On polynomial Gauss sums $\left(\bmod P^{n}\right), n \geq 2$

by
Chif-Nung Hsu and Ting-Ting Nan (Taipei)
Dedicated to Professor Jing Yu on his 60th birthday

1. Introduction. Let N be a positive integer and let χ be a primitive multiplicative character $(\bmod N)$. It is known that the absolute value of the classical Gauss sum

$$
\tau(\chi)=\sum_{n=1}^{N-1} \chi(n) \exp \left(\frac{2 \pi i n}{N}\right)
$$

is $N^{1 / 2}$. However, it is difficult to determine the argument of this sum. In 1962, C. Chowla [1] and L. J. Mordell [7] independently proved that when N is a prime number, the argument is a root of unity if and only if χ is real. When $N=p^{r}$ is an odd prime power with $r \geq 2, \mathrm{R}$. Odoni [8] gave explicit formulas for the argument of $\tau(\chi)$ by using p-adic analysis. An important role in finding the argument of $\tau(\chi)$ is played by the fact that the group $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic when p is an odd prime. Finally, T. Funakura [3] computed the classical Gauss sums for all integer n and, further, gave a criterion for the argument of a classical Gauss sum to be a root of unity. Moreover, in 1983, J.-L. Mauclaire [5] provided another elementary proof giving the argument of $\tau(\chi)$ when p is an odd prime. Furthermore, he completed the remaining case of the prime number 2 in [6].

In this paper, we generalize the classical Gauss sums to polynomial Gauss sums in the polynomial ring over the finite field \mathbb{F}_{q} of q elements. For q odd, we explicitly give the argument of a polynomial Gauss sum. We are then able to generalize the classical Chowla-Mordell theorem to polynomial Gauss sums, providing a necessary and sufficient condition for the argument of a polynomial Gauss sum to be a root of unity.

Throughout this paper, p is an odd prime and $q=p^{r}$ is a power of p. Let \mathbb{F}_{q} be the finite field of q elements of characteristic p and let $\operatorname{Tr}_{q}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$
be the trace map onto \mathbb{F}_{p} (identified with $\mathbb{Z} / p \mathbb{Z}$). Let $e_{q}: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be the standard additive character of \mathbb{F}_{q} defined by

$$
e_{q}(\alpha)=\exp \left(\frac{2 \pi i \operatorname{Tr}_{q}(\alpha)}{p}\right) \quad \text { for all } \alpha \text { in } \mathbb{F}_{q} .
$$

Let $\mathbf{A}=\mathbb{F}_{q}[T]$ be the polynomial ring in T over \mathbb{F}_{q} and let $\mathrm{K}_{\infty}=$ $\mathbb{F}_{q}((1 / T))$ denote the completion field of the rational function field $\mathbb{F}_{q}(T)$ at the infinite place $1 / T$; in other words, every $a \in \mathrm{~K}_{\infty} \backslash\{0\}$ can be expressed as

$$
a=\sum_{i=-\infty}^{d} c_{i} T^{i},
$$

where $c_{i} \in \mathbb{F}_{q}$ and $c_{d} \neq 0$. The degree and absolute value of a are defined by $\operatorname{deg} a=d$ and $|a|=q^{d}$. The residue of a at the infinite place is denoted by $\operatorname{res}_{\infty} a=c_{-1}$. The polynomial exponential map $E: \mathrm{K}_{\infty} \rightarrow \mathbb{C}^{\times}$is defined by

$$
E(a)=e_{q}\left(\operatorname{res}_{\infty} a\right) \quad \text { for all } a \text { in } \mathrm{K}_{\infty} .
$$

Let $Q \in \mathbf{A}$. For any multiplicative character χ of $\mathbf{A} / Q \mathbf{A}$, the polynomial Gauss sum of χ is defined by

$$
\tau(\chi)=\sum_{[f] \in(\mathbf{A} / Q \mathbf{A})^{\times}} \chi([f]) E\left(\frac{f}{Q}\right) .
$$

