On polynomial Gauss sums $(mod P^n), n \ge 2$

by

CHIH-NUNG HSU and TING-TING NAN (Taipei)

Dedicated to Professor Jing Yu on his 60th birthday

1. Introduction. Let N be a positive integer and let χ be a primitive multiplicative character (mod N). It is known that the absolute value of the classical Gauss sum

$$\tau(\chi) = \sum_{n=1}^{N-1} \chi(n) \exp\left(\frac{2\pi i n}{N}\right)$$

is $N^{1/2}$. However, it is difficult to determine the argument of this sum. In 1962, C. Chowla [1] and L. J. Mordell [7] independently proved that when N is a prime number, the argument is a root of unity if and only if χ is real. When $N = p^r$ is an odd prime power with $r \geq 2$, R. Odoni [8] gave explicit formulas for the argument of $\tau(\chi)$ by using *p*-adic analysis. An important role in finding the argument of $\tau(\chi)$ is played by the fact that the group $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic when *p* is an odd prime. Finally, T. Funakura [3] computed the classical Gauss sums for all integer *n* and, further, gave a criterion for the argument of a classical Gauss sum to be a root of unity. Moreover, in 1983, J.-L. Mauclaire [5] provided another elementary proof giving the argument of $\tau(\chi)$ when *p* is an odd prime. Furthermore, he completed the remaining case of the prime number 2 in [6].

In this paper, we generalize the classical Gauss sums to polynomial Gauss sums in the polynomial ring over the finite field \mathbb{F}_q of q elements. For qodd, we explicitly give the argument of a polynomial Gauss sum. We are then able to generalize the classical Chowla–Mordell theorem to polynomial Gauss sums, providing a necessary and sufficient condition for the argument of a polynomial Gauss sum to be a root of unity.

Throughout this paper, p is an odd prime and $q = p^r$ is a power of p. Let \mathbb{F}_q be the finite field of q elements of characteristic p and let $\operatorname{Tr}_q : \mathbb{F}_q \to \mathbb{F}_p$

²⁰¹⁰ Mathematics Subject Classification: Primary 11L05; Secondary 11T55. Key words and phrases: Gauss sum, polynomial ring.

be the trace map onto \mathbb{F}_p (identified with $\mathbb{Z}/p\mathbb{Z}$). Let $e_q : \mathbb{F}_q \to \mathbb{C}^{\times}$ be the standard additive character of \mathbb{F}_q defined by

$$e_q(\alpha) = \exp\left(\frac{2\pi i \operatorname{Tr}_q(\alpha)}{p}\right) \quad \text{for all } \alpha \text{ in } \mathbb{F}_q.$$

Let $\mathbf{A} = \mathbb{F}_q[T]$ be the polynomial ring in T over \mathbb{F}_q and let $\mathbf{K}_{\infty} = \mathbb{F}_q((1/T))$ denote the completion field of the rational function field $\mathbb{F}_q(T)$ at the infinite place 1/T; in other words, every $a \in \mathbf{K}_{\infty} \setminus \{0\}$ can be expressed as

$$a = \sum_{i=-\infty}^{d} c_i T^i,$$

where $c_i \in \mathbb{F}_q$ and $c_d \neq 0$. The degree and absolute value of a are defined by deg a = d and $|a| = q^d$. The residue of a at the infinite place is denoted by $\operatorname{res}_{\infty} a = c_{-1}$. The polynomial exponential map $E : \mathrm{K}_{\infty} \to \mathbb{C}^{\times}$ is defined by

$$E(a) = e_q(\operatorname{res}_{\infty} a)$$
 for all a in K_{∞} .

Let $Q \in \mathbf{A}$. For any multiplicative character χ of $\mathbf{A}/Q\mathbf{A}$, the polynomial Gauss sum of χ is defined by

$$\tau(\chi) = \sum_{[f] \in (\mathbf{A}/Q\mathbf{A})^{\times}} \chi([f]) E\left(\frac{f}{Q}\right).$$

It is well-known that for any primitive multiplicative character χ of $\mathbf{A}/Q\mathbf{A}$, we have

$$|\tau(\chi)| = |Q|^{1/2},$$

and there is no explicit method to evaluate $\epsilon(\tau)$, the argument of $\tau(\chi)$. In this paper, however, we determine $\epsilon(\tau)$ in the case when $Q = P^n$ $(n \ge 2)$ for any monic irreducible polynomial P in **A**. It deserves to be mentioned that while the multiplicative group $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ with p an odd prime is always cyclic, the multiplicative group $(\mathbf{A}/P^n\mathbf{A})^{\times}$ with $n \ge 2$ is not. This makes finding the explicit value of $\tau(\chi)$ more difficult. Now, we give a brief account of the main result of this paper:

