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function fields defined over Fq
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1. Introduction. Let F/Fq be an algebraic function field of one variable
defined over a finite field Fq. We will always suppose that the full constant
field of F/Fq is Fq and denote by g the genus of F/Fq. If D is a (rational)
divisor we recall that the Fq-Riemann–Roch vector space associated to D is
the following subspace of rational functions:

(1) L(D) = {x ∈ F/Fq | (x) ≥ −D} ∪ {0}.
By the Riemann–Roch theorem, the dimension of this vector space, denoted
by dim(D), is related to the genus of F/Fq and the degree of D by

(2) dim(D) = deg(D)− g + 1 + dim(κ−D),

where κ denotes a canonical divisor of F/Fq of degree 2g−2. In this relation,
the complementary term i(D) = dim(κ−D) is called the index of speciality
and is not easy to compute in general. Note that we always have i(D) ≥ 0.
In particular, a divisor D is called non-special when i(D) is zero, and special
if i(D) > 0. Many deep results on such divisors have been obtained in the
dual language of curves when the field of definition is algebraically closed.
See for instance [1] for a beautiful survey over C. On the contrary, few results
are known when the rationality of the divisor is taken into account, as in
our context where we require the divisor D to be defined over Fq. We refer
to [4] for known results on the existence of non-special divisors of degree g
and g − 1.

In the present article, we study a natural generalization of certain results
obtained in [4] by looking at dimension zero divisors, i.e. such that dim(D)
= 0. Clearly, such a divisor has degree less than or equal to g− 1. The non-
special divisors of degree g − 1 form the borderline case. In Corollary 3.4
we prove that for g ≥ 1, q ≥ 4 (resp. q = 3, resp. q = 2) and k ≥ 1 (resp.
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k ≥ 2, resp. k ≥ 5) there always exists a dimension zero divisor of degree
g − k. When q ≤ 3, it is not known whether there exist infinitely many
function fields without non-special degree g − 1 divisors (see [4, Rem. 12]
for examples with g ≤ 3). For q = p ≤ 3, we slightly clarify the situation
by showing that when the Jacobian of F/Fq is ordinary, there always exists
a non-special divisor of degree g − 1 (Proposition 4.3). More generally, we
show the existence of a dimension zero divisor of degree γ−1 where γ is the
so called p-rank of F/Fq. Also, if F/F2 has at least three degree one places,
then one can replace k ≥ 5 by k ≥ 2 in Corollary 3.4.

If the zeta function of F/Fq is known, we give a sufficient condition on its
coefficients to have a dimension zero divisor of degree g − k (Theorem 3.7).
In general (Remark 3.10) the knowledge of the zeta function is not sufficient
to distinguish between function fields with or without dimension zero divisor
of a certain degree. However, if F/Fq is hyperelliptic, using results from [11],
we can give a necessary and sufficient condition (Theorem 3.9).

Many inequalities and techniques we use are refinements of the ones de-
veloped in [4]. More specifically, most results are derived from the inequality
Am < h where Am is the number of effective divisors of degree m and h is
the divisor class number (see Lemma 3.1). To the best of our knowledge,
the use of the p-rank and the hyperelliptic case are new.

Apart from theoretical interest, our study is motivated by the appearance
of such divisors in many applications (see [13] and [3]). Hence we prove not
only existence results but also density results in order to justify the good
behavior of certain algorithms.

Here is an overview of the paper. In Section 2, we recall the basic defini-
tions and notation for algebraic function fields, and elementary and known
results on dimension zero divisors. In Section 3, we give our main results
concerning the existence of dimension zero divisors. In Section 4, we study
the special cases q = 2, 3 under various hypotheses. In Section 5, we prove
that a random draw of a divisor of degree g − k gives with high probability
a dimension zero divisor. Then we compare the results obtained in Section 3
with the ones obtained in [16] and [13] which can be deduced directly from
the known asymptotical properties of the zeta functions.

