Noether's problem for some groups of order $16 n$

by

Ivo Michailov (Shoumen)

1. Introduction. Let K be a field and G be a finite group. Let G act on the rational function field $K\left(x_{g}: g \in G\right)$ by K-automorphisms defined by $g \cdot x_{h}=x_{g h}$ for any $g, h \in G$. Denote by $K(G)$ the fixed field

$$
K\left(x_{g}: g \in G\right)^{G}=\left\{f \in K\left(x_{g}: g \in G\right) \mid \sigma \cdot f=f, \forall \sigma \in G\right\}
$$

Noether's problem then asks whether $K(G)$ is rational ($=$ purely transcendental) over K. Noether's problem is closely related to the inverse Galois problem.

The main results about Noether's problem for abelian groups can be found in the survey article [Sw]. More recently, Noether's problem for nonabelian p-groups was investigated in CHK, CHPK, HK2, Ka1, Ka2.

Let $n \geq 2$ be an arbitrary natural number. In this paper we will concentrate on certain meta-abelian groups of orders $8 n$ and $16 n$ with two or three generators over a field K which contains a primitive $4 n$th or $2 n$th root of unity.

Let G be a non-abelian group of order $8 n$, having a cyclic subgroup of order $4 n$. Then G is generated by two elements σ and τ such that $\sigma^{4 n}=1$, $\tau^{2}=\sigma^{a}$ and $\tau \sigma=\sigma^{r} \tau$, where $a, r \in \mathbb{Z}$ are subject to some restrictions. For example, r must be a solution to the congruence

$$
\begin{equation*}
x^{2} \equiv 1(\bmod 4 n) \tag{1.1}
\end{equation*}
$$

Therefore, $r=-1, \pm 1+2 s$, where

$$
\begin{equation*}
s(s \pm 1) \equiv 0(\bmod n) \tag{1.2}
\end{equation*}
$$

One solution to 1.2 is clearly $s=n$. The solutions -1 and $\pm 1+2 n$ of (1.1) give only four non-isomorphic groups, by imitating the argument of

[^0]Hall [Ha, Th. 12.5.1, p. 187] for 2-groups. Their representations are:
$D_{8 n} \cong\left\langle\sigma, \tau \mid \sigma^{4 n}=\tau^{2}=1, \tau \sigma=\sigma^{-1} \tau\right\rangle$, the dihedral group,
$S D_{8 n} \cong\left\langle\sigma, \tau \mid \sigma^{4 n}=\tau^{2}=1, \tau \sigma=\sigma^{2 n-1} \tau\right\rangle$, the semidihedral group,
$Q_{8 n} \cong\left\langle\sigma, \tau \mid \sigma^{4 n}=1, \tau^{2}=\sigma^{2 n}, \tau \sigma=\sigma^{-1} \tau\right\rangle$, the quaternion group, $M_{8 n} \cong\left\langle\sigma, \tau \mid \sigma^{4 n}=\tau^{2}=1, \tau \sigma=\sigma^{2 n+1} \tau\right\rangle$, the modular group.
If n is a power of 2 , the congruence $(1.2$ has no other solutions. If n is not a power of 2 , however, 1.2 may have other solutions (e.g., $s=2$ for $n=6$).

Our first result is
Proposition 1.1. Let G be a non-abelian group of order $8 n$, having a cyclic subgroup of order $4 n$ for any $n \geq 2$. Assume that K is a field which contains a primitive $4 n$th root of unity. Then $K(G)$ is rational over K.

The next result is the following
ThEOREM 1.2. Let $1 \rightarrow \mu_{2} \cong\{ \pm 1\} \rightarrow G \rightarrow H \rightarrow 1$ be a group extension, where H is isomorphic to any of the groups $D_{8 n}, S D_{8 n}, Q_{8 n}$ and $M_{8 n}$. Assume that K is a field which contains a primitive $4 n$th root of unity. Then $K(G)$ is rational over K.

In Section 5 we show that for some of the groups considered in Theorem 1.2 we need only a primitive $2 n$th root of unity in K. To this end we apply a somewhat different approach described in Theorem 2.7. It involves calculations of the obstructions to some embedding problems, discussed recently in Mi1, Mi2, Zi1, Zi2].
2. Generalities. We list several results which will be used in what follows.

Theorem 2.1 ([HK1, Theorem 1]). Let G be a finite group acting on $L\left(x_{1}, \ldots, x_{m}\right)$, the rational function field of m variables over a field L such that
(i) $\sigma(L) \subset L$ for any $\sigma \in G$;
(ii) the restriction of the action of G to L is faithful;
(iii) for any $\sigma \in G$,

$$
\left(\begin{array}{c}
\sigma\left(x_{1}\right) \\
\vdots \\
\sigma\left(x_{m}\right)
\end{array}\right)=A(\sigma)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)+B(\sigma)
$$

where $A(\sigma) \in \mathrm{GL}_{m}(L)$ and $B(\sigma)$ is an $m \times 1$ matrix over L.
Then there exist $z_{1}, \ldots, z_{m} \in L\left(x_{1}, \ldots, x_{m}\right)$ such that $L\left(x_{1}, \ldots, x_{m}\right)^{G}=$ $L^{G}\left(z_{1}, \ldots, z_{m}\right)$ and $\sigma\left(z_{i}\right)=z_{i}$ for any $\sigma \in G$ and $1 \leq i \leq m$.

Theorem 2.2 (AHK, Theorem 3.1]). Let G be a finite group acting on $L(x)$, the rational function field of one variable over a field L. Assume that, for any $\sigma \in G, \sigma(L) \subset L$ and $\sigma(x)=a_{\sigma} x+b_{\sigma}$ for some $a_{\sigma}, b_{\sigma} \in L$ with $a_{\sigma} \neq 0$. Then $L(x)^{G}=L^{G}(z)$ for some $z \in L[x]$.

Theorem 2.3 ([CHK, Theorem 2.3]). Let K be any field, $K(x, y)$ the rational function field of two variables over K, and $a, b \in K \backslash\{0\}$. If σ is a K-automorphism on $K(x, y)$ defined by $\sigma(x)=a / x, \sigma(y)=b / y$, then $K(x, y)^{\langle\sigma\rangle}=K(u, v)$, where

$$
u=\frac{x-\frac{a}{x}}{x y-\frac{a b}{x y}}, \quad v=\frac{y-\frac{b}{y}}{x y-\frac{a b}{x y}} .
$$

Moreover, $x+a / x=\left(-b u^{2}+a v^{2}+1\right) / v, y+b / y=\left(b u^{2}-a v^{2}+1\right) / u$, $x y+a b /(x y)=\left(-b u^{2}-a v^{2}+1\right) /(u v)$.

