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1. Introduction. Let K be a field and G be a finite group. Let G act
on the rational function field K(xg : g ∈ G) by K-automorphisms defined
by g · xh = xgh for any g, h ∈ G. Denote by K(G) the fixed field

K(xg : g ∈ G)G = {f ∈ K(xg : g ∈ G) | σ · f = f, ∀σ ∈ G}.

Noether’s problem then asks whether K(G) is rational (= purely transcen-
dental) over K. Noether’s problem is closely related to the inverse Galois
problem.

The main results about Noether’s problem for abelian groups can be
found in the survey article [Sw]. More recently, Noether’s problem for non-
abelian p-groups was investigated in [CHK, CHPK, HK2, Ka1, Ka2].

Let n ≥ 2 be an arbitrary natural number. In this paper we will concen-
trate on certain meta-abelian groups of orders 8n and 16n with two or three
generators over a field K which contains a primitive 4nth or 2nth root of
unity.

Let G be a non-abelian group of order 8n, having a cyclic subgroup of
order 4n. Then G is generated by two elements σ and τ such that σ4n = 1,
τ2 = σa and τσ = σrτ , where a, r ∈ Z are subject to some restrictions. For
example, r must be a solution to the congruence

(1.1) x2 ≡ 1 (mod 4n).

Therefore, r = −1,±1 + 2s, where

(1.2) s(s± 1) ≡ 0 (mod n).

One solution to (1.2) is clearly s = n. The solutions −1 and ±1 + 2n of
(1.1) give only four non-isomorphic groups, by imitating the argument of
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Hall [Ha, Th. 12.5.1, p. 187] for 2-groups. Their representations are:

D8n
∼= 〈σ, τ | σ4n = τ2 = 1, τσ = σ−1τ〉, the dihedral group,

SD8n
∼= 〈σ, τ | σ4n = τ2 = 1, τσ = σ2n−1τ〉, the semidihedral group,

Q8n
∼= 〈σ, τ | σ4n = 1, τ2 = σ2n, τσ = σ−1τ〉, the quaternion group,

M8n
∼= 〈σ, τ | σ4n = τ2 = 1, τσ = σ2n+1τ〉, the modular group.

If n is a power of 2, the congruence (1.2) has no other solutions. If n is not a
power of 2, however, (1.2) may have other solutions (e.g., s = 2 for n = 6).

Our first result is

Proposition 1.1. Let G be a non-abelian group of order 8n, having a
cyclic subgroup of order 4n for any n ≥ 2. Assume that K is a field which
contains a primitive 4nth root of unity. Then K(G) is rational over K.

The next result is the following

Theorem 1.2. Let 1→ µ2
∼= {±1} → G→ H → 1 be a group extension,

where H is isomorphic to any of the groups D8n, SD8n, Q8n and M8n.
Assume that K is a field which contains a primitive 4nth root of unity.
Then K(G) is rational over K.

In Section 5 we show that for some of the groups considered in Theorem
1.2 we need only a primitive 2nth root of unity in K. To this end we apply
a somewhat different approach described in Theorem 2.7. It involves calcu-
lations of the obstructions to some embedding problems, discussed recently
in [Mi1, Mi2, Zi1, Zi2].

2. Generalities. We list several results which will be used in what
follows.

Theorem 2.1 ([HK1, Theorem 1]). Let G be a finite group acting on
L(x1, . . . , xm), the rational function field of m variables over a field L such
that

(i) σ(L) ⊂ L for any σ ∈ G;
(ii) the restriction of the action of G to L is faithful;
(iii) for any σ ∈ G, 

σ(x1)
...

σ(xm)

 = A(σ)


x1

...
xm

+B(σ)

where A(σ) ∈ GLm(L) and B(σ) is an m× 1 matrix over L.

Then there exist z1, . . . , zm ∈ L(x1, . . . , xm) such that L(x1, . . . , xm)G =
LG(z1, . . . , zm) and σ(zi) = zi for any σ ∈ G and 1 ≤ i ≤ m.
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Theorem 2.2 ([AHK, Theorem 3.1]). Let G be a finite group acting on
L(x), the rational function field of one variable over a field L. Assume that,
for any σ ∈ G, σ(L) ⊂ L and σ(x) = aσx + bσ for some aσ, bσ ∈ L with
aσ 6= 0. Then L(x)G = LG(z) for some z ∈ L[x].