It is well-known that for any primitive multiplicative character χ of $\mathbf{A} / Q \mathbf{A}$, we have

$$
|\tau(\chi)|=|Q|^{1 / 2}
$$

and there is no explicit method to evaluate $\epsilon(\tau)$, the argument of $\tau(\chi)$. In this paper, however, we determine $\epsilon(\tau)$ in the case when $Q=P^{n}(n \geq 2)$ for any monic irreducible polynomial P in \mathbf{A}. It deserves to be mentioned that while the multiplicative group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$with p an odd prime is always cyclic, the multiplicative group $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$with $n \geq 2$ is not. This makes finding the explicit value of $\tau(\chi)$ more difficult. Now, we give a brief account of the main result of this paper:

Main result. If P is a monic irreducible polynomial in \mathbf{A} and χ is a multiplicative character of $\mathbf{A} / P^{n} \mathbf{A}(n \geq 2)$, then there exists a specific polynomial a (depending on χ) with $P \nmid a$ and $\operatorname{deg} a<(n / 2) \operatorname{deg} P$ such that

$$
\tau(\chi)= \begin{cases}0 & \text { if } \chi \text { is not primitive } \\ |P|^{n / 2} \chi(-a) & \text { if } \chi \text { is primitive and } n \text { is even }, \\ |P|^{n / 2} \chi(-a) \epsilon_{4 p} & \text { if } \chi \text { is primitive and } n \text { is odd }\end{cases}
$$

where $\epsilon_{4 p}$ is a $4 p$ th root of unity.

From the main result, when $n \geq 2, \epsilon(\tau)$ is a root of unity if and only if χ is primitive. For the remaining case $n=1$, a criterion for $\epsilon(\tau)$ being a root of unity can be given by the results of Evans [2] and Yang-Zheng [9], since $\mathbf{A} / P \mathbf{A} \cong \mathbb{F}_{q^{d}}$, where $d=\operatorname{deg} P$: when $n=1$, the quantity $\epsilon(\tau)$ is a root of unity if and only if

$$
\frac{d r(p-1)}{2} \leq \min _{u}\left\{S\left(u \frac{q^{d}-1}{f}\right)\right\}
$$

where f is the order of χ, u runs from 1 to f and is coprime to f, and for every positive integer $a<q^{d}, S(a)$ is the sum of the digits appearing in the p-adic representation of a; in other words,

$$
S(a)=\sum_{j=0}^{d r-1} a_{j} \quad \text { for } a=\sum_{j=0}^{d r-1} a_{j} p^{j} \quad \text { with } 0 \leq a_{j}<p
$$

2. Auxiliary lemmas. Throughout this paper, let $n \geq 2$ be a positive integer and $m=\lfloor n / 2\rfloor$, the greatest integer less than or equal to $n / 2$. Let P be a monic irreducible polynomial in \mathbf{A}, and let $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$denote the unit group of the residue class ring $\mathbf{A} / P^{n} \mathbf{A}$.

We introduce two types of special subgroups of $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$:

$$
\begin{aligned}
K_{m} & :=\left\{\left[1+f P^{n-m}\right] \mid \operatorname{deg} f<m \operatorname{deg} P\right\} \\
H_{m} & :=\left\{\left[1+f P^{m}+g P^{2 m}\right] \mid \operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} P\right\} \quad(\text { only for odd } n)
\end{aligned}
$$

Note that K_{m} is isomorphic to the additive group $\mathbf{A} / P^{m} \mathbf{A}$. The multiplicative identity

$$
\begin{aligned}
& {\left[1+f_{1} P^{m}+g_{1} P^{2 m}\right]\left[1+f_{2} P^{m}+g_{2} P^{2 m}\right]} \\
& \quad=\left[1+\left(f_{1}+f_{2}\right) P^{m}+\left(g_{1}+f_{1} f_{2}+g_{2}\right) P^{2 m}\right]
\end{aligned}
$$

proves that H_{m} is indeed a subgroup of $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$.
In addition, we study the character groups $\widehat{\mathbf{A} / P^{m}} \mathbf{A}, \widehat{K_{m}}$, and $\widehat{H_{m}}$ of $\mathbf{A} / P^{m} \mathbf{A}, K_{m}$, and H_{m}, respectively. For any a in \mathbf{A}, let $\psi_{a}: \mathbf{A} / P^{m} \mathbf{A} \rightarrow \mathbb{C}^{\times}$ be defined by

$$
\begin{equation*}
\psi_{a}([f])=E\left(\frac{a f}{P^{m}}\right) \tag{2.1}
\end{equation*}
$$