In the theorem below, ζ_{e} denotes a primitive e th root of unity.
Theorem 2.4 ($(\overline{\mathrm{Ka3} 3}$, Cor. 3.2]). Let K be a field and G be a finite group. Assume that (i) G contains an abelian normal subgroup H such that G / H is cyclic of order n, (ii) $\mathbb{Z}\left[\zeta_{n}\right]$ is a unique factorization domain, and (iii) $\zeta_{e^{\prime}} \in K$ where $e^{\prime}=\operatorname{lcm}\{\operatorname{ord}(\tau), \exp (H)\}$ and τ is some element of G whose image generates G / H. If $G \rightarrow \mathrm{GL}(V)$ is any finite-dimensional linear representation of G over K, then $K(V)^{G}$ is rational over K.

Let $\operatorname{Br}(K)$ denote the Brauer group of a field K, and $\operatorname{Br}_{N}(K)$ its N torsion subgroup for any $N>1$. Following Roquette [Ro, if $\gamma=[B] \in$ $\operatorname{Br}(K)$ is the class of a K-central simple algebra B and $m \geq 1$ is a multiple of the index of B, then $F_{m}(\gamma)$ denotes the m th Brauer field of γ. Moreover, $F_{m}(\gamma) / K$ is a regular extension of transcendence degree $m-1$, which is rational if and only if γ is trivial. The following result was essentially obtained by Saltman [Sa, p. 541] and proved in detail by Plans [Pl, Prop. 7].

Theorem 2.5. Let $1 \rightarrow C \rightarrow H \rightarrow G \rightarrow 1$ be a central extension of finite groups, representing an element $\varepsilon \in H^{2}(G, C)$. Let K be an infinite field and let N denote the exponent of C. Assume that N is prime to the characteristic of K and that K contains μ_{N}, the group of N th roots of unity. Let there be given a decomposition $C \cong \mu_{N_{1}} \times \cdots \times \mu_{N_{r}}$, and let the corresponding isomorphism $H^{2}(G, C) \cong \bigoplus_{i} H^{2}\left(G, \mu_{N_{i}}\right)$ map ε to $\left(\varepsilon_{i}\right)$. Let there also be given a faithful subrepresentation V of the regular representation of G over K, and let $\gamma_{i} \in \operatorname{Br}_{N}\left(K(V)^{G}\right) \subset \operatorname{Br}\left(K(V)^{G}\right)$ be the inflation of ε_{i} with respect to the isomorphism $G \cong \operatorname{Gal}\left(K(V) / K(V)^{G}\right)$. Then
$K(H)$ is rational over the $K(V)^{G}$-free compositum $F_{m}\left(\gamma_{1}\right) \cdots F_{m}\left(\gamma_{r}\right)$, where m denotes the order of G.

We are going to formulate an important corollary of the latter theorem, which involves some generalities for the embedding problem of fields. Let E / F be a Galois extension with Galois group Z and let

$$
\begin{equation*}
1 \rightarrow X \rightarrow Y \underset{\pi}{\rightarrow} Z \rightarrow 1 \tag{2.1}
\end{equation*}
$$

be a group extension, i.e., a short exact sequence. The embedding problem related to E / F and (2.1) then consists in determining whether there exists a Galois algebra (also called a weak solution) or a Galois extension (called a proper solution) L such that E is contained in L, Y is isomorphic to $\operatorname{Gal}(L / F)$, and the homomorphism of restriction of automorphisms of L to E coincides with π. This embedding problem will be denoted by $(E / F, Y, X)$.

Let p be a prime, let F be a field with characteristic not p, and let F contain all p th roots of unity. Denote by μ_{p} the cyclic group of all p th roots of unity which is contained in $F^{\times}=F \backslash\{0\}$. We have the following well known

Theorem 2.6 ([Ki]). Let L / F be a finite Galois extension with Galois group $G=\operatorname{Gal}(L / F)$ and let $1 \rightarrow \mu_{p} \rightarrow Y \rightarrow G \rightarrow 1$ be a non-split central group extension with characteristic class $\gamma \in H^{2}\left(G, \mu_{p}\right)$. Also, let $i: H^{2}\left(G, \mu_{p}\right) \rightarrow H^{2}\left(G, L^{\times}\right)$be a homomorphism induced by the inclusion $\mu_{p} \subset L^{\times}$. Then the embedding problem $\left(L / F, Y, \mu_{p}\right)$ is properly solvable iff $i(\gamma)=1 \in H^{2}\left(G, L^{\times}\right)$.

Let $\varepsilon \in Z^{2}\left(G, \mu_{p}\right)$ represent γ given in the statement of the latter theorem. Then from [Ja, Th. 8.11] it follows that $H^{2}\left(G, L^{\times}\right)$is isomorphic to the relative Brauer group $\operatorname{Br}(L / F)$ by $i(\gamma) \mapsto[L, G, \varepsilon]$, where $[L, G, \varepsilon] \in$ $\operatorname{Br}(L / F)$ is the equivalence class of the crossed product algebra (L, G, ε). We know that (L, G, ε) is an F-algebra generated by L and elements u_{σ}, $\sigma \in G$, with relations $u_{1}=\varepsilon(1,1)=1, u_{\sigma} u_{\tau}=\varepsilon(\sigma, \tau) u_{\sigma \tau}$ and $u_{\sigma} x=\sigma x u_{\sigma}$ for all $\sigma, \tau \in G$ and $x \in L$. Notice also that $i(\gamma) \in \operatorname{Br}(L / F) \subset \operatorname{Br}_{p}(F)$ is in fact the inflation of ε with respect to the isomorphism $G \cong \operatorname{Gal}(L / F)$. The element $i(\gamma) \in \operatorname{Br}_{p}(F)$ is called the obstruction to the embedding problem.