Theorem 2.3 ([CHK, Theorem 2.3]). Let K be any field, K(x, y) the
rational function field of two variables over K, and a, b ∈ K \ {0}. If σ is
a K-automorphism on K(x, y) defined by σ(x) = a/x, σ(y) = b/y, then
K(x, y)〈σ〉 = K(u, v), where

u =
x− a

x

xy − ab
xy

, v =
y − b

y

xy − ab
xy

.

Moreover, x + a/x = (−bu2 + av2 + 1)/v, y + b/y = (bu2 − av2 + 1)/u,
xy + ab/(xy) = (−bu2 − av2 + 1)/(uv).

In the theorem below, ζe denotes a primitive eth root of unity.

Theorem 2.4 ([Ka3, Cor. 3.2]). Let K be a field and G be a finite
group. Assume that (i) G contains an abelian normal subgroup H such that
G/H is cyclic of order n, (ii) Z[ζn] is a unique factorization domain, and
(iii) ζe′ ∈ K where e′ = lcm{ord(τ), exp(H)} and τ is some element of G
whose image generates G/H. If G→ GL(V ) is any finite-dimensional linear
representation of G over K, then K(V )G is rational over K.

Let Br(K) denote the Brauer group of a field K, and BrN (K) its N -
torsion subgroup for any N > 1. Following Roquette [Ro], if γ = [B] ∈
Br(K) is the class of a K-central simple algebra B and m ≥ 1 is a multiple
of the index of B, then Fm(γ) denotes the mth Brauer field of γ. Moreover,
Fm(γ)/K is a regular extension of transcendence degree m− 1, which is ra-
tional if and only if γ is trivial. The following result was essentially obtained
by Saltman [Sa, p. 541] and proved in detail by Plans [Pl, Prop. 7].

Theorem 2.5. Let 1 → C → H → G → 1 be a central extension of
finite groups, representing an element ε ∈ H2(G,C). Let K be an infinite
field and let N denote the exponent of C. Assume that N is prime to the
characteristic of K and that K contains µN , the group of N th roots of unity.
Let there be given a decomposition C ∼= µN1 × · · · × µNr , and let the corre-
sponding isomorphism H2(G,C) ∼=

⊕
iH

2(G,µNi) map ε to (εi). Let there
also be given a faithful subrepresentation V of the regular representation of
G over K, and let γi ∈ BrN (K(V )G) ⊂ Br(K(V )G) be the inflation of εi
with respect to the isomorphism G ∼= Gal(K(V )/K(V )G). Then

K(H) is rational over the K(V )G-free compositum Fm(γ1) · · ·Fm(γr),

where m denotes the order of G.



280 I. Michailov

We are going to formulate an important corollary of the latter theorem,
which involves some generalities for the embedding problem of fields. Let
E/F be a Galois extension with Galois group Z and let

(2.1) 1→ X → Y →
π
Z → 1

be a group extension, i.e., a short exact sequence. The embedding problem
related to E/F and (2.1) then consists in determining whether there exists
a Galois algebra (also called a weak solution) or a Galois extension (called
a proper solution) L such that E is contained in L, Y is isomorphic to
Gal(L/F ), and the homomorphism of restriction of automorphisms of L to
E coincides with π. This embedding problem will be denoted by (E/F, Y,X).

Let p be a prime, let F be a field with characteristic not p, and let F con-
tain all pth roots of unity. Denote by µp the cyclic group of all pth roots of
unity which is contained in F× = F \{0}. We have the following well known

Theorem 2.6 ([Ki]). Let L/F be a finite Galois extension with Galois
group G = Gal(L/F ) and let 1 → µp → Y → G → 1 be a non-split
central group extension with characteristic class γ ∈ H2(G,µp). Also, let
i : H2(G,µp) → H2(G,L×) be a homomorphism induced by the inclusion
µp ⊂ L×. Then the embedding problem (L/F, Y, µp) is properly solvable iff
i(γ) = 1 ∈ H2(G,L×).