2. Preliminaries

2.1. Notation. Let us recall the usual notation (for the basic notions
related to an algebraic function field F/Fq see [14]). Let F/Fq be a function
field of genus g. For any integer k ≥ 1 we denote by Pk(F/Fq) the set of
places of degree k and by Bk(F/Fq) the cardinality of this set. We define
P(F/Fq) =

⋃
k Pk(F/Fq). The divisor group of F/Fq is denoted by D(F/Fq).
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If a divisor D ∈ D(F/Fq) is such that

D =
∑

P∈P(F/Fq)

nPP,

the support of D is the finite set

supp(D) = {P ∈ P(F/Fq) | nP 6= 0}

and its degree is
deg(D) =

∑
P∈P(F/Fq)

nP deg(P ).

We denote by Dn(F/Fq) the set of divisors of degree n. We say that the di-
visor D is effective if nP ≥ 0 for each P ∈ supp(D); we denote by D+

n (F/Fq)
the set of effective divisors of degree n and write An = #D+

n (F/Fq).
The dimension of a divisor D, denoted by dim(D), is the dimension of

the vector space L(D) defined by (1).
Let x ∈ F/Fq. We denote by (x) the divisor associated to the rational

function x, that is,
(x) =

∑
P∈P(F/Fq)

vP (x)P,

where vP is the valuation at the place P . A divisor of the form (x) is called a
principal divisor, and the set of principal divisors is a subgroup of D0(F/Fq)
denoted by Princ(F/Fq). The factor group

C(F/Fq) = D(Fq)/Princ(F/Fq)

is called the divisor class group. If D1 and D2 are in the same class, i.e. the
divisor D1 −D2 is principal, we write D1 ∼ D2. We denote by [D] the class
of the divisor D.

If D1 ∼ D2, then

deg(D1) = deg(D2), dim(D1) = dim(D2),

so that we can define the degree deg([D]) and the dimension dim([D]) of
a class. Since the degree of a principal divisor is zero, we can define the
subgroup C(F/Fq)0 of classes of degree zero divisors in C(F/Fq). It is a
finite group and we denote by h its order, called the class number of F/Fq.
Moreover if

L(t) =
2g∑
i=0

ait
i =

g∏
i=1

[(1− πit)(1− πit)]

with |πi| =
√
q is the numerator of the zeta function of F/Fq, we have

h = L(1). Finally we denote by hn,k the number of classes of divisors of
degree n and of dimension k.
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In the following, we may simultaneously use the dual language of (smooth,
absolutely irreducible, projective) curves by associating to F/Fq a unique
(Fq-isomorphism class of a) curve C/Fq of genus g and conversely to such
a curve its function field. Because, by F. K. Schmidt’s theorem (cf. [14,
Corollary V.1.11]) there always exists a rational divisor of degree 1, the
group C(F/Fq)0 is isomorphic to the group of Fq-rational points on the
Jacobian of C, denoted Jac(C). In particular h(F/Fq) = #Jac(C)(Fq).

2.2. Elementary results on dimension zero divisors. Let F/Fq
be a function field of genus g > 0. We are interested in dimension zero
divisors. From the Riemann–Roch theorem, they are the divisors D such
that [D] does not contain an effective divisor. If deg(D) < 0 then D is
automatically a dimension zero divisor. Therefore, in what follows we assume
that deg(D) ≥ 0. Note that the divisor with empty support exists and is
effective. So, if deg(D) = 0, then D is a dimension zero divisor if and only
if D is not principal. Finally, as said in the introduction, since i(D) ≥ 0,
it follows easily from the Riemann–Roch theorem that a dimension zero
divisor is necessarily of degree less than g. The following lemma shows that
among them, the degree g−1 dimension zero divisors represent the extreme
case.

Lemma 2.1. Let D ∈ Dg−1(F/Fq) be a dimension zero divisor of degree
g − 1. If B1(F/Fq) > 0 then for all k > 0, there exists a dimension zero
divisor of degree g − k.

Proof. Let P ∈ P1(F/Fq). Suppose that D− kP is not a dimension zero
divisor. Then by the Riemann–Roch theorem, there exists a function x ∈ F
such that (x) + D − kP is an effective divisor. But then (x) + D is also
effective and D is not a dimension zero divisor, a contradiction.

Note that if degree D is g− 1, then D is a dimension zero divisor if and
only if i(D) = 0. Such divisors are particular cases of non-special divisors.
Over an algebraically closed field, it is easy to prove the existence of a
non-special divisor of degree g − 1 for any function field F. However, if we
impose the rationality of such a divisor then the question is more subtle
and has been studied in [4] and [2]. Among other results proved there, the
following are interesting for our purpose.