Main result. If P is a monic irreducible polynomial in \mathbf{A} and χ is a multiplicative character of $\mathbf{A}/P^n\mathbf{A}$ $(n \ge 2)$, then there exists a specific polynomial a (depending on χ) with $P \nmid a$ and deg $a < (n/2) \deg P$ such that

$$\tau(\chi) = \begin{cases} 0 & \text{if } \chi \text{ is not primitive,} \\ |P|^{n/2}\chi(-a) & \text{if } \chi \text{ is primitive and } n \text{ is even,} \\ |P|^{n/2}\chi(-a)\epsilon_{4p} & \text{if } \chi \text{ is primitive and } n \text{ is odd,} \end{cases}$$

where ϵ_{4p} is a 4*p*th root of unity.

394

From the main result, when $n \geq 2$, $\epsilon(\tau)$ is a root of unity if and only if χ is primitive. For the remaining case n = 1, a criterion for $\epsilon(\tau)$ being a root of unity can be given by the results of Evans [2] and Yang–Zheng [9], since $\mathbf{A}/P\mathbf{A} \cong \mathbb{F}_{q^d}$, where $d = \deg P$: when n = 1, the quantity $\epsilon(\tau)$ is a root of unity if and only if

$$\frac{dr(p-1)}{2} \le \min_{u} \left\{ S\left(u \, \frac{q^d - 1}{f}\right) \right\}$$

where f is the order of χ , u runs from 1 to f and is coprime to f, and for every positive integer $a < q^d$, S(a) is the sum of the digits appearing in the p-adic representation of a; in other words,

$$S(a) = \sum_{j=0}^{dr-1} a_j$$
 for $a = \sum_{j=0}^{dr-1} a_j p^j$ with $0 \le a_j < p$.

2. Auxiliary lemmas. Throughout this paper, let $n \ge 2$ be a positive integer and $m = \lfloor n/2 \rfloor$, the greatest integer less than or equal to n/2. Let P be a monic irreducible polynomial in \mathbf{A} , and let $(\mathbf{A}/P^n\mathbf{A})^{\times}$ denote the unit group of the residue class ring $\mathbf{A}/P^n\mathbf{A}$.

We introduce two types of special subgroups of $(\mathbf{A}/P^n\mathbf{A})^{\times}$:

$$K_m := \{ [1 + fP^{n-m}] \mid \deg f < m \deg P \}, H_m := \{ [1 + fP^m + gP^{2m}] \mid \deg f, \deg g < \deg P \} \quad \text{(only for odd } n).$$

Note that K_m is isomorphic to the additive group $\mathbf{A}/P^m\mathbf{A}$. The multiplicative identity

$$[1 + f_1 P^m + g_1 P^{2m}][1 + f_2 P^m + g_2 P^{2m}]$$

= $[1 + (f_1 + f_2)P^m + (g_1 + f_1 f_2 + g_2)P^{2m}]$

proves that H_m is indeed a subgroup of $(\mathbf{A}/P^n\mathbf{A})^{\times}$.

In addition, we study the character groups $\widehat{\mathbf{A}/P^m}\mathbf{A}$, $\widehat{K_m}$, and $\widehat{H_m}$ of $\mathbf{A}/P^m\mathbf{A}$, K_m , and H_m , respectively. For any a in \mathbf{A} , let $\psi_a : \mathbf{A}/P^m\mathbf{A} \to \mathbb{C}^{\times}$ be defined by

(2.1)
$$\psi_a([f]) = E\left(\frac{af}{P^m}\right).$$

This is an additive character of $\mathbf{A}/P^m\mathbf{A}$, and

$$\mathbf{A}/P^{m}\mathbf{A} = \{\psi_{a} \mid a \in \mathbf{A}, \deg a < m \deg P\}.$$

Further,

(2.2)
$$\psi_{a_1}\psi_{a_2} = \psi_{a_1+a_2}$$

for all a_1 and a_2 in **A** with deg a_1 , deg $a_2 < m \deg P$, and

(2.3)
$$\sum_{\deg f < m \deg P} \psi_a([f]) = \begin{cases} |P^m| & \text{if } a = 0, \\ 0 & \text{otherwise} \end{cases}$$

For the group K_m , let $\Psi_a : K_m \to \mathbb{C}^{\times}$ be the multiplicative character defined by

(2.4)
$$\Psi_a([1+fP^{n-m}]) = \psi_a([f])$$

for all f in **A** with deg $f < m \deg P$. Since K_m is isomorphic to the additive group $\mathbf{A}/P^m\mathbf{A}$, the character group $\widehat{K_m}$ is

(2.5)
$$\widehat{K_m} = \{ \Psi_a \mid a \in \mathbf{A}, \deg a < m \deg P \}.$$

When n is an odd integer, n = 2m + 1, since q is odd, for any b and c in **A**, we can define the function $\Psi_{b,c}: H_m \to \mathbb{C}^{\times}$ by

(2.6)
$$\Psi_{b,c}([1+fP^m+gP^{2m}]) = E\left(\frac{bf+cg-\frac{1}{2}cf^2}{P}\right).$$

Then we have the following lemma.