Let ε ∈ Z2(G,µp) represent γ given in the statement of the latter the-
orem. Then from [Ja, Th. 8.11] it follows that H2(G,L×) is isomorphic to
the relative Brauer group Br(L/F ) by i(γ) 7→ [L,G, ε], where [L,G, ε] ∈
Br(L/F ) is the equivalence class of the crossed product algebra (L,G, ε).
We know that (L,G, ε) is an F -algebra generated by L and elements uσ,
σ ∈ G, with relations u1 = ε(1, 1) = 1, uσuτ = ε(σ, τ)uστ and uσx = σxuσ
for all σ, τ ∈ G and x ∈ L. Notice also that i(γ) ∈ Br(L/F ) ⊂ Brp(F ) is in
fact the inflation of ε with respect to the isomorphism G ∼= Gal(L/F ). The
element i(γ) ∈ Brp(F ) is called the obstruction to the embedding problem.

Theorem 2.7. Let p be a prime, let F be an infinite field with char-
acteristic not p, and let F contain all pth roots of unity. Let 1 → µp →
H → G → 1 be a non-split central extension of finite groups, representing
an element ε ∈ H2(G,µp). Let L = K(xg : g ∈ G) be the rational function
field with a G-action given by the regular representation of G over K. As-
sume that the embedding problem given by L/K(G) and the group extension
1→ µp → H → G→ 1 is solvable. Then K(H) is rational over K(G).

Proof. Note that the obstruction i(γ) = inf(ε) ∈ Brp(K(G)) is isomor-
phic to the crossed product algebra [L,G, ε], which is split in Brp(K(V )G),
since the embedding problem is solvable. Hence Fm(γ) is rational over K(G),
so Theorem 2.5 implies our result.
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3. Proof of Proposition 1.1. If char(K) = p > 2 and p divides n
we can apply [KP, Th. 1.6] to reduce the rationality problem to a similar
one, where p is relatively prime to the order of the given groups. Now, let
char(K) 6= 2. We can then assume that char(K) = 0 or char(K) is relatively
prime to 2n.

Let
⊕

g∈GK · x(g) be the representation space of the regular represen-
tation of G and let ζ be a primitive 4nth root of unity in K. Define

v =
4n−1∑
i=0

ζ−ix(σi).

Then σ(v) = ζv.
Define x1 = v, x2 = τv. We find that

σ : x1 7→ ζx1, x2 7→ ζrx2, τ : x1 7→ x2 7→ ζax1.

Applying Theorem 2.1 we find that if K(x1, x2)G is rational over K, then
so is K(G) = K(x(g) : g ∈ G)G.

Define y1 = x1, y2 = x1x
−1
2 . Then K(x1, x2) = K(y1, y2) and

σ : y1 7→ ζy1, y2 7→ ζ1−ry2, τ : y1 7→ y−1
2 y1, y2 7→ ζ−ay−1

2 .

By Theorem 2.2, if K(y2)G is rational over K, so is K(y1, y2)G. Finally,
K(y2)G is rational over K by Luroth’s Theorem.

If char(K) = 2, we can apply [KP, Th. 1.3] to reduce the problem to
the rationality problem for a group isomorphic to a semi-direct product of
a cyclic group of odd order with the cyclic group of order 2. Let G be such
a group. Then G = 〈σ, τ | σm = τ2 = 1, τσ = σbτ〉, where m is odd and
b2 ≡ 1 (mod m). If b = 1, by [KP, Th. 1.3] and Fischer’s Theorem [Sw,
Theorem 6.1] it follows that K(G) is rational over K. Otherwise, we can
apply the same approach as in the case char(K) 6= 2, since both Luroth’s
Theorem and Theorem 2.2 hold for any field K.

4. Proof of Theorem 1.2. First, assume that char(K) = 2. Then by
[KP, Th. 1.3] we can reduce the problem to the one considered in Propo-
sition 1.1. If char(K) = p and p divides n we can apply [KP, Th. 1.6] to
reduce the problem to a similar one, where p is relatively prime to the order
of the given groups. This can be achieved by taking consecutively group
extensions of the kind 1→ µp = 〈σ4n/p〉 → G→ G1 → 1. Therefore, we can
assume that char(K) = 0 or char(K) is relatively prime to 2n. If the group
extension in the statement is split, [KP, Th. 1.9] yields the rationality of
K(G) over K. Therefore, we can also assume that the group extension is
non-split.