Theorem 2.7. Let p be a prime, let F be an infinite field with characteristic not p, and let F contain all pth roots of unity. Let $1 \rightarrow \mu_{p} \rightarrow$ $H \rightarrow G \rightarrow 1$ be a non-split central extension of finite groups, representing an element $\varepsilon \in H^{2}\left(G, \mu_{p}\right)$. Let $L=K\left(x_{g}: g \in G\right)$ be the rational function field with a G-action given by the regular representation of G over K. Assume that the embedding problem given by $L / K(G)$ and the group extension $1 \rightarrow \mu_{p} \rightarrow H \rightarrow G \rightarrow 1$ is solvable. Then $K(H)$ is rational over $K(G)$.

Proof. Note that the obstruction $i(\gamma)=\inf (\varepsilon) \in \operatorname{Br}_{p}(K(G))$ is isomorphic to the crossed product algebra $[L, G, \varepsilon]$, which is split in $\operatorname{Br}_{p}\left(K(V)^{G}\right)$, since the embedding problem is solvable. Hence $F_{m}(\gamma)$ is rational over $K(G)$, so Theorem 2.5 implies our result.
3. Proof of Proposition 1.1. If $\operatorname{char}(K)=p>2$ and p divides n we can apply [KP, Th. 1.6] to reduce the rationality problem to a similar one, where p is relatively prime to the order of the given groups. Now, let $\operatorname{char}(K) \neq 2$. We can then assume that $\operatorname{char}(K)=0$ or $\operatorname{char}(K)$ is relatively prime to $2 n$.

Let $\bigoplus_{g \in G} K \cdot x(g)$ be the representation space of the regular representation of G and let ζ be a primitive $4 n$th root of unity in K. Define

$$
v=\sum_{i=0}^{4 n-1} \zeta^{-i} x\left(\sigma^{i}\right)
$$

Then $\sigma(v)=\zeta v$.
Define $x_{1}=v, x_{2}=\tau v$. We find that

$$
\sigma: x_{1} \mapsto \zeta x_{1}, x_{2} \mapsto \zeta^{r} x_{2}, \quad \tau: x_{1} \mapsto x_{2} \mapsto \zeta^{a} x_{1}
$$

Applying Theorem 2.1 we find that if $K\left(x_{1}, x_{2}\right)^{G}$ is rational over K, then so is $K(G)=K(x(g): g \in G)^{G}$.

Define $y_{1}=x_{1}, y_{2}=x_{1} x_{2}^{-1}$. Then $K\left(x_{1}, x_{2}\right)=K\left(y_{1}, y_{2}\right)$ and

$$
\sigma: y_{1} \mapsto \zeta y_{1}, y_{2} \mapsto \zeta^{1-r} y_{2}, \quad \tau: y_{1} \mapsto y_{2}^{-1} y_{1}, y_{2} \mapsto \zeta^{-a} y_{2}^{-1}
$$

By Theorem 2.2, if $K\left(y_{2}\right)^{G}$ is rational over K, so is $K\left(y_{1}, y_{2}\right)^{G}$. Finally, $K\left(y_{2}\right)^{G}$ is rational over K by Luroth's Theorem.

If $\operatorname{char}(K)=2$, we can apply [KP, Th. 1.3] to reduce the problem to the rationality problem for a group isomorphic to a semi-direct product of a cyclic group of odd order with the cyclic group of order 2 . Let G be such a group. Then $G=\left\langle\sigma, \tau \mid \sigma^{m}=\tau^{2}=1, \tau \sigma=\sigma^{b} \tau\right\rangle$, where m is odd and $b^{2} \equiv 1(\bmod m)$. If $b=1$, by [KP, Th. 1.3] and Fischer's Theorem [Sw, Theorem 6.1] it follows that $K(G)$ is rational over K. Otherwise, we can apply the same approach as in the case $\operatorname{char}(K) \neq 2$, since both Luroth's Theorem and Theorem 2.2 hold for any field K.
4. Proof of Theorem $\mathbf{1 . 2}$. First, assume that $\operatorname{char}(K)=2$. Then by [KP, Th. 1.3] we can reduce the problem to the one considered in Proposition 1.1. If $\operatorname{char}(K)=p$ and p divides n we can apply [KP, Th. 1.6] to reduce the problem to a similar one, where p is relatively prime to the order of the given groups. This can be achieved by taking consecutively group extensions of the kind $1 \rightarrow \mu_{p}=\left\langle\sigma^{4 n / p}\right\rangle \rightarrow G \rightarrow G_{1} \rightarrow 1$. Therefore, we can assume that $\operatorname{char}(K)=0$ or $\operatorname{char}(K)$ is relatively prime to $2 n$. If the group extension in the statement is split, [KP, Th. 1.9] yields the rationality of $K(G)$ over K. Therefore, we can also assume that the group extension is non-split.

We divide the proof into several steps.

Step I. Let us first describe the cohomology groups $H^{2}\left(H, \mu_{2}\right)$ for H being isomorphic to any of the groups $D_{8 n}, S D_{8 n}, Q_{8 n}$ and $M_{8 n}$.
I.1) Let $H \cong D_{8 n}$. We have the non-equivalent exact sequences

$$
1 \rightarrow \mu_{2} \rightarrow G \underset{\substack{\sigma \mapsto \sigma \\ \tau \mapsto \tau}}{\longrightarrow} D_{8 n} \rightarrow 1
$$

where the generators σ and τ of G satisfy the relations $\sigma^{4 n}=\varepsilon_{1}, \tau^{2}=\varepsilon_{2}$, $\tau \sigma=\varepsilon_{3} \sigma^{-1} \tau$ for $\varepsilon_{i}= \pm 1$. The existence of the group G for any choice of ε_{i} is easily verified. Therefore, $H^{2}\left(D_{8 n}, \mu_{2}\right) \cong \mu_{2}^{3}$ and all non-split sequences give us six non-isomorphic groups:

$$
\begin{aligned}
& G_{1} \cong D_{16 n}, \quad G_{2} \cong S D_{16 n}, \quad G_{3} \cong Q_{16 n} \\
& \left.G_{4}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{-1} \tau\right\rangle \\
& \left.G_{5}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{-1} \tau \rho\right\rangle \\
& \left.G_{6}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=1, \rho^{2}=1, \rho \text { central, } \tau \sigma=\sigma^{-1} \tau \rho\right\rangle
\end{aligned}
$$

