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1. Introduction. In [GA], the Engel expansion transformation of z €
(0,1] was defined as Tz = di(x)x — 1, where dy(x) = [1/x] + 1, and the
partial quotients {d,,(x)},>1 of the Engel expansion were defined by d,,(z) =
di(T"1(z)). By the algorithm, one has d;;1(z) > d;(x) for j > 1, and any
z € (0, 1] can be expanded as
S !

di(z) — di(x)dy(x) dy(z)da(z) - - - dn ()
which is denoted by x = [di(x),d2(z),...] for short. In |[GA], J. Galambos
proved that for almost all = € (0, 1],

(1.2) lim dp ()" =1.

n—oo

(1.1) =z T

Also, he posed the problem of finding the Hausdorff dimension of the set
where (1.2) fails. In [WUJ, J. Wu proved that this Hausdorff dimension is 1.
More generally, he proved that for any a > 1, the Hausdorff dimension of
the set

(1.3) A(e) = {z € (0,1] : lim d(2)"/" = a}
is 1. In this paper, we find the Hausdorff dimension of the set

(1.4) E(a) = {x € (0,1] : nlingom = a}.

THEOREM 1.1. For any a > 1, dimpg E(a) = 1/cv.
2. The proof of the theorem

2.1. Upper bound. Firstly, a simple but useful lemma is stated.
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LEMMA 2.1. Suppose 2 < di < do < --- < d,, are given integers, let
S C (0,1] and

1 1 x
S,: /: /:— —_— CEE) —_— S .
{a: ! d1+d1d2+ +d1d2~"dn’x€ }
Then dimg S = dimyg S’.

Proof. Define the map S — S’ by
1 1 T

fdldg---dn(w’) = dil + d1d2 + -+ m

Since
W A |21 — 25
‘xl x?’_ dlden

the map f is bi-lipschitz, so dimg S = dimg S’. =

for any z1,x9 € S,

LEMMA 2.2. dimpg E(a) < 1/a.

Proof. By the definition of E(a), for any € E(«) and € > 0, there
exists N € N such that [d% ¢(z)] < dpy1(z) < [diTe(z)] for any n > N.
Take

Ec(a) = |J{z € (0,1]: [dy~*(2)] < dpsa(2) < [d*(2)], ¥n = N}

N=1
00

= E.(Ne).
N=1

Obviously, E(a) C E¢(a) for any 0 < € < a. By Lemma 2.1, dimpg E¢(N, «)
= dimy E(1, «) for any N > 1, thus

dimyg E(a) < sup dimy E¢(N, a) = dimp E(1, a).
N>1

In what follows, we use the symbolic space D = |J;7, Dy, where Dy = ()
and for any n > 1,

Dy, ={(o1,...,00) EN": 077 < 0opy1 <[00, VI <k <n—1}.
For any o = (01,...,04,) € D, we call the set
I(o1,...,0n) :=cl{x € (0,1] : d1(z) = 01, ...,dn(z) = 00}
an nth basic cylinder, and

Jo’ = U I(le-~~aan70n+1)

o5 ]<ont+1<[ont]
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an nth basic interval. Then
1 1

on[ot]

|JO" a+te

O'l.. o’l...o'n[o'n ]

IN

1 ( 2 1 ) < 4
01 One1 \ oS¢ 0,057¢) T o1 op_qonTOTE
Notice that
oo
E(l,o)={x € (0,1]: 05 [ <on1 <[00, Vn=1} =) | Jo
n=1 O'EDn
Take € > 0 so small that for any n > 1,

Then

4 1/«
Hl/a(Eg(].,Ol)) S liminf Z |JU|1/C¥ é lim inf Z < 1+a—6>
n— o0 n—0oo oDy, 01" 0p—-10n

oceDy,
- 4 e oo i \V*
= limin E —ita—c Z S —
n—oo 0'1 o .. U}Lt? € _ O-T]i—i_a €
(01,,0n—1)€Dn—1 [02~¢)<on <[00
o 4 1/a 2 1/a
< lim inf z : o _1ta—e Z a—e
n—oo o1+ 0O g
(01ys0n—1)€Dp_g N1 On—1 09~ <on<lote] ~ "
4 1/a
< lim inf E o < 00,
n—oo 0'1 “ e O'n_20'n_1

(a'lv--uo'nfl)eanl

which implies dimpg E(a) < 1/a. =
2.2. Lower bound. We state the mass distribution principle first.

LeEMMA 2.3 (Distribution Principle, see also [FAl Proposition 2.3]). Let

E be a Borel set, and p a measure with u(E) > 0. If for any xz € E,

87

where B(xz,r) denotes the open ball with center at x and radius r, then
dimyg FE > s.

