(r)ar · p(r−1)/2 · xar.

Proof. The Davenport–Hasse relation (for example, see [3, Theorem 10.2
of Chapter 2]) gives

r−1∏
i=0

xa+in/r = χ(r)ar · xar ·
r−1∏
i=1

xin/r.

Moreover if n - b then xb · x−b = χ(−1)p (for example, see [3, GS 2 in §1 of
Chapter 1]). But χ(−1) = 1 as n is odd and the lemma follows.

Well-known properties of Gauss sums show that xdn/d is a non-zero ele-
ment of the dth cyclotomic field Qd for any positive d |n. We define yd =
NQd/Kd(x

d
n/d). Let p be the prime ideal of K below P. Recall that P is the

prime ideal of k below P.

Lemma 4.3. We have

(yd) = pdαd as ideals of K

and
(NKd/kd(yd)) = Pdβd as ideals of k.

Proof. This has been proved by Sinnott (see [4, formulae (2.2), (3.2),
(3.6), and (3.7)]), in the former case for Sinnott’s k being our K, so Sinnott’s
g′d(−1, p) and θ′d(−1) correspond to our yd and αd, and in the latter case
for Sinnott’s k being our k, so Sinnott’s g′d(−1,P) and θ′d(−1) correspond
to our NKd/kd(yd) and βd.

Lemma 4.4. For any d |n and any prime q | d we have

NKd/Kd/q(yd) = pd·[Qd:Kd] · yq·(1−Frob(q,Kd/q))

d/q .

Proof. It is easy to see that

NQd/Qd/q(x
d
n/d) =

∏
b≡1 (modn/q)

1≤b≤n, q-b

xdbn/d.
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If an integer b satisfies b ≡ 1 (mod n/q) and q | b then x
Frob(q,Qn/q)
bn/d = xqn/d.

Hence

NQd/Qd/q(x
d
n/d) = x

−d·Frob(q,Qn/q)−1

qn/d ·
q−1∏
i=0

xd(n/d)+in/q

and Lemma 4.2 gives

NQd/Qd/q(x
d
n/d) = x

−d·Frob(q,Qn/q)−1

qn/d · (χ(q)qn/d · p(q−1)/2 · xqn/d)d

= x
d·(1−Frob(q,Qn/q)−1)

qn/d · pd(q−1)/2.

Therefore

NKd/Kd/q(yd) = NQd/Kd/q(x
d
n/d) = NQd/q/Kd/q(x

d·(1−Frob(q,Qn/q)−1)

qn/d · pd(q−1)/2)

and the lemma follows.

Let Y be the subgroup of the multiplicative groupK∗ generated by−1, p,
and all conjugates of yd for d |n. The following lemma shows that the action
of the augmentation ideal of Z[G] on elements of Y gives the square of an
element of Y multiplied by a power of p:

Lemma 4.5. For any d |n and σ ∈ G we have

y1−σ
d = pa ·

∏
t|d

y2at
t for suitable integers a, at.

Proof. If d = 1 then yd = 1 and the statement is trivial. Suppose that
d > 1 and that the lemma has been proved for all divisors of n smaller
than d. Let Rσ ⊆ J be determined by σ =

∏
r∈Rσ σr. If (nRσ , d) = 1 then

y1−σ
d = 1. Suppose that (nRσ , d) > 1 and that the lemma has also been

proved for this d and all ρ ∈ G having (nRρ , d) < (nRσ , d). Fix any q ∈ Rσ,
q | d. Then ρ = σqσ satisfy nRρ = nRσ/|q|. On one hand, if nRρ = 1 then

y1−σ
d = y

1−σq
d = y2

d · (NKd/Kd/|q|(yd))
−1

and Lemma 4.4 together with the induction hypothesis gives what we need.
On the other hand, if nRρ > 1 then the lemma has already been proved for
d with both ρ and σq. Hence

y1−σ
d = y

1−σq
d · (y1−ρ

d )σq =
(
pa ·

∏
t|d

y2at
t

)
·
(
pb ·

∏
t|d

y2bt
t

)σq
=
(
pa+b ·

∏
t|d

y
2(at+bt)
t

)
·
∏
t|d

(y1−σq
t )−2bt

and the lemma follows from the induction hypothesis.