This is an additive character of $\mathbf{A} / P^{m} \mathbf{A}$, and

$$
\widehat{\mathbf{A} / P^{m}} \mathbf{A}=\left\{\psi_{a} \mid a \in \mathbf{A}, \operatorname{deg} a<m \operatorname{deg} P\right\}
$$

Further,

$$
\begin{equation*}
\psi_{a_{1}} \psi_{a_{2}}=\psi_{a_{1}+a_{2}} \tag{2.2}
\end{equation*}
$$

for all a_{1} and a_{2} in \mathbf{A} with $\operatorname{deg} a_{1}, \operatorname{deg} a_{2}<m \operatorname{deg} P$, and

$$
\sum_{\operatorname{deg} f<m \operatorname{deg} P} \psi_{a}([f])= \begin{cases}\left|P^{m}\right| & \text { if } a=0 \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

For the group K_{m}, let $\Psi_{a}: K_{m} \rightarrow \mathbb{C}^{\times}$be the multiplicative character defined by

$$
\begin{equation*}
\Psi_{a}\left(\left[1+f P^{n-m}\right]\right)=\psi_{a}([f]) \tag{2.4}
\end{equation*}
$$

for all f in \mathbf{A} with $\operatorname{deg} f<m \operatorname{deg} P$. Since K_{m} is isomorphic to the additive group $\mathbf{A} / P^{m} \mathbf{A}$, the character group $\widehat{K_{m}}$ is

$$
\begin{equation*}
\widehat{K_{m}}=\left\{\Psi_{a} \mid a \in \mathbf{A}, \operatorname{deg} a<m \operatorname{deg} P\right\} . \tag{2.5}
\end{equation*}
$$

When n is an odd integer, $n=2 m+1$, since q is odd, for any b and c in \mathbf{A}, we can define the function $\Psi_{b, c}: H_{m} \rightarrow \mathbb{C}^{\times}$by

$$
\begin{equation*}
\Psi_{b, c}\left(\left[1+f P^{m}+g P^{2 m}\right]\right)=E\left(\frac{b f+c g-\frac{1}{2} c f^{2}}{P}\right) . \tag{2.6}
\end{equation*}
$$

Then we have the following lemma.
Lemma 2.1. If $n \geq 2$ is an odd integer, i.e., $n=2 m+1$, then the group $\widehat{H_{m}}$ of the multiplicative characters of the subgroup H_{m} is

$$
\widehat{H_{m}}=\left\{\Psi_{b, c} \mid b, c \in \mathbf{A}, \operatorname{deg} b, \operatorname{deg} c<\operatorname{deg} P\right\}
$$

Proof. It is not difficult to check that $\Psi_{b, c}$ is a multiplicative character of H_{m}. Further, we prove that if $b_{1} \not \equiv b_{2}$ or $c_{1} \not \equiv c_{2}(\bmod P)$, then $\Psi_{b_{1}, c_{1}} \neq$ $\Psi_{b_{2}, c_{2}}$. If $\Psi_{b_{1}, c_{1}}=\Psi_{b_{2}, c_{2}}$ for some b_{1}, b_{2} and c_{1}, c_{2} in \mathbf{A}, then

$$
\Psi_{b_{1}, c_{1}}\left(\left[1+f P^{m}+g P^{2 m}\right]\right)=\Psi_{b_{2}, c_{2}}\left(\left[1+f P^{m}+g P^{2 m}\right]\right)
$$

for all polynomials f and g with $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} P$. Taking $f=0$, we have $\Psi_{b_{1}, c_{1}}\left(\left[1+g P^{2 m}\right]\right)=\Psi_{b_{2}, c_{2}}\left(\left[1+g P^{2 m}\right]\right)$ for all g with $\operatorname{deg} g<\operatorname{deg} P$, that is,

$$
E\left(\frac{c_{1} g}{P}\right)=E\left(\frac{c_{2} g}{P}\right)
$$

This implies that

$$
E\left(\frac{\left(c_{1}-c_{2}\right) g}{P}\right)=1
$$

for all g with $\operatorname{deg} g<\operatorname{deg} P$. Hence, $c_{1} \equiv c_{2}(\bmod P)$. Moreover, taking $g=0$, we get $\Psi_{b_{1}, c_{1}}\left(\left[1+f P^{m}\right]\right)=\Psi_{b_{2}, c_{2}}\left(\left[1+f P^{m}\right]\right)$ for all f with $\operatorname{deg} f<\operatorname{deg} P$, that is,

$$
E\left(\frac{b_{1} f-\frac{1}{2} c_{1} f^{2}}{P}\right)=E\left(\frac{b_{2} f-\frac{1}{2} c_{2} f^{2}}{P}\right)
$$