We divide the proof into several steps.
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Step I. Let us first describe the cohomology groups H2(H,µ2) for H
being isomorphic to any of the groups D8n, SD8n, Q8n and M8n.

I.1) Let H ∼= D8n. We have the non-equivalent exact sequences

1→ µ2 → G −→
σ 7→σ
τ 7→τ

D8n → 1,

where the generators σ and τ of G satisfy the relations σ4n = ε1, τ2 = ε2,
τσ = ε3σ

−1τ for εi = ±1. The existence of the group G for any choice of εi
is easily verified. Therefore, H2(D8n, µ2) ∼= µ3

2 and all non-split sequences
give us six non-isomorphic groups:

G1
∼= D16n, G2

∼= SD16n, G3
∼= Q16n,

G4 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ−1τ〉,
G5 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ−1τρ〉,
G6 = 〈σ, τ, ρ | σ4n = 1, τ2 = 1, ρ2 = 1, ρ central, τσ = σ−1τρ〉.

I.2) Let H ∼= SD8n. We have the non-equivalent exact sequences

1→ µ2 → G −→
σ 7→σ
τ 7→τ

SD8n → 1,

where the generators σ and τ of G satisfy the relations σ4n = 1, τ2 = ε2,
τσ = ε3σ

2n−1τ for εi = ±1 (2 ≤ i ≤ 3). There is no group extension for
ε1 = −1. Therefore, H2(SD8n, µ2) ∼= µ2

2 and all non-split sequences give us
three non-isomorphic groups:

G7 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ2n−1τ〉,
G8 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ2n−1τρ〉,
G9 = 〈σ, τ, ρ | σ4n = 1, τ2 = 1, ρ2 = 1, ρ central, τσ = σ2n−1τρ〉.

I.3) Let H ∼= Q8n. We have the non-equivalent exact sequences

1→ µ2 → G −→
σ 7→σ
τ 7→τ

Q8n → 1,

where the generators σ and τ of G satisfy the relations σ4n = 1, τ2 =
ε2σ

2n, τσ = ε3σ
−1τ for εi = ±1 (2 ≤ i ≤ 3). Therefore, H2(Q8n, µ2) ∼= µ2

2

and all non-split sequences give us three non-isomorphic groups:

G10 = 〈σ, τ, ρ | σ4n = 1, τ2 = σ2nρ, ρ central, ρ2 = 1, τσ = σ−1τ〉,
G11 = 〈σ, τ, ρ | σ4n = 1, τ2 = σ2nρ, ρ central, ρ2 = 1, τσ = σ−1τρ〉,
G12 = 〈σ, τ, ρ | σ4n = 1, τ2 = σ2n, ρ2 = 1, ρ central, τσ = σ−1τρ〉.

I.4) Let H ∼= M8n. We have the non-equivalent exact sequences

1→ µ2 → G −→
σ 7→σ
τ 7→τ

M8n → 1,
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where the generators σ and τ of G satisfy the relations σ4n = 1, τ2 = ε2,
τσ = ε3σ

2n+1τ for εi = ±1 (2 ≤ i ≤ 3). Therefore, H2(M8n, µ2) ∼= µ2
2 and

all non-split sequences give us three non-isomorphic groups:

G13 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ2n+1τ〉,
G14 = 〈σ, τ, ρ | σ4n = 1, τ2 = ρ central, ρ2 = 1, τσ = σ2n+1τρ〉,
G15 = 〈σ, τ, ρ | σ4n = 1, τ2 = 1, ρ2 = 1, ρ central, τσ = σ2n+1τρ〉.

Notice we have several isomorphic pairs of groups: G8
∼= G11, G4

∼= G10

and G6
∼= G9. This becomes obvious if we replace ρ with σ2nρ.