Proposition 2.2. If B1(F/Fq) ≥ g + 1, then there is a non-special
divisor such that deg(D) = g − 1 and supp(D) ⊂ P1(F/Fq).

Remark 2.3. Assume that D ∈ Dg(F/Fq) is an effective non-special
divisor of degree g ≥ 1. If there exists a degree one place P such that
P 6∈ supp(D), then D − P is a non-special divisor of degree g − 1.
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Using Lemma 2.1, we know that we get in these cases dimension zero
divisors of degree g − k for all k > 0.

Theorem 2.4. Let F/Fq be a function field of genus g(F) ≥ 2. If q ≥ 4,
then there is a non-special divisor of degree g(F)− 1.

Finally, in order to get rid of the small genus cases, we give the following
proposition.

Proposition 2.5. Let F/Fq be a function field of genus g(F) ≤ 2. There
is always a dimension zero divisor of degree zero except in the following
cases:

(i) g = 1 and F/Fq is given by
y2 + y = x5 + x3 + 1, q = 2,
y2 = x3 + 2x+ 2, q = 3,
y2 + y = x3 + a, q = 4 with a2 + a+ 1 = 0;

(ii) g = 2, q = 2 and F/F2 is given by

y2+y = x5+x3+1 or y2+(x3+x+1)y = x6+x5+x4+x3+x2+x+1.

Let F/Fq be a function field of genus g(F) = 2. There is always a dimension
zero divisor of degree 1 except if F/Fq = F2(x, y)/F2 with

y2 + y = x5 + x3 + 1 or y2 + y = (x4 + x+ 1)/x.

Proof. As said, a degree zero divisor is zero-dimensional if and only if it
is not principal. Hence, a function field F/Fq has no dimension zero divisor
of degree zero if and only if h(F/Fq) = 1. When g = 1, it is well known
that the only cases are the ones indicated in the proposition. For g = 2, this
was proved in [8] and [7]. For the degree 1 case, this has been studied in [4,
Th. 11].

In the following, we assume that g(F) > 2.

3. On the existence of dimension zero divisors. In this section
we establish our main results on the existence of divisors of degree g − k
and dimension zero for an algebraic function field F/Fq of genus g defined
over Fq.

3.1. Relation with the Jacobian. First, let us give a key lemma for
proving the existence of divisors of dimension zero.

Lemma 3.1. Let n be an integer and assume that An = #D+
n (F/Fq) < h,

where h is the class number of F/Fq. Then there exists a divisor of degree
n and dimension zero. More precisely, the number of classes of divisors of
degree n and dimension zero, denoted hn,0, is greater than or equal to h−An.
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Proof. We know by F. K. Schmidt’s theorem (cf. [14, Corollary V.1.11])
that there always exists a divisor of degree 1, say D0 ∈ D1(F/Fq). For all n,
we denote by ψ the map from Dn(F/Fq) into the Jacobian of F/Fq given by

ψ(D) = [D − nD0].

Since we assumed that An < h, we have

#ψ(D+
n (F/Fq)) ≤ An < h,

so the restriction of ψ to D+
n (F/Fq) is not surjective. If [D′] is a class of

degree 0 not in the image of ψ, then [D′+nD0] does not contain an effective
divisor, hence D′+nD0 is a dimension zero divisor of degree n. The number
of classes [D] of degree n where D is not equivalent to a positive divisor is
hn,0 ≥ h−An.

Remark 3.2. We can give examples where a counterpart of the first
claim in Lemma 3.1 does not hold: for instance the function field F1/F2 :
y2 + (x4 + x3 + x)y = x10 + x6 + 1 (resp. F2/F2 : y2 + (x4 + x3 + x2)y =
x10 + x7 + x3) is of genus 3 (resp. 4) with class number 8 (resp. 10) and
A2 = 9 (resp. A3 = 13). However F1/F2 (resp. F2/F2) is ordinary and one
can apply Proposition 4.1 below to show that there is a dimension zero
divisor of degree 2 (resp. 3) in D(F1/F2) (resp. in D(F2/F2)).