It follows that

$$
E\left(\frac{\left(b_{1}-b_{2}\right) f-\frac{1}{2}\left(c_{1}-c_{2}\right) f^{2}}{P}\right)=1
$$

for all f with $\operatorname{deg} f<\operatorname{deg} P$. Since we know that $c_{1} \equiv c_{2}(\bmod P)$, the above is equivalent to

$$
E\left(\frac{\left(b_{1}-b_{2}\right) f}{P}\right)=1
$$

for all f with $\operatorname{deg} f<\operatorname{deg} P$. Hence, $b_{1} \equiv b_{2}(\bmod P)$. Thus, we proved that $\Psi_{b_{1}, c_{1}} \neq \Psi_{b_{2}, c_{2}}$ if $b_{1} \not \equiv b_{2}(\bmod P)$ or $c_{1} \not \equiv c_{2}(\bmod P)$.

Finally, since the cardinality of $\widehat{H_{m}}$ is

$$
\left|\widehat{H_{m}}\right|=\left|H_{m}\right|=|P|^{2}
$$

and the number of characters $\Psi_{b, c}$ with $\operatorname{deg} b, \operatorname{deg} c<\operatorname{deg} P$ is also equal to $|P|^{2}$, the desired conclusion follows.
3. The arguments of polynomial Gauss sums. In this section, we prove our main result. Let the integer m, the subgroups K_{m}, H_{m}, and the characters $\psi_{a}, \Psi_{a}, \Psi_{b, c}$ be defined as in Section 2. Let $\left(\widehat{\mathbf{A} / P^{n} \mathbf{A}}\right)^{\times}$be the group of multiplicative characters χ of $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$. For convenience, we use $\chi(f)$ to represent the complex value $\chi([f])$. Recall that a multiplicative character χ of $\mathbf{A} / P^{n} \mathbf{A}$ is called primitive if χ does not factor through $\left(\mathbf{A} / P^{k} \mathbf{A}\right)^{\times}$ for any integer k with $0 \leq k<n$.

Consider the restriction $\left.\chi\right|_{K_{m}}$ of the multiplicative character χ to the subgroup K_{m}. Since $\left.\chi\right|_{K_{m}}$ is a multiplicative character of K_{m}, by (2.5) there exists a unique polynomial a in \mathbf{A} with $\operatorname{deg} a<m \operatorname{deg} P$ such that $\left.\chi\right|_{K_{m}}=\Psi_{a}$, that is,
(3.1) $\quad \chi\left(1+f P^{n-m}\right)=\left.\chi\right|_{K_{m}}\left(1+f P^{n-m}\right)=\Psi_{a}\left(\left[1+f P^{n-m}\right]\right)=\psi_{a}([f])$
for all f in \mathbf{A} with $\operatorname{deg} f<m \operatorname{deg} P$. Moreover, if P divides a then χ factors through $\left(\mathbf{A} / P^{n-1} \mathbf{A}\right)^{\times}$. Conversely, if χ is not primitive, then χ factors through $\left(\mathbf{A} / P^{n-1} \mathbf{A}\right)^{\times}$. Hence,

$$
\begin{equation*}
\chi \text { is primitive if and only if } P \nmid a \text {. } \tag{3.2}
\end{equation*}
$$

When n is odd, i.e., $n=2 m+1$, consider the restriction $\left.\chi\right|_{H_{m}}$. Since $\left.\chi\right|_{H_{m}}$ is a multiplicative character of H_{m}, by Lemma 2.1 there exist unique polynomials b and c in \mathbf{A} with $\operatorname{deg} b, \operatorname{deg} c<\operatorname{deg} P$ such that $\left.\chi\right|_{H_{m}}=\Psi_{b, c}$, that is,

$$
\chi\left(1+f P^{m}+g P^{2 m}\right)=\left.\chi\right|_{H_{m}}\left(1+f P^{m}+g P^{2 m}\right)=\Psi_{b, c}\left(\left[1+f P^{m}+g P^{2 m}\right]\right)
$$

for all f and g in A with $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} P$. Moreover, if $c=0$ then χ factors through $\left(\mathbf{A} / P^{n-1} \mathbf{A}\right)^{\times}$. Hence, if χ is primitive then $c \neq 0$.