I.2) Let $H \cong S D_{8 n}$. We have the non-equivalent exact sequences

$$
1 \rightarrow \mu_{2} \rightarrow G \underset{\substack{\sigma \mapsto \sigma \\ \tau \mapsto \tau}}{\longrightarrow} S D_{8 n} \rightarrow 1
$$

where the generators σ and τ of G satisfy the relations $\sigma^{4 n}=1, \tau^{2}=\varepsilon_{2}$, $\tau \sigma=\varepsilon_{3} \sigma^{2 n-1} \tau$ for $\varepsilon_{i}= \pm 1(2 \leq i \leq 3)$. There is no group extension for $\varepsilon_{1}=-1$. Therefore, $H^{2}\left(S D_{8 n}, \mu_{2}\right) \cong \mu_{2}^{2}$ and all non-split sequences give us three non-isomorphic groups:

$$
\begin{aligned}
& \left.G_{7}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{2 n-1} \tau\right\rangle \\
& \left.G_{8}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{2 n-1} \tau \rho\right\rangle \\
& \left.G_{9}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=1, \rho^{2}=1, \rho \text { central, } \tau \sigma=\sigma^{2 n-1} \tau \rho\right\rangle
\end{aligned}
$$

I.3) Let $H \cong Q_{8 n}$. We have the non-equivalent exact sequences

$$
1 \rightarrow \mu_{2} \rightarrow G \underset{\substack{\sigma \mapsto \sigma \\ \tau \mapsto \tau}}{\longrightarrow} Q_{8 n} \rightarrow 1
$$

where the generators σ and τ of G satisfy the relations $\sigma^{4 n}=1, \tau^{2}=$ $\varepsilon_{2} \sigma^{2 n}, \tau \sigma=\varepsilon_{3} \sigma^{-1} \tau$ for $\varepsilon_{i}= \pm 1(2 \leq i \leq 3)$. Therefore, $H^{2}\left(Q_{8 n}, \mu_{2}\right) \cong \mu_{2}^{2}$ and all non-split sequences give us three non-isomorphic groups:

$$
\begin{aligned}
& \left.G_{10}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\sigma^{2 n} \rho, \rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{-1} \tau\right\rangle \\
& \left.G_{11}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\sigma^{2 n} \rho, \rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{-1} \tau \rho\right\rangle \\
& \left.G_{12}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\sigma^{2 n}, \rho^{2}=1, \rho \text { central, } \tau \sigma=\sigma^{-1} \tau \rho\right\rangle
\end{aligned}
$$

I.4) Let $H \cong M_{8 n}$. We have the non-equivalent exact sequences

$$
1 \rightarrow \mu_{2} \rightarrow G \underset{\substack{\sigma \mapsto \sigma \\ \tau \mapsto \tau}}{\longrightarrow} M_{8 n} \rightarrow 1
$$

where the generators σ and τ of G satisfy the relations $\sigma^{4 n}=1, \tau^{2}=\varepsilon_{2}$, $\tau \sigma=\varepsilon_{3} \sigma^{2 n+1} \tau$ for $\varepsilon_{i}= \pm 1(2 \leq i \leq 3)$. Therefore, $H^{2}\left(M_{8 n}, \mu_{2}\right) \cong \mu_{2}^{2}$ and all non-split sequences give us three non-isomorphic groups:

$$
\begin{aligned}
& \left.G_{13}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{2 n+1} \tau\right\rangle \\
& \left.G_{14}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=\rho \text { central, } \rho^{2}=1, \tau \sigma=\sigma^{2 n+1} \tau \rho\right\rangle \\
& \left.G_{15}=\langle\sigma, \tau, \rho| \sigma^{4 n}=1, \tau^{2}=1, \rho^{2}=1, \rho \text { central, } \tau \sigma=\sigma^{2 n+1} \tau \rho\right\rangle .
\end{aligned}
$$

Notice we have several isomorphic pairs of groups: $G_{8} \cong G_{11}, G_{4} \cong G_{10}$ and $G_{6} \cong G_{9}$. This becomes obvious if we replace ρ with $\sigma^{2 n} \rho$.

Step II. The rationality of $K\left(D_{16 n}\right), K\left(S D_{16 n}\right)$ and $K\left(Q_{16 n}\right)$ over K can be shown in the same way as in the proofs of HK2, Theorems 3.2 and 3.3]. One only has to replace everywhere the numbers $2^{n-2}, 2^{n-3}$ and 2^{n-4} with $4 n, 2 n$ and n, respectively.

So, it remains to consider the nine groups G_{i} for $i=4,5,6,7,8,12,13$, 14,15 .

Step III. Let $\bigoplus_{g \in G} K \cdot x(g)$ be the representation space of the regular representation of G and let ζ be a primitive $4 n$th root of unity in K. Define

$$
v=\sum_{i=0}^{4 n-1} \zeta^{-i} x\left(\sigma^{i}\right)
$$

Then $\sigma v=\zeta v$.
Define $x_{1}=v, x_{2}=\tau v, x_{3}=\rho v, x_{4}=\rho \tau v$. Applying Theorem 2.1 we find that if $K\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{G}$ is rational over K, then $K(G)=K(x(g)$: $g \in G)^{G}$ is also rational over K.

Define $y_{1}=x_{1}-x_{3}, y_{2}=x_{2}-x_{4}, y_{3}=x_{1}+x_{3}, y_{4}=x_{2}+x_{4}$. Clearly, $K\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=K\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. Then for any of the groups under consideration we have

$$
\rho: y_{1} \mapsto-y_{1}, y_{2} \mapsto-y_{2}, y_{3} \mapsto y_{3}, y_{4} \mapsto y_{4}
$$

Define $z_{1}=y_{1}^{2}, z_{2}=y_{1} y_{2}, z_{3}=y_{3}, z_{4}=y_{4}$. Then $K\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\langle\rho\rangle}=$ $K\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
III.1) The group G_{4}. We find that

$$
\begin{aligned}
& \sigma: x_{1} \mapsto \zeta x_{1}, x_{2} \mapsto \zeta^{-1} x_{2}, x_{3} \mapsto \zeta x_{3}, x_{4} \mapsto \zeta^{-1} x_{4} \\
& \tau: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto x_{1}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \sigma: y_{1} \mapsto \zeta y_{1}, y_{2} \mapsto \zeta^{-1} y_{2}, y_{3} \mapsto \zeta y_{3}, y_{4} \mapsto \zeta^{-1} y_{4} \\
& \tau: y_{1} \mapsto y_{2} \mapsto-y_{1}, y_{3} \mapsto y_{4} \mapsto y_{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sigma: z_{1} \mapsto \zeta^{2} z_{1}, z_{2} \mapsto z_{2}, z_{3} \mapsto \zeta z_{3}, z_{4} \mapsto \zeta^{-1} z_{4} \\
& \tau: z_{1} \mapsto z_{2}^{2} z_{1}^{-1}, z_{2} \mapsto-z_{2}, z_{3} \mapsto z_{4}, z_{4} \mapsto z_{3}
\end{aligned}
$$