3.2. Main results. Some applications (cf. [13] and [3]) require many
linearly independent divisors of dimension zero. Then we are interested not
only in the existence of such a divisor, but also in their number.

Let k be a positive integer. Let us set the following notation:

Cq =
{

2(
√
q − 1)2/

√
q if k ≥ 2,

(
√
q − 1)2/

√
q if k = 1,

lq(k) = Cqq
k/2,

∆q =
{
q(g−k)/2 if k ≥ 2,
2q(g−1)/2 if k = 1.

Then the following result holds:

Theorem 3.3. Assume that k is a positive integer such that

(3) −2 logq(Cq) ≤ k.

Then there is at least one dimension zero divisor of degree g − k in the set
Dg−k(F/Fq). Moreover, the number hn,0 of (classes of) linearly independent
divisors of degree n = g − k and dimension zero satisfies

(4) hn,0 ≥ h
(

1− 1
lq(k)

)
+∆q.
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Proof. Note that
logq(lq(k)) = logq(Cq) + k/2 ≥ 0,

so lq(k) ≥ 1. From the functional equation of the zeta function, it can be
deduced (see [10, Lemma 3(i)]) that, for g ≥ 1, one has

(5) An = qn+1−gA2g−2−n + h
qn+1−g − 1
q − 1

for all 0 ≤ n ≤ 2g − 2.

For g ≥ 2, it follows from (5) (see [6] or [10, Lemma 3 and proof of Lemma
6]) that

g−2∑
n=0

Ant
n +

g−1∑
n=0

qg−1−nAnt
2g−2−n =

L(t)− htg

(1− t)(1− qt)
.

Substituting t = q−1/2 in the last identity, we obtain

2
g−2∑
n=0

q−n/2An + q−(g−1)/2Ag−1 =
h− qg/2L(q−1/2)

(q1/2 − 1)2q(g−1)/2
.

For j = 1, . . . , g write πj = q1/2eiθj . Since

L(q−1/2) =
g∏
j=1

[(1− πjq−1/2)(1− πjq−1/2)] = 22g ·
g∏
j=1

sin2(θj/2) ≥ 0,

we have

(6) 2
g−2∑
n=0

q(g−1−n)/2An +Ag−1 ≤
h

(
√
q − 1)2

.

Note that A0 = 1 and Ai ≥ 0 for all i > 0. Hence (6) implies, for k ≥ 2,

Ag−k ≤
h

2q(k−1)/2(
√
q − 1)2

− q(g−k)/2.

In the same way we get

Ag−1 ≤
h

(
√
q − 1)2

− 2q(g−1)/2.

In any case

Ag−k ≤
h

lq(k)
−∆q < h.

Then there exist hn,0 ≥ h − Ag−k linearly independent divisors of degree
g − k and dimension zero and so (4) holds.

Corollary 3.4. There exists a dimension zero divisor of degree g − k
in Dg−k(F/Fq) as soon as

• for q = 2, k ≥ 5;
• for q = 3, k ≥ 2;
• for q ≥ 4, k ≥ 1.
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Hence, for q ≥ 4 the situation is optimal. This can be seen as a general-
ization of Theorem 2.4.

Remark 3.5. However, the bound on hn,0 is not optimal. For instance,
we have already noticed that every degree 0 divisor which is not principal
is zero-dimensional. Hence hg,0 = h − 1. From [6], one knows that for any
field F/Fq of genus g,

h ≥
⌈
qg−1 (q − 1)2

(q + 1)(g + 1)

⌉
.

A simple computation shows that for any q,

h− 1 > h

(
1− 1

lq(g)

)
+∆q for g > 20.

If more is known about the zeta function of F/Fq, other estimates can
be deduced. In the following lemma, we give the value of Ag−k in terms of
the coefficients of the polynomial L(t).

Lemma 3.6. Let F/Fq be a function field of genus g and let L(t) =∑2g
i=0 ait

i be the numerator of its zeta function. Then

Ag−k =
1

q − 1

[
q−k+1

(
h−

g+k−1∑
i=0

ai

)
−
g−k∑
i=0

ai

]
.