Step II. The rationality of K(D16n), K(SD16n) and K(Q16n) over K
can be shown in the same way as in the proofs of [HK2, Theorems 3.2 and
3.3]. One only has to replace everywhere the numbers 2n−2, 2n−3 and 2n−4

with 4n, 2n and n, respectively.
So, it remains to consider the nine groups Gi for i = 4, 5, 6, 7, 8, 12, 13,

14, 15.

Step III. Let
⊕

g∈GK · x(g) be the representation space of the regular
representation of G and let ζ be a primitive 4nth root of unity in K. Define

v =
4n−1∑
i=0

ζ−ix(σi).

Then σv = ζv.
Define x1 = v, x2 = τv, x3 = ρv, x4 = ρτv. Applying Theorem 2.1 we

find that if K(x1, x2, x3, x4)G is rational over K, then K(G) = K(x(g) :
g ∈ G)G is also rational over K.

Define y1 = x1 − x3, y2 = x2 − x4, y3 = x1 + x3, y4 = x2 + x4. Clearly,
K(x1, x2, x3, x4) = K(y1, y2, y3, y4). Then for any of the groups under con-
sideration we have

ρ : y1 7→ −y1, y2 7→ −y2, y3 7→ y3, y4 7→ y4.

Define z1 = y2
1, z2 = y1y2, z3 = y3, z4 = y4. Then K(y1, y2, y3, y4)〈ρ〉 =

K(z1, z2, z3, z4).
III.1) The group G4. We find that

σ : x1 7→ ζx1, x2 7→ ζ−1x2, x3 7→ ζx3, x4 7→ ζ−1x4,

τ : x1 7→ x2 7→ x3 7→ x4 7→ x1,

whence

σ : y1 7→ ζy1, y2 7→ ζ−1y2, y3 7→ ζy3, y4 7→ ζ−1y4,

τ : y1 7→ y2 7→ −y1, y3 7→ y4 7→ y3.
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Therefore,

σ : z1 7→ ζ2z1, z2 7→ z2, z3 7→ ζz3, z4 7→ ζ−1z4,

τ : z1 7→ z2
2z
−1
1 , z2 7→ −z2, z3 7→ z4, z4 7→ z3.

Define t1 = z2n
1 , t2 = z2, t3 = z2

3z
−1
1 , t4 = z3z4. Since [K(zi) : K(ti)] = 4n,

we have K(z1, z2, z3, z4)〈σ〉 = K(t1, t2, t3, t4). The action of τ is now given
by

τ : t1 7→ t4n2 t−1
1 , t2 7→ −t2, t3 7→ t24t

−2
2 t−1

3 , t4 7→ t4.

Define s1 = t1t
−2n
2 , s2 = t2, s3 = t3t2, s4 = t4. Then

τ : s1 7→ s−1
1 , s2 7→ −s2, s3 7→ −s24s−1

3 , s4 7→ s4.

By Theorem 2.2, ifK(s1, s3, s4)〈τ〉 is rational over K, so is K(s1, s2, s3, s4)〈τ〉.
The rationality of K(s1, s3, s4)〈τ〉 over K now follows from Theorem 2.3 for
x = s1, y = s3, a = 1, b = −s24.

The remaining groups can be considered in a similar manner; we leave
the details to the interested reader.

5. The rationality of K(Gi) for 4 ≤ i ≤ 9 and i = 13. It is not hard
to see that, for the groups Gi for 4 ≤ i ≤ 15, Theorem 1.2 has a short proof
by applying Theorem 2.4. Moreover, we have

Theorem 5.1. Let H be a non-abelian group of order 8n, having a cyclic
subgroup of order 4n for any n ≥ 2, and let 1 → µ2 → G → H → 1 be a
group extension such that G does not have a cyclic subgroup of index 2.
Assume that K is a field which contains a primitive 4nth root of unity.
Then K(G) is rational over K.

Proof. Let H be generated by two elements σ and τ such that σ4n = 1,
τ2 = σa and τσ = σrτ for some a, r ∈ Z. Then the pre-images σ̃ and
τ̃ of σ and τ in G are subject to the relations σ̃4n = 1, τ̃2 = ε1σ̃

a and
τ̃ σ̃ = ε2σ̃

r τ̃ for some ε1, ε2 ∈ µ2. It is easy to see now that G is metacyclic
or meta-abelian and satisfies the conditions of Theorem 2.4.