Define $t_{1}=z_{1}^{2 n}, t_{2}=z_{2}, t_{3}=z_{3}^{2} z_{1}^{-1}, t_{4}=z_{3} z_{4}$. Since $\left[K\left(z_{i}\right): K\left(t_{i}\right)\right]=4 n$, we have $K\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\langle\sigma\rangle}=K\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$. The action of τ is now given by

$$
\tau: t_{1} \mapsto t_{2}^{4 n} t_{1}^{-1}, t_{2} \mapsto-t_{2}, t_{3} \mapsto t_{4}^{2} t_{2}^{-2} t_{3}^{-1}, t_{4} \mapsto t_{4}
$$

Define $s_{1}=t_{1} t_{2}^{-2 n}, s_{2}=t_{2}, s_{3}=t_{3} t_{2}, s_{4}=t_{4}$. Then

$$
\tau: s_{1} \mapsto s_{1}^{-1}, s_{2} \mapsto-s_{2}, s_{3} \mapsto-s_{4}^{2} s_{3}^{-1}, s_{4} \mapsto s_{4}
$$

By Theorem 2.2, if $K\left(s_{1}, s_{3}, s_{4}\right)^{\langle\tau\rangle}$ is rational over K, so is $K\left(s_{1}, s_{2}, s_{3}, s_{4}\right)^{\langle\tau\rangle}$. The rationality of $K\left(s_{1}, s_{3}, s_{4}\right)^{\langle\tau\rangle}$ over K now follows from Theorem 2.3 for $x=s_{1}, y=s_{3}, a=1, b=-s_{4}^{2}$.

The remaining groups can be considered in a similar manner; we leave the details to the interested reader.
5. The rationality of $K\left(G_{i}\right)$ for $4 \leq i \leq 9$ and $i=13$. It is not hard to see that, for the groups G_{i} for $4 \leq i \leq 15$, Theorem 1.2 has a short proof by applying Theorem 2.4. Moreover, we have

Theorem 5.1. Let H be a non-abelian group of order $8 n$, having a cyclic subgroup of order $4 n$ for any $n \geq 2$, and let $1 \rightarrow \mu_{2} \rightarrow G \rightarrow H \rightarrow 1$ be a group extension such that G does not have a cyclic subgroup of index 2. Assume that K is a field which contains a primitive $4 n$th root of unity. Then $K(G)$ is rational over K.

Proof. Let H be generated by two elements σ and τ such that $\sigma^{4 n}=1$, $\tau^{2}=\sigma^{a}$ and $\tau \sigma=\sigma^{r} \tau$ for some $a, r \in \mathbb{Z}$. Then the pre-images $\tilde{\sigma}$ and $\tilde{\tau}$ of σ and τ in G are subject to the relations $\tilde{\sigma}^{4 n}=1, \tilde{\tau}^{2}=\varepsilon_{1} \tilde{\sigma}^{a}$ and $\tilde{\tau} \tilde{\sigma}=\varepsilon_{2} \tilde{\sigma}^{r} \tilde{\tau}$ for some $\varepsilon_{1}, \varepsilon_{2} \in \mu_{2}$. It is easy to see now that G is metacyclic or meta-abelian and satisfies the conditions of Theorem 2.4.

We do not know the answer to the rationality problem for non-abelian groups of order $8 n$ having a cyclic subgroup of index 2 , which are not isomorphic to any of the groups $D_{8 n}, S D_{8 n}, Q_{8 n}$ or $M_{8 n}$. We are able, however, to improve Theorem 1.2 regarding the groups G_{i} for $4 \leq i \leq 9$ and $i=13$. Since the case $\operatorname{char}(K)=p>2$ and $(p, n) \neq 1$ can be dealt with in a similar manner to Sections 3 and 4, we will assume henceforth that if $\operatorname{char}(K)=p>2$ then $(p, n)=1$.

Now, let H be isomorphic to $D_{8 n}$ or $S D_{8 n}$ and let L / F be an H extension. Then L / F contains a biquadratic extension $K / F=F(\sqrt{a}, \sqrt{b}) / F$
such that the generators σ and τ of H act in the following way:

$$
\sigma: \sqrt{a} \mapsto-\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}, \quad \tau: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto-\sqrt{b} .
$$

In [Mi1] and [Zi1] the reader can find two different approaches to calculating the obstructions, displayed in the following three propositions.

Proposition 5.2 ([Zi11, Th. 2.1]). Let F be a field with $\operatorname{char}(F) \neq 2$, let H be isomorphic to $D_{8 n}$ or $S D_{8 n}$, and let L / F be an H-extension containing a biquadratic extension $K / F=F(\sqrt{a}, \sqrt{b}) / F$. Then the obstruction to the embedding problem given by L / F and the group extension

$$
1 \rightarrow \mu_{2} \rightarrow G_{i} \rightarrow H \rightarrow 1
$$

for $i=4$ and $i=7$ is $(b,-1) \in \operatorname{Br}(F)$.
Proposition 5.3 (Zi11, Th. 2.2]). Let F be a field with $\operatorname{char}(F) \neq 2$, let H be isomorphic to $D_{8 n}$ or $S D_{8 n}$, and let L / F be an H-extension containing a biquadratic extension $K / F=F(\sqrt{a}, \sqrt{b}) / F$. Then the obstruction to the embedding problem given by L / F and the group extension

$$
1 \rightarrow \mu_{2} \rightarrow G_{i} \rightarrow H \rightarrow 1
$$

for $i=6$ and $i=9$ is $(a,-1) \in \operatorname{Br}(F)$.
Proposition 5.4 ([Zi1, Th. 2.3]). Let F be a field with $\operatorname{char}(F) \neq 2$, let H be isomorphic to $D_{8 n}$ or $S D_{8 n}$, and let L / F be an H-extension containing a biquadratic extension $K / F=F(\sqrt{a}, \sqrt{b}) / F$. Then the obstruction to the embedding problem given by L / F and the group extension

$$
1 \rightarrow \mu_{2} \rightarrow G_{i} \rightarrow H \rightarrow 1
$$

for $i=5$ and $i=8$ is $(a b,-1) \in \operatorname{Br}(F)$.
Next, we are going to prove the following
Theorem 5.5. Assume that K is an infinite field with $\operatorname{char}(K) \neq 2$ which contains a primitive 2 nth root of unity for some n even. Then $K\left(G_{i}\right)$ is rational over K for any $i=4,5,6,7,8,9$.