Proof. From

Z(t) =
∞∑
m=0

Amt
m =

L(t)
(1− t)(1− qt)

=
∑2g

i=0 ait
i

(1− t)(1− qt)
we deduce that for all 0 ≤ m ≤ 2g,

Am =
m∑
i=0

qm−i+1 − 1
q − 1

ai.

In particular,

(q − 1)Ag−k =
g−k∑
i=0

(qg−k−i+1 − 1)ai.

Since ai = qi−ga2g−i for all i = 0, . . . , g, we get

(q − 1)Ag−k = qg−k+1
g−k∑
i=0

q−iai −
g−k∑
i=0

ai

= qg−k+1
g−k∑
i=0

q−iqi−ga2g−i −
g−k∑
i=0

ai.

Hence

(q − 1)Ag−k = q−k+1
g−k∑
i=0

(a2g−i − ai)−
g−k∑
i=0

ai + q−k+1
g−k∑
i=0

ai.
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Furthermore, we know that h = L(1) =
∑2g

i=0 ai, therefore
g−k∑
i=0

(a2g−i − ai) = h−
g+k−1∑
i=0

ai −
g−k∑
i=0

ai,

which completes the proof.

Theorem 3.7. Let k ≥ 1 be a fixed integer. If F/Fq is an algebraic
function field such that q ≥ 3 and q−k+1

∑g+k−1
i=0 ai +

∑g−k
i=0 ai ≥ 0 (resp.

q = 2 and q−k+1
∑g+k−1

i=0 ai +
∑g−k

i=0 ai > 0), then there exists a dimension
zero divisor of degree n = g − k. Moreover, the number hn,0 of linearly
independent divisors of degree n = g − k and dimension zero is such that

(7) hn,0 ≥ h−
1

q − 1

[
q−k+1

(
h−

g+k−1∑
i=0

ai

)
−
g−k∑
i=0

ai

]
.

Proof. By Lemma 3.6, we have the inequality Ag−k < h. The result
follows by using Lemma 3.1.

Example 3.8. We can apply the previous theorem to classical types of
algebraic function fields, in particular a maximal function field F/Fq2 over
Fq2 or its descent over Fq if it exists. In the first case, one has L(t) = (1+qt)2g

and

hn,0 ≥ h−
1

q2 − 1

[
q−2k+2

(
h−

g+k−1∑
i=0

(
2g
i

)
qi
)
−
g−k∑
i=0

(
2g
i

)
qi
]
.

In the latter, L(t) = (1 + qt2)g and

hn,0 ≥ h−
1

q − 1

[
q−k+1

(
h−

b(g+k−1)/2c∑
i=0

(
g

i

)
qi
)
−
b(g−k)/2c∑

i=0

(
g

i

)
qi
]
.

For instance, for the descent of the (maximal) genus 3 hermitian field over
F3, one gets h2,0 ≥ 42 and h1,0 ≥ 60 (compare with h1,0 ≥ 12 obtained from
formula (4) of Theorem 3.3).

In the particular case where F/Fq is hyperelliptic, one can give a nec-
essary and sufficient condition in terms of the coefficients of L to obtain a
dimension zero divisor of degree g − k.

Theorem 3.9. If F/Fq is a hyperelliptic algebraic function field of genus
g > 2, the number hg−k,0 of linearly independent divisors of degree g−k and
dimension zero is

hg−k,0 =
g∑

i=g−k+1

ai +
g−1∑
i=g−k

qg−iai + (qk − 1)
g−k−1∑
i=0

qg−i−kai.

Proof. We use results from [11, Sec. 4]. Let hn,i be the number of classes
of divisors of degree n and of dimension i ≥ 0 of F/Fq. By [11, Prop. 4.3],
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for 0 ≤ n ≤ 2g − 2 and i > 0, one has
hn,i = An−2i+2 − (q + 1)An−2i + qAn−2i−2.

Now for any n,

h =
∞∑
i=0

hn,i

so

hn,0 = h−
∞∑
i=1

hn,i.

By the expression of hn,i for i > 0 above and the fact that Ai = 0 if i < 0
we get

hg−k,0 = h− (Ag−k − qAg−k−2).
Using the expressions of Ag−k from Lemma 3.6 and

h =
g∑
i=0

ai +
g−1∑
i=0

qg−iai

after some simplifications we get the desired equality.