To abbreviate our proof of the main theorem, we prove Lemma 3.1 below first. In the proof of this lemma, we use a result of Hsu [4] saying that when
P is a monic polynomial in \mathbf{A}, then

$$
\begin{equation*}
\sum_{\operatorname{deg} f<\operatorname{deg} P} E\left(\frac{f^{2}}{P}\right)=|P|^{1 / 2} i^{(|P|-1)^{2} / 4} \tag{3.3}
\end{equation*}
$$

Lemma 3.1. Let $n \geq 2$ be an odd integer, i.e., $n=2 m+1$, and let χ be a primitive multiplicative character of $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$. If $\left.\chi\right|_{H_{m}}=\Psi_{b, c}$ for some b, c in \mathbf{A} with $\operatorname{deg} b, \operatorname{deg} c<\operatorname{deg} P$, then $c \neq 0$ and

$$
\sum_{\operatorname{deg} f<\operatorname{deg} P} \chi\left(1+f P^{m}\right)=|P|^{1 / 2} E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right)\left(\frac{-2 c}{P}\right) i^{(|P|-1)^{2} / 4}
$$

where c^{\prime} denotes the polynomial in \mathbf{A} such that $\operatorname{deg} c^{\prime}<\operatorname{deg} P, c^{\prime} c \equiv 1$ $(\bmod P)$, and $\left(\frac{-2 c}{P}\right)$ is the polynomial quadratic residue symbol.

Proof. Since χ is primitive, we know that $c \neq 0$. Since $\left.\chi\right|_{H_{m}}=\Psi_{b, c}$ and q is odd, from (2.6) we have

$$
\begin{aligned}
\sum_{\operatorname{deg} f<\operatorname{deg} P} \chi\left(1+f P^{m}\right) & =\sum_{\operatorname{deg} f<\operatorname{deg} P} \Psi_{b, c}\left(\left[1+f P^{m}\right]\right) \\
& =\sum_{\operatorname{deg} f<\operatorname{deg} P} E\left(\frac{b f-\frac{1}{2} c f^{2}}{P}\right) \\
& =E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right) \sum_{\operatorname{deg} f<\operatorname{deg} P} E\left(\frac{-\frac{1}{2} c\left(f-b c^{\prime}\right)^{2}}{P}\right) \\
& =E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right) \sum_{\operatorname{deg} f<\operatorname{deg} P} E\left(\frac{-\frac{1}{2} c f^{2}}{P}\right)
\end{aligned}
$$

Furthermore, since $-\frac{1}{2} c \neq 0$, we have

$$
\begin{aligned}
\sum_{\operatorname{deg} f<\operatorname{deg} P} \chi\left(1+f P^{m}\right) & =E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right) \sum_{\operatorname{deg} f<\operatorname{deg} P}\left(\frac{-\frac{1}{2} c}{P}\right) E\left(\frac{f^{2}}{P}\right) \\
& =E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right)\left(\frac{-\frac{1}{2} c}{P}\right) \sum_{\operatorname{deg} f<\operatorname{deg} P} E\left(\frac{f^{2}}{P}\right)
\end{aligned}
$$

It follows directly from (3.3) that

$$
\begin{aligned}
\sum_{\operatorname{deg} f<\operatorname{deg} P} \chi\left(1+f P^{m}\right) & =E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right)\left(\frac{-\frac{1}{2} c}{P}\right) \cdot|P|^{1 / 2} i^{(|P|-1)^{2} / 4} \\
& =|P|^{1 / 2} E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right)\left(\frac{-2 c}{P}\right) i^{(|P|-1)^{2} / 4}
\end{aligned}
$$