We do not know the answer to the rationality problem for non-abelian
groups of order 8n having a cyclic subgroup of index 2, which are not isomor-
phic to any of the groups D8n, SD8n, Q8n or M8n. We are able, however, to
improve Theorem 1.2 regarding the groups Gi for 4 ≤ i ≤ 9 and i = 13. Since
the case char(K) = p > 2 and (p, n) 6= 1 can be dealt with in a similar man-
ner to Sections 3 and 4, we will assume henceforth that if char(K) = p > 2
then (p, n) = 1.

Now, let H be isomorphic to D8n or SD8n and let L/F be an H-
extension. Then L/F contains a biquadratic extension K/F = F (

√
a,
√
b)/F
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such that the generators σ and τ of H act in the following way:

σ :
√
a 7→ −

√
a,
√
b 7→
√
b, τ :

√
a 7→

√
a,
√
b 7→ −

√
b.

In [Mi1] and [Zi1] the reader can find two different approaches to calculating
the obstructions, displayed in the following three propositions.

Proposition 5.2 ([Zi1, Th. 2.1]). Let F be a field with char(F ) 6= 2, let
H be isomorphic to D8n or SD8n, and let L/F be an H-extension containing
a biquadratic extension K/F = F (

√
a,
√
b)/F . Then the obstruction to the

embedding problem given by L/F and the group extension

1→ µ2 → Gi → H → 1

for i = 4 and i = 7 is (b,−1) ∈ Br(F ).

Proposition 5.3 ([Zi1, Th. 2.2]). Let F be a field with char(F ) 6= 2, let
H be isomorphic to D8n or SD8n, and let L/F be an H-extension containing
a biquadratic extension K/F = F (

√
a,
√
b)/F . Then the obstruction to the

embedding problem given by L/F and the group extension

1→ µ2 → Gi → H → 1

for i = 6 and i = 9 is (a,−1) ∈ Br(F ).

Proposition 5.4 ([Zi1, Th. 2.3]). Let F be a field with char(F ) 6= 2, let
H be isomorphic to D8n or SD8n, and let L/F be an H-extension containing
a biquadratic extension K/F = F (

√
a,
√
b)/F . Then the obstruction to the

embedding problem given by L/F and the group extension

1→ µ2 → Gi → H → 1

for i = 5 and i = 8 is (ab,−1) ∈ Br(F ).

Next, we are going to prove the following

Theorem 5.5. Assume that K is an infinite field with char(K) 6= 2
which contains a primitive 2nth root of unity for some n even. Then K(Gi)
is rational over K for any i = 4, 5, 6, 7, 8, 9.

Proof. Let H be isomorphic to D8n or SD8n and let L/F = K(xh :
h ∈ H)/K(H) be the H-extension obtained by the rational function field
K(xh : h ∈ H). From Propositions 5.2–5.4 it then follows that the obstruc-
tion to the embedding problem given by L/F and 1→ µ2 → Gi → H → 1 is
(∗,−1) ∈ Br(K(H)). Note that K has a fourth root of unity (n is even), so
the obstruction (∗,−1) is always split. Then Theorem 2.7 implies the ratio-
nality of K(Gi), since K(H) is rational, as we have noticed in Section 4.

We now turn our attention to the modular group.

Theorem 5.6. Let the modular group M8n for n ≥ 2 be generated by σ
and τ such that σ4n = τ2 = 1 and τσ = σ2n+1τ . Assume that K contains a
primitive 2nth root of unity. Then K(M8n) is rational over K.
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Proof. If char(K) = 2, then by [KP, Th. 1.3] we can reduce the problem
to the rationality problem for the group Z/2nZ×Z/2Z, which has an affir-
mative answer by Fischer’s Theorem [Sw, Theorem 6.1]. Now, assume that
char(K) 6= 2.

Let
⊕

g∈M8n
K ·x(g) be the representation space of the regular represen-

tation of M8n and let ζ be a primitive 2nth root of unity in K. Define

v =
∑

0≤i≤2n−1

ζ−i(x(σ2i) + x(σ2iτ)).