Remark 3.10. However, in general, the knowledge of the zeta function
is not sufficient to characterize the existence of a dimension zero divisor. For
instance the genus 3 function field F1/F2 : y2 + y = x7 + x6 + 1 has the
same L-polynomial L(t) = 8t6 − 8t5 + 4t4 − 2t3 + 2t2 − 2t + 1 as F2/F2 :
y3 + x2y2 + (x3 + 1)y = x4 + x3 + 1. Now from [4, Rem. 12], F2/F2 has no
degree 2 divisor of dimension zero whereas F1/F2 (which is hyperelliptic)
has by Theorem 3.9.

4. Particular cases: the cases of F2 and F3

4.1. Assumption on the p-rank. Let C/k be a genus g (smooth, pro-
jective, absolutely irreducible) curve over a finite field k = Fpn . Classically,
one defines the p-rank γ of this curve as the integer 0 ≤ γ ≤ g such that
#Jac(C)[p](k) = pγ . In particular C is said to be ordinary if γ = g. There
is another equivalent characterization in terms of the L-polynomial, namely
γ = deg(L(t) (mod p)) (see [9]). In particular, C is ordinary if and only if p
does not divide ag.

Proposition 4.1. Let C be an ordinary curve of genus g > 0 over a
finite field k of characteristic 2. There is always a degree g − 1 dimension
zero divisor on C.

Proof. Let f ∈ k(C) with df 6= 0. Developing f in power series at any
point of C, we see that df has only zeros and poles of even multiplicity.
Hence there exists a rational divisor of degree (2g − 2)/2 = g − 1 such that
(df) = 2D0. It is easy to show that the class of this divisor does not depend
on the choice of f and it is called the canonical theta characteristic divisor.
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In [15, Prop. 3.1], it is shown that there is a bijection between L(D0) and
the space of exact regular differentials (i.e. the regular differentials ω such
that ω = df for f ∈ k(C)). Now by [12, Prop. 8], a regular differential ω is
exact if and only if C(ω) = 0 where C is the Cartier operator. Moreover by
[12, Prop. 10], Jac(C) is ordinary if and only if C is bijective. So the only
exact regular differential is 0 and dim(D0) = 0. Hence D0 is the divisor we
were looking for.

Corollary 4.2. Let C/F2 be an ordinary curve of genus g > 0. Assume
that #C(F2) > 0. Then for all k > 0, there exists a dimension zero divisor
of degree g − k.

Note that the previous proof gives a way to explicitly construct a degree
g − 1 divisor of dimension zero. We will now generalize Proposition 4.1 but
without such an explicit construction.

Proposition 4.3. Let C be a curve of genus g > 0 over a finite field Fq
of characteristic p and of p-rank γ. There is always a degree γ−1 dimension
zero divisor on C.

Proof. On one hand, we have already pointed out in the proof of Lemma
3.6 that for all 0 ≤ m ≤ 2g,

Am =
m∑
i=0

qm−i+1 − 1
q − 1

ai.

Reducing modulo p, we get

Am ≡
m∑
i=0

ai (mod p).

On the other hand, with the same notation as in the proof of Theorem 3.9,

Am =
∞∑
i=1

qi − 1
q − 1

hm,i.

Reducing modulo p, we get

Am ≡
∞∑
i=1

hm,i (mod p).

Now,

h =
∞∑
i=0

hm,i and h ≡
γ∑
i=0

ai (mod p).

Hence, for m = γ − 1,

hm,0 = h−
∞∑
i=1

hm,i ≡ h−Am ≡
γ∑
i=0

ai −
γ−1∑
i=0

ai ≡ aγ 6≡ 0 (mod p).

Thus, hγ−1,0 is not zero and hence is positive.
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Remark 4.4. Note that this proposition is interesting only in the case
where q = 2 and γ = g − k with k ≤ 3, or q = 3 and γ = g. Indeed,
Corollary 3.4 gives a better result for the other values of q and k.

4.2. Assumption on the number of rational points. As we have
seen in Proposition 2.2, if we know that there are many (> g) degree
one places then there is always a dimension zero divisor of degree g − k
for all k > 0. We want to relax the hypothesis in the case of q = 2
for k > 1. To do so, we need the following lemma which can be found
in [10].