Recall that for a > 1,

:{xE(O,l]: lim W:a}.

E(a) n—00 log dn(x)
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To give a lower bound of dimy F(«), we define a subset of E(«) by
F={xe(0,1]:2[dy(z)] + 1 < dpt1(z) < 3[d;(x)] for all n > 1}.

To exhibit the structure of the set F', we use the symbolic space D =
U2y Dn, where Dy = () and for any n > 1,

Dy, ={(o1,...,0n) € N" : 2[0%] + 1 < 011 < 3[o}], 1 <k <n}.

As in Section 2.1, for each 0 = (01, ...,0,) € Dy, we call
I(o1,...,00) :=cl{zx € [0,1] : d1(z) = 01, ...,dn(z) = opn},
J(o1,...,0p) = U I(o1,...,00,0n+1)

2[op]+1<on+1<3[07]
an nth basic cylinder and nth basic interval respectively. Then by a simple
computation, we have

1

o1 op_1(op — 1oy,

[I(o1,...,00)] =

9

and

1
a+1’
01 0pn—-10n

<|J(o1,...,00)| <

W =

1 1
6 01 opqont!

and one can observe that

F = m U J(o1,...,00).
n=1

=1(o1,...,0n)EDy,
LEMMA 2.4. dimyg E(a) > 1/a.

Proof. Foreachn > 1ando=(01,...,0,)€ Dy, denote by ¢*(o1,...,0n)
the length of the gap between the left endpoint of I(o1,...,0,) and the left
endpoint of J(o1,...,0,) and by ¢"(o1,...,0,) the length of the gap be-
tween the right endpoint of I(oi,...,0,) and the right endpoint of
J(o1,...,0p). Finally, let

Gloy,...,00) :=min{g’(c1,...,00),9"(01,...,00)}.

Then

1 1 2 1
- <G(o1y...,0p) < = .
3 o1 oot S ) S g e

Now, we define a probability measure on F. The set function p : {J(o) :
o€ D\ Dy} — RT is given by

n—1
n— k=1

and
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where § denotes cardinality. It can be easily verified that

p(J (o1, on1)) =Y u(J(o1, ... o)),

where the summation is taken over all o, such that (o1,...,0,-1,0,) € D,.
Notice that ), p, #(J(o1)) = 1, so, by Kolmogorov’s extension theorem,
the function pu can be extended to a probability measure supported on F,
which is still denoted by p.

For each x € F, there exists a sequence (0y,)n>1 such that (o1,...,0,) €
D,, and =z € J(o1,...,0y,), for each n > 1. Assume that » > 0 is small
enough and let n be the integer such that

G(o1,y.yont1) <1 < G(o1,...,00).

By the definition of G, it follows that the ball B(x,r) can only intersect one
nth basic cylinder I(o1,...,04).
The following relationship can be verified easily. For any € > 0, there

exists n > 1 such that for each (o1,...,0,) € Dy,
nl_[l ] 1 1/(ate)
(2.1) < < ) .
el [oF] o1 op10n !

Two cases will be distinguished.

(i) G(o1,...,0n41) <7 < |I(01,...,0n+1)|- In this case, the ball B(z,r)
can intersect at most eight (n+1)th basic cylinders contained in I(o71, ..., 0,).
So,

w(B(x,r)) < 8u(J(o1,...,0n41)) =8 H [1a] < o4pt/(a+e),
g
k=1 "'k

(ii) [I(o1,...,0n41)| <7 < G(01,...,05). Notice that

1
- 20+1°

min{|I(o1,...,0n,0n+1)| : 2[on] + 1 < Gpy1 < 3[on]} >
901 - Op-10%

In this case, B(x,r) can intersect at most

1870y - - -an_la?f““ + 2 < b4roq--- Un_lazo‘ﬂ <[T2roqy--- Un_laza"“l}

(n + 1)th basic cylinders contained in I(o1,...,0y). So,

< min{u(J(o1,...,00)),[72ro1 - Jn_la,%aﬂ]u(J(Q, ey Ont1))}

- 1 1
< H — min{l, T2roq - - -crn,lcr,%”‘Jrl }

o]
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?
L

m1n{1 114roy - 0102 (as min{a, b} < a®b' ™%, 0<s<1)

o]

1
- [o7]

< 1141/(0&"!‘6)7,,1/(06“!‘6)'

3 =
Il

I

(114r0y - - - o102t (@F)  (hy (2.1))

IN
H’:]

By Lemma 2.3, dimg F' > 1/(a +€). Since € is arbitrary, dimg F(«) >
dimyg F' > 1/«. Combining this with Lemmas 2.2 and 2.4, we obtain Theo-
rem 1.1. m
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