Proof. Let H be isomorphic to $D_{8 n}$ or $S D_{8 n}$ and let $L / F=K\left(x_{h}\right.$: $h \in H) / K(H)$ be the H-extension obtained by the rational function field $K\left(x_{h}: h \in H\right)$. From Propositions 5.25 .4 it then follows that the obstruction to the embedding problem given by L / F and $1 \rightarrow \mu_{2} \rightarrow G_{i} \rightarrow H \rightarrow 1$ is $(*,-1) \in \operatorname{Br}(K(H))$. Note that K has a fourth root of unity (n is even), so the obstruction $(*,-1)$ is always split. Then Theorem 2.7 implies the rationality of $K\left(G_{i}\right)$, since $K(H)$ is rational, as we have noticed in Section 4 .

We now turn our attention to the modular group.
Theorem 5.6. Let the modular group $M_{8 n}$ for $n \geq 2$ be generated by σ and τ such that $\sigma^{4 n}=\tau^{2}=1$ and $\tau \sigma=\sigma^{2 n+1} \tau$. Assume that K contains a primitive 2 nth root of unity. Then $K\left(M_{8 n}\right)$ is rational over K.

Proof. If $\operatorname{char}(K)=2$, then by [KP, Th. 1.3] we can reduce the problem to the rationality problem for the group $\mathbb{Z} / 2 n \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, which has an affirmative answer by Fischer's Theorem [Sw, Theorem 6.1]. Now, assume that $\operatorname{char}(K) \neq 2$.

Let $\bigoplus_{g \in M_{8 n}} K \cdot x(g)$ be the representation space of the regular representation of $M_{8 n}$ and let ζ be a primitive $2 n$th root of unity in K. Define

$$
v=\sum_{0 \leq i \leq 2 n-1} \zeta^{-i}\left(x\left(\sigma^{2 i}\right)+x\left(\sigma^{2 i} \tau\right)\right)
$$

Then $\sigma^{2}(v)=\zeta v$ and $\tau(v)=v$. Define $x_{0}=v, x_{1}=\sigma(v)$. Then we have

$$
\sigma: x_{0} \mapsto x_{1} \mapsto \zeta x_{0}, \quad \tau: x_{0} \mapsto x_{0}, x_{1} \mapsto-x_{1} .
$$

Applying Theorem 2.1 we find that if $K\left(x_{0}, x_{1}\right)^{M_{8 n}}$ is rational over K, then so is $K\left(M_{8 n}\right)$.

Define $y_{0}=x_{0}, y_{1}=x_{1} / x_{0}$. We find that

$$
\sigma: y_{0} \mapsto y_{1} y_{0}, y_{1} \mapsto \zeta y_{1}^{-1}, \quad \tau: y_{0} \mapsto y_{0}, y_{1} \mapsto-y_{1} .
$$

From Theorem 2.2 it follows that if $K\left(y_{1}\right)^{M_{8 n}}$ is rational over K, then so is $K\left(y_{0}, y_{1}\right)^{M_{8 n}}$. The rationality of $K\left(y_{1}\right)^{M_{8 n}}$ follows from Luroth's Theorem.

We can as well improve HK2, Theorem 3.1] concerning the rationality of the modular 2-group. Our proof generalizes the proof of [CHK, Theorem 3.3], where it is shown that $K\left(M_{16}\right)$ is rational over K for any K.

Theorem 5.7. Let the modular group $M_{2^{n}}$ for $n \geq 4$ be generated by σ and τ such that $\sigma^{2^{n-1}}=\tau^{2}=1$ and $\tau \sigma=\sigma^{2^{n-2}+1} \tau$. Assume that K contains a primitive 2^{n-3} th root of unity. Then $K\left(M_{2^{n}}\right)$ is rational over K.

Proof. If char $(K)=2$, Kuniyoshi's Theorem [CK, Theorem 1.7] implies the rationality of $K\left(M_{2^{n}}\right)$ over K. Now, assume that $\operatorname{char}(K) \neq 2$.

Let $\bigoplus_{g \in M_{2^{n}}} K \cdot x(g)$ be the representation space of the regular representation of $M_{2^{n}}$. We claim that we can reduce the problem to the rationality problem for the fixed field of a function field $K\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$, where $M_{2^{n}}$ acts faithfully by

$$
\begin{aligned}
& \sigma: z_{0} \mapsto z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto-\zeta z_{0}, \\
& \tau: z_{0} \mapsto z_{0}, z_{1} \mapsto-z_{1}, z_{2} \mapsto z_{2}, z_{3} \mapsto-z_{3},
\end{aligned}
$$

ζ being a primitive 2^{n-3} th root of unity.
Define

$$
x_{i}=x\left(\sigma^{i}\right)+x\left(\sigma^{i} \tau\right), \quad 0 \leq i \leq 2^{n-1}-1 .
$$

Then $\sigma\left(x_{i}\right)=x_{i+1}$ and $\tau\left(x_{i}\right)=x_{\left(2^{n-2}+1\right) i}$, where the indices are taken $\bmod 2^{n-1}$. Applying Theorem 2.1 we find that if $K\left(x_{0}, \ldots, x_{2^{n-1}-1}\right)^{M_{2 n} n}$ is rational over K, then so is $K\left(M_{2^{n}}\right)$.