Lemma 4.5. If B1(F/Fq) ≥ m ≥ 1, then for all n ≥ 2 one has

An ≥ mAn−1 −
m(m− 1)

2
An−2.

Then the following result improves Proposition 2.2.

Theorem 4.6. If q = 2 (g ≥ 3) and B1(F/F2) ≥ 3 then

Ag−k < h(F/F2)

for any integer k ≥ 2. Therefore there exists a divisor of degree g − k and
dimension zero for any k ≥ 2.

Proof. From the inequality (6), we obtain

(8) 4Ag−3 + 2
√

2Ag−2 +Ag−1 ≤
h

(
√

2− 1)2
= (3 + 2

√
2)h.

Assume that B1(F/F2) ≥ m = 3. Then by Lemma 4.5 applied with n = g−1,
we have Ag−1 + 3Ag−3 ≥ 3Ag−2. Hence, using (8), we obtain

Ag−3 + (3 + 2
√

2)Ag−2 ≤ (3 + 2
√

2)h.

Moreover, it is clear that Ag−3 ≥ 1 because if g = 3 then Ag−3 = A0 = 1,
and if g > 3 then Ag−3 ≥ B1(F/F2) = m = 3. Hence, we deduce that if
B1(F/F2) ≥ 3 and g ≥ 3, then Ag−2 < h. We can apply Lemma 2.1 to get
the result.

5. Density of dimension zero divisors

5.1. General result. In many situations, divisors of dimension zero
are needed. The bilinear multiplication algorithm of D. Chudnovsky and
G. Chudnovsky (see [5]), for instance, requires the random choice of good
divisors to set up the algorithmic infrastructure. In this context, we draw
at random a divisor until we obtain a divisor having the needed properties.
From an algorithmic point of view, one can ask what the expected com-
plexity is to construct the required divisors. Until now, it is not at all clear
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that this construction is practical (cf. [13, Rem. 5]). However, the experi-
ments show that in each particular case, this random draw quickly gives us
a solution. The following result explains why this method works.

Proposition 5.1. Let Dn(F/Fq) be the set of divisors of degree n = g−k
with k ≥ 1, provided with the equiprobability distribution. If k ≥ −2 logq(Cq)
then the probability to draw a degree g−k divisor of dimension zero is greater
than or equal to 1− 1/lq(k) where

lq(k) = Cqq
k/2

and

Cq =
{

2(
√
q − 1)2/

√
q if k ≥ 2,

(
√
q − 1)2/

√
q if k = 1.

Proof. For any integer n, the probability to draw a dimension zero divisor
among the divisors of degree n is equal to the probability to draw a divisor
class of dimension zero among the classes of degree n. We have seen in
Theorem 3.3 that the number of classes of linearly independent divisors of
degree n = g − k and dimension zero is

hn,0 ≥ h
(

1− 1
lq(k)

)
+∆q > h

(
1− 1

lq(k)

)
.

Since the number of classes of degree n is equal to h, we get the result.

Note that this probability does not depend upon the value of g and tends
to 1 as k → ∞. In particular g and k can grow simultaneously to infinity.
For example we can take k = blogq(g)c which satisfies the inequality (3) and
which tends to infinity as g →∞.

For practical cases, using Proposition 5.1, we see that it is not necessary
to take a very large k to obtain a probability very close to 1. For example if
q = 16 and k = 3, which is a rather small value, the probability to draw a
divisor of degree g − 3 and dimension zero is ≥ 287/288 ' 0.996. If q = 256
and k = 1 the probability to draw a non-special divisor of degree g − 1 is
≥ 224/225 ' 0.995.

5.2. Comparison with asymptotical results. In this section, we
compare the previous results with those obtained under asymptotical as-
sumptions on the zeta functions by M. Tsfasman [16], M. Tsfasman and
S. Vladut [17] and I. Shparlinski, M. Tsfasman and S. Vladut [13]. First, let
us recall the notion of asymptotically exact sequence of algebraic function
fields introduced in [16].