Then σ2(v) = ζv and τ(v) = v. Define x0 = v, x1 = σ(v). Then we have

σ : x0 7→ x1 7→ ζx0, τ : x0 7→ x0, x1 7→ −x1.

Applying Theorem 2.1 we find that if K(x0, x1)M8n is rational over K, then
so is K(M8n).

Define y0 = x0, y1 = x1/x0. We find that

σ : y0 7→ y1y0, y1 7→ ζy−1
1 , τ : y0 7→ y0, y1 7→ −y1.

From Theorem 2.2 it follows that if K(y1)M8n is rational over K, then so is
K(y0, y1)M8n . The rationality of K(y1)M8n follows from Luroth’s Theorem.

We can as well improve [HK2, Theorem 3.1] concerning the rationality
of the modular 2-group. Our proof generalizes the proof of [CHK, Theorem
3.3], where it is shown that K(M16) is rational over K for any K.

Theorem 5.7. Let the modular group M2n for n ≥ 4 be generated by
σ and τ such that σ2n−1

= τ2 = 1 and τσ = σ2n−2+1τ . Assume that K
contains a primitive 2n−3th root of unity. Then K(M2n) is rational over K.

Proof. If char(K) = 2, Kuniyoshi’s Theorem [CK, Theorem 1.7] implies
the rationality of K(M2n) over K. Now, assume that char(K) 6= 2.

Let
⊕

g∈M2n
K ·x(g) be the representation space of the regular represen-

tation of M2n . We claim that we can reduce the problem to the rationality
problem for the fixed field of a function field K(z0, z1, z2, z3), where M2n

acts faithfully by

σ : z0 7→ z1 7→ z2 7→ z3 7→ −ζz0,
τ : z0 7→ z0, z1 7→ −z1, z2 7→ z2, z3 7→ −z3,

ζ being a primitive 2n−3th root of unity.
Define

xi = x(σi) + x(σiτ), 0 ≤ i ≤ 2n−1 − 1.

Then σ(xi) = xi+1 and τ(xi) = x(2n−2+1)i, where the indices are taken
mod 2n−1. Applying Theorem 2.1 we find that if K(x0, . . . , x2n−1−1)M2n is
rational over K, then so is K(M2n).
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Define yi = xi − xi+2n−2 , yi+2n−2 = xi + xi+2n−2 for 0 ≤ i ≤ 2n−2 − 1.
We find that

σ : y0 7→ y1 7→ · · · 7→ y2n−2−1 7→ −y0,

y2n−2 7→ y2n−2+1 7→ · · · 7→ y2n−1−1 7→ y2n−2 ,

τ : y0 7→ y0, y1 7→ −y1, y2 7→ y2, . . . , y2n−2−1 7→ −y2n−2−1,

y2n−2 7→ y2n−2 , y2n−2+1 7→ y2n−2+1, . . . , y2n−1−1 7→ y2n−1−1.

Since M2n acts faithfully on K(y0, . . . , y2n−2−1) we again apply Theorem
2.1 so that we only have to show the rationality of K(y0, . . . , y2n−2−1)M2n

over K.
If n ≥ 5, let ζ4 be a primitive 4th root of unity and define ui = ζ4yi −

yi+2n−3 , ui+2n−3 = ζ4yi + yi+2n−3 for 0 ≤ i ≤ 2n−3 − 1. Now we have

σ : u0 7→ u1 7→ · · · 7→ u2n−3−1 7→ −ζ4u0,

u2n−3 7→ u2n−3+1 7→ · · · 7→ u2n−2−1 7→ ζ4u2n−3 ,

τ : u0 7→ u0, u1 7→ −u1, u2 7→ u2, . . . , u2n−2−1 7→ −u2n−2−1.