The formula for the argument of $\tau(\chi)$ is given in

Theorem 3.2. Let $n \geq 2$ be an integer, let χ be a multiplicative character of $\mathbf{A} / P^{n} \mathbf{A}$, and let $m=\lfloor n / 2\rfloor$. Let a be the polynomial in \mathbf{A} with $\operatorname{deg} a<m \operatorname{deg} P$ such that $\left.\chi\right|_{K_{m}}=\Psi_{a}$. Then
(1) if χ is not primitive, then $\tau(\chi)=0$;
(2) if χ is primitive and n is even, then $P \nmid a$ and

$$
\tau(\chi)=|P|^{n / 2} \chi(-a)
$$

(3) if χ is primitive, n is odd, and $\left.\chi\right|_{H_{m}}=\Psi_{b, c}$ with b, c in \mathbf{A} and $\operatorname{deg} b, \operatorname{deg} c<\operatorname{deg} P$, then $P \nmid a, c \neq 0$, and

$$
\tau(\chi)=|P|^{n / 2} \chi(-a) E\left(\frac{\frac{1}{2} b^{2} c^{\prime}}{P}\right)\left(\frac{-2 c}{P}\right) i^{(|P|-1)^{2} / 4}
$$

Proof. Every element $[f]$ in $\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}$can be uniquely represented as

$$
[g]\left[1+h P^{m}\right],
$$

where $g \in \mathbf{A}$ with $\operatorname{deg} g<m \operatorname{deg} P, P \nmid g$, and $h \in \mathbf{A}$ with $\operatorname{deg} h<$ $(n-m) \operatorname{deg} P$. From the definition of the polynomial Gauss sum, we have

$$
\begin{aligned}
\tau(\chi) & =\sum_{[f] \in\left(\mathbf{A} / P^{n} \mathbf{A}\right)^{\times}} \chi(f) E\left(\frac{f}{P^{n}}\right) \\
& =\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g \operatorname{deg} h<(n-m) \operatorname{deg} P} \chi\left(g\left(1+h P^{m}\right)\right) E\left(\frac{g\left(1+h P^{m}\right)}{P^{n}}\right) .
\end{aligned}
$$

Since χ is a multiplicative character of $\mathbf{A} / P^{n} \mathbf{A}$, we have

$$
\begin{equation*}
\chi\left(g\left(1+h P^{m}\right)\right)=\chi(g) \chi\left(1+h P^{m}\right) \tag{3.4}
\end{equation*}
$$

Applying the definition of $\operatorname{res}_{\infty}$ and $\operatorname{deg} g<m \operatorname{deg} P$, we get $E\left(\frac{g}{P^{n}}\right)=1$ and

$$
\begin{align*}
E\left(\frac{g\left(1+h P^{m}\right)}{P^{n}}\right) & =E\left(\frac{g+g h P^{m}}{P^{n}}\right) \tag{3.5}\\
& =E\left(\frac{g}{P^{n}}\right) E\left(\frac{g h P^{m}}{P^{n}}\right)=E\left(\frac{g h}{P^{n-m}}\right) .
\end{align*}
$$

Combining (3.4) and (3.5) yields

$$
\begin{equation*}
\tau(\chi)=\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h<(n-m) \operatorname{deg} P} \chi\left(1+h P^{m}\right) E\left(\frac{g h}{P^{n-m}}\right) . \tag{3.6}
\end{equation*}
$$

When n is even, $n=2 m$, we have

$$
\tau(\chi)=\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h<m \operatorname{deg} P} \chi\left(1+h P^{n-m}\right) E\left(\frac{g h}{P^{m}}\right) .
$$

Applying (3.1), 2.1), and (2.2) to the above expression, we get

$$
\begin{aligned}
\tau(\chi) & =\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h<m \operatorname{deg} P} \psi_{a}([h]) \psi_{g}([h]) \\
& =\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h<m \operatorname{deg} P} \psi_{a+g}([h]) .
\end{aligned}
$$

According to 2.3, we have

$$
\sum_{\operatorname{deg} h<m \operatorname{deg} P} \psi_{a+g}([h])= \begin{cases}\left|P^{m}\right| & \text { if } g=-a \\ 0 & \text { otherwise }\end{cases}
$$

From (3.2),

$$
\tau(\chi)= \begin{cases}0 & \text { if } \chi \text { is not primitive } \\ |P|^{m} \chi(-a) & \text { if } \chi \text { is primitive }\end{cases}
$$