Definition 5.2. Consider a sequence F/Fq = (Fk/Fq)k≥1 of algebraic
function fields Fk/Fq defined over Fq of genus gk. We suppose that the
sequence of genus gk is an increasing sequence growing to infinity. The se-
quence F/Fq is called asymptotically exact if for all m ≥ 1 the following
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limit exists:

βm(F/Fq) = lim
gk→∞

Bm(Fk/Fq)
gk

where Bm(Fk/Fq) is the number of places of degree m on Fk/Fq.
Now, let us recall two results used by I. Shparlinski, M. Tsfasman and

S. Vladut in [13]. These results follow easily from Corollary 2 and Theorem 6
of [16]. Note that the proof of Theorem 6 of [16] can be found in [17].

Lemma 5.3. Let F/Fq = (Fk/Fq)k≥1 be an asymptotically exact se-
quence of algebraic function fields defined over Fq and hk be the class number
of Fk/Fq. Then

logq(hk) = gk

(
1 +

∞∑
m=1

βm logq

(
qm

qm − 1

))
+ o(gk).

Lemma 5.4. Let Adk
be the number of effective divisors of degree dk on

Fk/Fq. If

dk ≥ gk
( ∞∑
m=1

mβm
qm − 1

)
+ o(gk)

then

logq(Adk
) = dk + gk

∞∑
m=1

βm logq

(
qm

qm − 1

)
+ o(gk).

These asymptotical properties were established in [16] and [17] in or-
der to estimate the class number h of algebraic function fields of genus g
defined over Fq and also in order to estimate their number of classes of
effective divisors of degree m ≤ g − 1. Namely, I. Shparlinski, M. Tsfas-
man and S. Vladut used in [13] the inequality 2Adgk(1−ε)e < hk where
0 < ε < 1/2 and k is large enough, under the hypothesis of Lemma 5.3.
In the same spirit, we generalize their result in the following proposition
and corollary.

Proposition 5.5. Let F/Fq = (Fk/Fq)k≥1 be an asymptotically exact
sequence of algebraic function fields defined over Fq. Let ε and l be real
numbers such that 0 < ε < 1/2 and l ≥ 1. Then there exists an integer k0

such that for any integer k ≥ k0,

lAdgk(1−ε)e < hk.

Proof. The total number of linear equivalence classes of an arbitrary
degree equals the divisor class number hk of Fk/Fq, which is given by
Lemma 5.3. Moreover, for gk sufficiently large, we have

∞∑
m=1

mβm
qm − 1

≤ 1
√
q + 1

∞∑
m=1

mβm

qm/2 − 1
<

1
2
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since q ≥ 2 and
∑∞

m=1
mβm

qm/2−1
≤ 1 by Corollary 1 of [16]. As ε < 1/2, one

has

dgk(1− ε)e ≥ gk(1− ε) ≥ gk
( ∞∑
m=1

mβm
qm − 1

)
+ o(gk)

for k large enough.
Therefore, we can apply Lemma 5.4 and compare logq(lAdgk(1−ε)e) with

logq(hk) given by Lemma 5.3. Hence, there exists an integer k0 such that
lAdgk(1−ε)e < hk for k ≥ k0.

Corollary 5.6. Let F/Fq = (Fk/Fq)k≥1 be an asymptotically exact
sequence of algebraic function fields defined over Fq. Let ε be a real number
such that 0 < ε < 1/2 and φ = o(gk) a function such that gk(1−ε)+φ(gk) is
an integer. Then there exists an integer k0 such that for any integer k ≥ k0,
there is a divisor of degree gk(1−ε)+φ(gk) and dimension zero in D(Fk/Fq).

Proof. The corollary is a consequence of Proposition 5.5 applied with
l = 1 and Lemma 3.1.

On the other hand Theorem 3.3 implies the following result.

Proposition 5.7. Let q be a prime power and l ≥ 1 be a real num-
ber. Then for any algebraic function field F/Fq of genus g and any strictly
positive integer k such that

2 logq(l)− 2 logq(Cq) ≤ k
we have

Ag−k < h/l.

If we compare this proposition to Proposition 5.5, and thus to Tsfasman
and Vladut’s inequality, we see that the “asymptotical exact sequence” hy-
pothesis is no longer necessary. Moreover, the range covered by the divisor
order g − k is now larger than the one covered by g(1 − ε). In particular,
we can now take a constant k or k growing slowly to infinity, for example
k = logq(g), which was not possible in Proposition 5.5.
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