Theorem 4.6. The set

B = {p} ∪ {yd; d |n, d > 0, d ≡ 3 (mod 4)}
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is a Z-basis of Y , more precisely B ∪ {−1} is a system of generators of Y
and B is multiplicatively independent over Z.

Proof. Lemma 4.5 gives that Y is generated by {−1, p}∪{yd; d |n}. Let
d |n, d ≡ 1 (mod 4) and put S = {q ∈ J ; q < 0, q | d} and ρ =

∏
q∈S σq.

Then the number of elements of S is even and ρ acts on yd as the complex
conjugation τ . Hence

yρd = yτd = NQd/Kd(x
d
−n/d) = NQd/Kd(p

d · x−dn/d) = pd·[Qd:Kd] · y−1
d .

Therefore

y2
d = pd·[Qd:Kd] · y1−ρ

d = pd·[Qd:Kd] ·
∏
q∈S

(y1+σq
d )

Q
t∈S, t<q(−σt)

= pd·[Qd:Kd] ·
∏
q∈S

NKd/Kd/|q|(yd)
Q
t∈S, t<q(−σt).

Lemmas 4.4 and 4.5 give

y2
d = pa ·

∏
t|d, t<d

y2at
t

for suitable integers a, at. But p is not a square in K, so a is even and

yd = ±pa/2 ·
∏

t|d, t<d

yatt .

We have shown that B ∪ {−1} is a system of generators of Y .
Lemma 4.3 says (yd) = pdαd as ideals of K, moreover (p) = pNK . As p

splits completely in K, we have the G-module homomorphism Y → Z[G]
sending each y ∈ Y to δ ∈ Z[G] satisfying (y) = pδ. The image of Y is
a submodule of finite index in the Stickelberger ideal SK , hence the Z-
rank of Y cannot be smaller than the Z-rank of SK , which is equal to
1 + 1

2 [K : Q] (see [4, Theorem 2.1]). But this equals the number of elements
of B. Therefore B is multiplicatively independent over Z.

Lemma 4.7. Let y ∈ Y and d |n. If there is a positive integer r such that
y2r ∈ kd then y ∈ kd.

Proof. It is enough to prove the lemma for r = 1 and to use induction.
Assume y2 ∈ kd. Then for any σ ∈ Gal(K/kd) we have (y2)1−σ = 1 and so
y1−σ = ±1. Lemma 4.5 gives that y1−σ belongs to a subgroup of Y generated
by p and by y2

t for all t |n. Theorem 4.6 implies that this subgroup has no
torsion and so y1−σ = 1.

Proposition 4.8. For any d |n there is zd ∈ kd such that either

z
[Kd:kd]
d = NKd/kd(yd)

or
z
[Kd:kd]
d = p[Kd:kd]/2 ·NKd/kd(yd).
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Proof. If Kd = kd there is nothing to prove. Assume that Kd 6= kd and
so [Kd : kd] is even. As in the proof of Proposition 2.2, we choose a basis
ρ1, . . . , ρr of the (multiplicative) vector space Gal(Kd/kd) over F2. Then
[Kd : kd] = 2r and

NKd/kd(yd) = y
(1+ρ1)···(1+ρr)
d .

By induction on r using Lemma 4.5 we show that

y
(1+ρ1)···(1+ρr)
d =

(
pa ·

∏
t|d

y2at
t

)[Kd:kd]/2

for suitable integers a, at. We put

zd = p−[−a/2] ·
∏
t|d

yatt

and one of the two equalities in the statement of the proposition follows de-
pending on whether a is even or odd. As zd ∈ Y and z[Kd:kd]

d ∈ kd, Lemma 4.7
gives zd ∈ kd.

Theorem 4.9. The elements of Tk annihilate all ideal classes in the
principal genus PGk of k.

Proof. As C has been chosen as an arbitrary class in PGk it is enough
to show that Tk ⊆ A, where A is the annihilator of C. We have P ∈ C and
so A = {α ∈ Z[G]; Pα is principal}. Sinnott proved that the Stickelberger
ideal Sk is contained in A.