We again apply Theorem 2.1 so that we only have to show the rationality
of K(u0, . . . , u2n−3−1)M2n over K. If n ≥ 6, let ζ8 be a 8th root of unity
such that ζ2

8 = −ζ4. Define vi = ζ8ui− ui+2n−4 , vi+2n−4 = ζ8ui + ui+2n−4 for
0 ≤ i ≤ 2n−4 − 1. Now we have

σ : v0 7→ v1 7→ · · · 7→ v2n−4−1 7→ −ζ8v0,
v2n−4 7→ v2n−4+1 7→ · · · 7→ v2n−3−1 7→ ζ8v2n−4 ,

τ : v0 7→ v0, v1 7→ −v1, v2 7→ v2, . . . , v2n−3−1 7→ −v2n−3−1.

Analogously, we reduce the rationality problem for M2n to the rationality
problem for K(v0, . . . , v2n−4−1)M2n over K. Thus we can prove our claim,
proceeding by induction.

Now, let K(z0, z1, z2, z3) be a function field, where M2n acts by

σ : z0 7→ z1 7→ z2 7→ z3 7→ −ζz0,
τ : z0 7→ z0, z1 7→ −z1, z2 7→ z2, z3 7→ −z3,

ζ being a primitive 2n−3th root of unity. We have σ2n−2
(zi) = −zi. Define

w0 = z2
0 , w1 = z1/z0, w2 = z2/z1, w3 = z3/z2. Then K(z0, z1, z2, z3)〈σ

2n−2 〉 =
K(w0, w1, w2, w3). We find that

σ : w0 7→ w0w
2
1, w1 7→ w2 7→ w3 7→ −ζ/(w1w2w3),

τ : w0 7→ w0, w1 7→ −w1, w2 7→ −w2, w3 7→ −w3.

Theorem 2.2 implies that the rationality problem for K(z0, z1, z2, z3)M2n can
be reduced to the rationality problem for K(w1, w2, w3)M2n .
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Define t = w1w3, x = w1, y = w2. Then we have

σ : t 7→ −ζ/t, x 7→ y 7→ t/x,

σ2 : t 7→ t, x 7→ t/x, y 7→ −ζ/(ty),

τ : t 7→ t, x 7→ −x, y 7→ −y.

From Theorem 2.3 it follows that K(t, x, y)〈σ
2〉 = K(t, u, v), where

u =
x− t

x

xy + ζ
xy

, v =
y + ζ

ty

xy + ζ
xy

·

We have

σ(u) =
y + ζ

ty

ty
x + ζx

ty

, σ(v) =
t
x − x
ty
x + ζx

ty

.

Define w = u/v. Then σ(w) = −1/w, τ(w) = w.
Calculations show that

ty
x + ζx

ty

y + ζ
ty

=
ζu2 + t2v2

tv
,

whence we find that

σ(u) =
t

u
(
ζw + t2

w

) ·
Define z = u2(ζw + t2/w)/t. Then K(t, u, v)〈τ〉 = K(t, u2, w) = K(t, z, w).
We find that

σ : t 7→ −ζ/t, w 7→ −1/w, z 7→ 1/z.

Define p = (1 − z)/(1 + z). Hence K(t, w, z)〈σ〉 = K(t, w, p)〈σ〉 is rational
over K if and only if K(t, w)〈σ〉 is. Finally, Theorem 2.2 yields the rationality
of K(t, w)〈σ〉.

Finally, we will prove the following

Theorem 5.8. If K is an infinite field with char(K) 6= 2, which contains
a primitive 2nth root of unity for some n even, then K(G13) is rational
over K. Moreover, if n = 2k for k ≥ 1 and K contains only a primitive 2kth
root of unity, then K(G13) is rational over K.

Proof. LetH be isomorphic toM8n and let L/F = K(xh : h ∈ H)/K(H)
be the H-extension obtained by the rational function field K(xh : h ∈ H).
From [Mi2, Prop. 4.4] or [Zi2, Th. 2.2] it follows that the obstruction to
the embedding problem given by L/F and 1 → µ2 → G13 → H → 1 is
(∗,−1) ∈ Br(K(H)). Note that K has a fourth root of unity (n is even), so
the obstruction (∗,−1) is always split.
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Theorem 5.6 implies that K(H) is rational over K. Therefore, Theo-
rem 2.7 implies the rationality of K(G13) over K. If n = 2k and K contains
only a primitive 2kth root of unity, then Theorem 5.7 yields the rationality
of K(G13) over K.
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