Define $y_{i}=x_{i}-x_{i+2^{n-2}}, y_{i+2^{n-2}}=x_{i}+x_{i+2^{n-2}}$ for $0 \leq i \leq 2^{n-2}-1$. We find that

$$
\begin{aligned}
\sigma: & y_{0} \mapsto y_{1} \mapsto \cdots \mapsto y_{2^{n-2}-1} \mapsto-y_{0} \\
& y_{2^{n-2}} \mapsto y_{2^{n-2}+1} \mapsto \cdots \mapsto y_{2^{n-1}-1} \mapsto y_{2^{n-2}} \\
\tau: & y_{0} \mapsto y_{0}, y_{1} \mapsto-y_{1}, y_{2} \mapsto y_{2}, \ldots, y_{2^{n-2}-1} \mapsto-y_{2^{n-2}-1} \\
& y_{2^{n-2}} \mapsto y_{2^{n-2}}, y_{2^{n-2}+1} \mapsto y_{2^{n-2}+1}, \ldots, y_{2^{n-1}-1} \mapsto y_{2^{n-1}-1} .
\end{aligned}
$$

Since $M_{2^{n}}$ acts faithfully on $K\left(y_{0}, \ldots, y_{2^{n-2}-1}\right)$ we again apply Theorem 2.1 so that we only have to show the rationality of $K\left(y_{0}, \ldots, y_{2^{n-2}-1}\right)^{M_{2^{n}}}$ over K.

If $n \geq 5$, let ζ_{4} be a primitive 4 th root of unity and define $u_{i}=\zeta_{4} y_{i}-$ $y_{i+2^{n-3}}, u_{i+2^{n-3}}=\zeta_{4} y_{i}+y_{i+2^{n-3}}$ for $0 \leq i \leq 2^{n-3}-1$. Now we have

$$
\begin{aligned}
\sigma & : u_{0} \mapsto u_{1} \mapsto \cdots \mapsto u_{2^{n-3}-1} \mapsto-\zeta_{4} u_{0} \\
& u_{2^{n-3}} \mapsto u_{2^{n-3}+1} \mapsto \cdots \mapsto u_{2^{n-2}-1} \mapsto \zeta_{4} u_{2^{n-3}} \\
\tau: & u_{0} \mapsto u_{0}, u_{1} \mapsto-u_{1}, u_{2} \mapsto u_{2}, \ldots, u_{2^{n-2}-1} \mapsto-u_{2^{n-2}-1}
\end{aligned}
$$

We again apply Theorem 2.1 so that we only have to show the rationality of $K\left(u_{0}, \ldots, u_{2^{n-3}-1}\right)^{M_{2^{n}}}$ over K. If $n \geq 6$, let ζ_{8} be a 8 th root of unity such that $\zeta_{8}^{2}=-\zeta_{4}$. Define $v_{i}=\zeta_{8} u_{i}-u_{i+2^{n-4}}, v_{i+2^{n-4}}=\zeta_{8} u_{i}+u_{i+2^{n-4}}$ for $0 \leq i \leq 2^{n-4}-1$. Now we have

$$
\begin{aligned}
& \sigma: v_{0} \mapsto v_{1} \mapsto \cdots \mapsto v_{2^{n-4}-1} \mapsto-\zeta_{8} v_{0} \\
& \quad v_{2^{n-4}} \mapsto v_{2^{n-4}+1} \mapsto \cdots \mapsto v_{2^{n-3}-1} \mapsto \zeta_{8} v_{2^{n-4}} \\
& \tau: v_{0} \mapsto v_{0}, v_{1} \mapsto-v_{1}, v_{2} \mapsto v_{2}, \ldots, v_{2^{n-3}-1} \mapsto-v_{2^{n-3}-1}
\end{aligned}
$$

Analogously, we reduce the rationality problem for $M_{2^{n}}$ to the rationality problem for $K\left(v_{0}, \ldots, v_{2^{n-4}-1}\right)^{M_{2^{n}}}$ over K. Thus we can prove our claim, proceeding by induction.

Now, let $K\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ be a function field, where $M_{2^{n}}$ acts by

$$
\begin{aligned}
& \sigma: z_{0} \mapsto z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto-\zeta z_{0} \\
& \tau: z_{0} \mapsto z_{0}, z_{1} \mapsto-z_{1}, z_{2} \mapsto z_{2}, z_{3} \mapsto-z_{3}
\end{aligned}
$$

ζ being a primitive 2^{n-3} th root of unity. We have $\sigma^{2^{n-2}}\left(z_{i}\right)=-z_{i}$. Define $w_{0}=z_{0}^{2}, w_{1}=z_{1} / z_{0}, w_{2}=z_{2} / z_{1}, w_{3}=z_{3} / z_{2}$. Then $K\left(z_{0}, z_{1}, z_{2}, z_{3}\right)^{\left\langle\sigma^{\left.2^{n-2}\right\rangle}\right\rangle}=$ $K\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$. We find that

$$
\begin{aligned}
& \sigma: w_{0} \mapsto w_{0} w_{1}^{2}, w_{1} \mapsto w_{2} \mapsto w_{3} \mapsto-\zeta /\left(w_{1} w_{2} w_{3}\right) \\
& \tau: w_{0} \mapsto w_{0}, w_{1} \mapsto-w_{1}, w_{2} \mapsto-w_{2}, w_{3} \mapsto-w_{3}
\end{aligned}
$$

Theorem 2.2 implies that the rationality problem for $K\left(z_{0}, z_{1}, z_{2}, z_{3}\right)^{M_{2^{n}}}$ can be reduced to the rationality problem for $K\left(w_{1}, w_{2}, w_{3}\right)^{M_{2^{n}}}$.