On one hand, if
√
−3 ∈ k then 3 |n and β3 = γ3 ∈ T ′k . On the other

hand, if
√
−3 /∈ k and

√
−3 ∈ K then β3 = Nk ∈ T ′k . Let us define β3 = 0

in the last case, i.e., when
√
−3 /∈ K, just to avoid distinguishing the three

cases. So in all cases we have Nk, 3β3 ∈ Sk ⊆ A.
Proposition 2.4 gives that for any d |n there are u ∈ {0, 1}, v ∈ {0, 1, 2}

such that δd = γd+(u/2)Nk+vβ3 ∈ Ak; moreover v = 0 if 3 - d. Theorem 3.1
states that {γd; χ ∈ X ′, d = nSχ} ∪ {1

2Nk} is a Z-basis of T ′k , hence

{δd; χ ∈ X ′, d = nSχ} ∪ {Nk}

is a Z-basis of Tk = T ′k ∩ Ak; notice that δ3 = 3β3 if
√
−3 ∈ k. Thus the

theorem will be proved if we show that δd ∈ A for any d |n.
Proposition 4.8 states

z
[Kd:kd]
d = p[Kd:kd]x/2 ·NKd/kd(yd)

for suitable x ∈ {0, 1}. Using Lemma 4.3 and Proposition 2.4 we have

(z[Kd:kd]
d ) = (p[Kd:kd]x/2 ·NKd/kd(yd))

= Pdβd+[Kd:kd](x/2)Nk = P [Kd:kd](dγd+(x/2)Nk)
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as ideals of k and so
(zd) = Pdγd+(x/2)Nk

which means dγd + (x/2)Nk ∈ A, hence d(γd + (x/2)Nk) ∈ A as d is odd
and Nk ∈ A. We have mentioned that 3β3 ∈ A and that 3 - d implies v = 0.
Therefore dvβ3 ∈ A and so dδd = d(γd + (x/2)Nk + vβ3) ∈ A. It is easy to
see that

[Kd : kd]δd = βd + [Kd : kd]((x/2)Nk + vβ3) ∈ S ′k ∩Ak = Sk ⊆ A.
As d and [Kd : kd] are relatively prime we have obtained δd ∈ A and the
theorem is proved.

Corollary 4.10. The elements of 2Tk annihilate the ideal class group
Clk of k.

Proof. The Galois group Gal(K/k) is 2-elementary and so the square of
the Frobenius of any prime ideal of k is trivial on K. Thus the square of any
ideal of k belongs to a class from the principal genus PGk of k.

Remark. The elements of the augmentation ideal IG of Z[G] also map
any class in Clk to a class in PGk, so IGTk annihilates Clk. But these annihi-
lators are in fact already obtained in Corollary 4.10 because Proposition 2.4
and Lemma 2.5 imply that for any σ ∈ Gk and any δ ∈ Tk we have either
(1− σ)δ ∈ 2Tk or (1− σ)δ +Nk ∈ 2Tk.

Proof of Theorem 1.1. Corollary 4.10 gives that Sk+2Tk annihilates Clk.
Using δd defined in the proof of Theorem 4.9 we can describe a Z-basis of
Sk + 2Tk. We know (see [1, Lemma 22 and Theorem 3]) that

{[Kd : kd]δd; χ ∈ X ′, d = nSχ} ∪ {Nk}
is a Z-basis of Sk and (see the proof of Theorem 4.9) that

{2δd; χ ∈ X ′, d = nSχ} ∪ {2Nk}
is a Z-basis of 2Tk. Therefore

{min(2, [Kd : kd])δd; χ ∈ X ′, d = nSχ} ∪ {Nk}
is a Z-basis of Sk + 2Tk and we can easily compute the index

[(Sk + 2Tk) : Sk] =
∏

χ∈X′, d=nSχ
Kd 6=kd

[Kd : kd]
2

,

which gives the index formula of Theorem 1.1 because Kχ = Kd and k∩Kχ

= kd with d = nSχ .
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