When n is odd, $n=2 m+1$, we write h in 3.6 as $h_{0}+h_{1} P$, where $h_{0}, h_{1} \in \mathbf{A}$ with $\operatorname{deg} h_{0}<\operatorname{deg} P$ and $\operatorname{deg} h_{1}<m \operatorname{deg} P$. Hence, (3.6) becomes

$$
\begin{aligned}
\tau(\chi)= & \sum_{\substack{\operatorname{deg} g<m \operatorname{deg} P \\
P \nmid g}} \chi(g) \sum_{\substack{\operatorname{deg} h_{0}<\operatorname{deg} P \\
\operatorname{deg} h_{1}<m \operatorname{deg} P}} \chi\left(1+h_{0} P^{m}+h_{1} P^{m+1}\right) E\left(\frac{g\left(h_{0}+h_{1} P\right)}{P^{n-m}}\right) \\
= & \sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h_{1}<m \operatorname{deg} P} \chi\left(1+h_{1} P^{m+1}\right) E\left(\frac{g h_{1}}{P^{n-m-1}}\right) \\
& \times \sum_{\operatorname{deg} h_{0}<\operatorname{deg} P} \chi\left(1+h_{0} P^{m}\right) E\left(\frac{g h_{0}}{P^{n-m}}\right) .
\end{aligned}
$$

Since

$$
\operatorname{deg} g h_{0}=\operatorname{deg} g+\operatorname{deg} h_{0} \leq(n-m) \operatorname{deg} P-2
$$

we have $E\left(\frac{g h_{0}}{P^{n-m}}\right)=1$ and so

$$
\begin{aligned}
\tau(\chi)=\sum_{\operatorname{deg} g<m \operatorname{deg} P, P \nmid g} \chi(g) \sum_{\operatorname{deg} h_{1}<m \operatorname{deg} P} \chi(1 & \left.+h_{1} P^{n-m}\right) E\left(\frac{g h_{1}}{P^{m}}\right) \\
& \times \sum_{\operatorname{deg} h_{0}<\operatorname{deg} P} \chi\left(1+h_{0} P^{m}\right) .
\end{aligned}
$$

Similar to the discussion in the case of even n, we obtain

$$
\tau(\chi)= \begin{cases}0 & \text { if } \chi \text { is not primitive } \\ |P|^{m} \chi(-a) \sum_{\operatorname{deg} h_{0}<\operatorname{deg} P} \chi\left(1+h_{0} P^{m}\right) & \text { if } \chi \text { is primitive }\end{cases}
$$

and Lemma 3.1 yields

$$
\tau(\chi)= \begin{cases}0 & \text { if } \chi \text { is not primitive } \\ |P|^{n / 2} \chi(-a) E\left(\frac{\frac{1}{2} b^{2} c}{P}\right)\left(\frac{-2 c}{P}\right) i^{(|P|-1)^{2} / 4} & \text { if } \chi \text { is primitive }\end{cases}
$$

References

[1] S. Chowla, On Gaussian sums, Proc. Nat. Acad. Sci. USA 48 (1962), 1127-1128.
[2] R. J. Evans, Generalizations of a theorem of Chowla on Gaussian sums, Houston J. Math. 3 (1977), 343-349.
[3] T. Funakura, A generalization of the Chowla-Mordell theorem on Gaussian sums, Bull. London Math. Soc. 24 (1992), 424-430.
[4] C.-N. Hsu, On polynomial reciprocity law, J. Number Theory 101 (2003), 13-31.
[5] J.-L. Mauclaire, Sommes de Gauss modulo p ${ }^{\alpha}$. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 109-112.
[6] -, Sommes de Gauss modulo p^{α}. II, ibid., 161-163.
[7] L. J. Mordell, On a cyclotomic resolvent, Arch. Math. (Basel) 13 (1962), 486-487.
[8] R. Odoni, On Gauss sums $\left(\bmod p^{n}\right), n \geq 2$, Bull. London Math. Soc. 5 (1973), 325-327.
[9] J. Yang and W. Zheng, On a theorem of Chowla, J. Number Theory 106 (2004), 50-55.

Chih-Nung Hsu
Department of Mathematics
National Taiwan Normal University
88 Sec. 4, Ting-Chou Road
Taipei, Taiwan, R.O.C.
E-mail: maco@math.ntnu.edu.tw

Ting-Ting Nan
Institute of Mathematics
Academia Sinica
Nankang, Taipei, Taiwan 11529, R.O.C.
E-mail: ayanami-nan@math.ntnu.edu.tw