Define $t=w_{1} w_{3}, x=w_{1}, y=w_{2}$. Then we have

$$
\begin{aligned}
\sigma & : t \mapsto-\zeta / t, x \mapsto y \mapsto t / x, \\
\sigma^{2} & : t \mapsto t, x \mapsto t / x, y \mapsto-\zeta /(t y), \\
\tau & : t \mapsto t, x \mapsto-x, y \mapsto-y .
\end{aligned}
$$

From Theorem 2.3 it follows that $K(t, x, y)^{\left\langle\sigma^{2}\right\rangle}=K(t, u, v)$, where

$$
u=\frac{x-\frac{t}{x}}{x y+\frac{\zeta}{x y}}, \quad v=\frac{y+\frac{\zeta}{t y}}{x y+\frac{\zeta}{x y}} .
$$

We have

$$
\sigma(u)=\frac{y+\frac{\zeta}{t y}}{\frac{t y}{x}+\frac{\zeta x}{t y}}, \quad \sigma(v)=\frac{\frac{t}{x}-x}{\frac{t y}{x}+\frac{\zeta x}{t y}} .
$$

Define $w=u / v$. Then $\sigma(w)=-1 / w, \tau(w)=w$.
Calculations show that

$$
\frac{\frac{t y}{x}+\frac{\zeta x}{t y}}{y+\frac{\zeta}{t y}}=\frac{\zeta u^{2}+t^{2} v^{2}}{t v}
$$

whence we find that

$$
\sigma(u)=\frac{t}{u\left(\zeta w+\frac{t^{2}}{w}\right)} .
$$

Define $z=u^{2}\left(\zeta w+t^{2} / w\right) / t$. Then $K(t, u, v)^{\langle\tau\rangle}=K\left(t, u^{2}, w\right)=K(t, z, w)$. We find that

$$
\sigma: t \mapsto-\zeta / t, w \mapsto-1 / w, z \mapsto 1 / z .
$$

Define $p=(1-z) /(1+z)$. Hence $K(t, w, z)^{\langle\sigma\rangle}=K(t, w, p)^{\langle\sigma\rangle}$ is rational over K if and only if $K(t, w)^{\langle\sigma\rangle}$ is. Finally, Theorem 2.2 yields the rationality of $K(t, w)^{\langle\sigma\rangle}$.

Finally, we will prove the following
Theorem 5.8. If K is an infinite field with $\operatorname{char}(K) \neq 2$, which contains a primitive $2 n$th root of unity for some n even, then $K\left(G_{13}\right)$ is rational over K. Moreover, if $n=2^{k}$ for $k \geq 1$ and K contains only a primitive 2^{k} th root of unity, then $K\left(G_{13}\right)$ is rational over K.

Proof. Let H be isomorphic to $M_{8 n}$ and let $L / F=K\left(x_{h}: h \in H\right) / K(H)$ be the H-extension obtained by the rational function field $K\left(x_{h}: h \in H\right)$. From [Mi2, Prop. 4.4] or [Zi2, Th. 2.2] it follows that the obstruction to the embedding problem given by L / F and $1 \rightarrow \mu_{2} \rightarrow G_{13} \rightarrow H \rightarrow 1$ is $(*,-1) \in \operatorname{Br}(K(H))$. Note that K has a fourth root of unity (n is even), so the obstruction $(*,-1)$ is always split.

Theorem 5.6 implies that $K(H)$ is rational over K. Therefore, Theorem 2.7 implies the rationality of $K\left(G_{13}\right)$ over K. If $n=2^{k}$ and K contains only a primitive 2^{k} th root of unity, then Theorem 5.7 yields the rationality of $K\left(G_{13}\right)$ over K.

Acknowledgments. This work was partially supported by project No. RD-07-1035/30.03.2010 of Shumen University.

References

[AHK] H. Ahmad, S. Hajja and M. Kang, Rationality of some projective linear actions, J. Algebra 228 (2000), 643-658.
[CK] H. Chu and M. Kang, Rationality of p-group actions, ibid. 237 (2001), 673-690.
[CHK] H. Chu, J. Hu and M. Kang, Noether's problem for dihedral 2-groups, Comment. Math. Helv. 79 (2004), 147-159.
[CHPK] H. Chu, J. Hu, Y. Prokhorov and M. Kang, Noether's problem for groups of order 32, J. Algebra 320 (2008), 3022-3035.
[HK1] S. Hajja and M. Kang, Some actions of symmetric groups, J. Algebra 177 (1995), 511-535.
[Ha] M. Hall, The Theory of Groups, Chelsea Publ., New York, 1976.
[HK2] S. Hu and M. Kang, Noether's problem for some p-groups, in: Rationality Problem, F. Bogomolov and Y. Tschinkel (eds.), Progr. Math., Birkhäuser, Boston, 2008 (available at http://arxiv.org/abs/0704.1701).
[Ja] N. Jacobson, Basic Algebra II, W. H. Freeman, New York, 1989.
[Ka1] M. Kang, Noether's problem for dihedral 2-groups II, Pacific J. Math. 222 (2005), 301-316.
[Ka2] -, Noether's problem for metacyclic p-groups, Adv. Math. 203 (2005), 554-567.
[Ka3] -, Rationality problem for some meta-abelian groups, J. Algebra 322 (2009), 1214-1219.
[KP] M. Kang and B. Plans, Reduction theorems for Noether's problem, Proc. Amer. Math. Soc. 137 (2009), 1867-1874.
[Ki] I. Kiming, Explicit classifications of some 2-extensions of a field of characteristic different from 2, Canad. J. Math. 42 (1990), 825-855.
[Mi1] I. Michailov, On Galois cohomology and realizability of 2-groups as Galois groups, preprint.
[Mi2] -, Induced orthogonal representations of Galois groups, J. Algebra 322 (2009), 3713-3732.
[Pl] B. Plans, On Noether's problem for central extensions of symmetric and alternating groups, ibid. 321 (2009), 3704-3713.
[Ro] P. Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann. 150 (1963), 411-439.
[Sa] D. J. Saltman, Twisted multiplicative field invariants, Noether's problem, and Galois extensions, J. Algebra 131 (1990), 535-558.
[Sw] R. Swan, Noether's problem in Galois theory, in: Emmy Noether in Bryn Mawr, B. Srinivasan and J. Sally (eds.), Springer, Berlin, 1983, 21-40.
[Zi1] N. Ziapkov, Some relatives of the dihedral group as Galois groups, C. R. Acad. Bulgare Sci. 62 (2009), 1063-1066.
[Zi2] N. Ziapkov, Some relatives of the modular group as Galois groups, ibid. 62 (2009), 1203-1206.

Ivo Michailov
Faculty of Mathematics and Informatics
Constantin Preslavski University
Universitetska St. 115
9700 Shoumen, Bulgaria
E-mail: ivo_michailov@yahoo.com

> Received on 14.3.2009
> and in revised form on 27.7.2009

[^0]: 2010 Mathematics Subject Classification: Primary 12F12; Secondary 13A50, 11R32, 14E08.
 Key words and phrases: Noether's problem, rationality problem, inverse Galois problem, dihedral group, modular group.