LEMMA 2.1. If $n \ge 2$ is an odd integer, i.e., n = 2m + 1, then the group $\widehat{H_m}$ of the multiplicative characters of the subgroup H_m is

$$H_m = \{\Psi_{b,c} \mid b, c \in \mathbf{A}, \deg b, \deg c < \deg P\}$$

Proof. It is not difficult to check that $\Psi_{b,c}$ is a multiplicative character of H_m . Further, we prove that if $b_1 \not\equiv b_2$ or $c_1 \not\equiv c_2 \pmod{P}$, then $\Psi_{b_1,c_1} \neq \Psi_{b_2,c_2}$. If $\Psi_{b_1,c_1} = \Psi_{b_2,c_2}$ for some b_1, b_2 and c_1, c_2 in **A**, then

$$\Psi_{b_1,c_1}([1+fP^m+gP^{2m}]) = \Psi_{b_2,c_2}([1+fP^m+gP^{2m}])$$

for all polynomials f and g with deg f, deg $g < \deg P$. Taking f = 0, we have $\Psi_{b_1,c_1}([1+gP^{2m}]) = \Psi_{b_2,c_2}([1+gP^{2m}])$ for all g with deg $g < \deg P$, that is,

$$E\left(\frac{c_1g}{P}\right) = E\left(\frac{c_2g}{P}\right).$$

This implies that

$$E\left(\frac{(c_1-c_2)g}{P}\right) = 1$$

for all g with deg $g < \deg P$. Hence, $c_1 \equiv c_2 \pmod{P}$. Moreover, taking g = 0, we get $\Psi_{b_1,c_1}([1 + fP^m]) = \Psi_{b_2,c_2}([1 + fP^m])$ for all f with deg $f < \deg P$, that is,

$$E\left(\frac{b_{1}f - \frac{1}{2}c_{1}f^{2}}{P}\right) = E\left(\frac{b_{2}f - \frac{1}{2}c_{2}f^{2}}{P}\right).$$

It follows that

$$E\left(\frac{(b_1 - b_2)f - \frac{1}{2}(c_1 - c_2)f^2}{P}\right) = 1$$

396

for all f with deg $f < \deg P$. Since we know that $c_1 \equiv c_2 \pmod{P}$, the above is equivalent to

$$E\left(\frac{(b_1 - b_2)f}{P}\right) = 1$$

for all f with deg $f < \deg P$. Hence, $b_1 \equiv b_2 \pmod{P}$. Thus, we proved that $\Psi_{b_1,c_1} \neq \Psi_{b_2,c_2}$ if $b_1 \not\equiv b_2 \pmod{P}$ or $c_1 \not\equiv c_2 \pmod{P}$.

Finally, since the cardinality of H_m is

$$|\widehat{H_m}| = |H_m| = |P|^2$$

and the number of characters $\Psi_{b,c}$ with deg b, deg $c < \deg P$ is also equal to $|P|^2$, the desired conclusion follows.

3. The arguments of polynomial Gauss sums. In this section, we prove our main result. Let the integer m, the subgroups K_m, H_m , and the characters $\psi_a, \Psi_a, \Psi_{b,c}$ be defined as in Section 2. Let $(\mathbf{A}/P^n\mathbf{A})^{\times}$ be the group of multiplicative characters χ of $(\mathbf{A}/P^n\mathbf{A})^{\times}$. For convenience, we use $\chi(f)$ to represent the complex value $\chi([f])$. Recall that a multiplicative character χ of $\mathbf{A}/P^n\mathbf{A}$ is called *primitive* if χ does not factor through $(\mathbf{A}/P^k\mathbf{A})^{\times}$ for any integer k with $0 \leq k < n$.

Consider the restriction $\chi|_{K_m}$ of the multiplicative character χ to the subgroup K_m . Since $\chi|_{K_m}$ is a multiplicative character of K_m , by (2.5) there exists a unique polynomial a in **A** with deg $a < m \deg P$ such that $\chi|_{K_m} = \Psi_a$, that is,

(3.1)
$$\chi(1+fP^{n-m}) = \chi|_{K_m}(1+fP^{n-m}) = \Psi_a([1+fP^{n-m}]) = \psi_a([f])$$

for all f in \mathbf{A} with deg $f < m \deg P$. Moreover, if P divides a then χ factors through $(\mathbf{A}/P^{n-1}\mathbf{A})^{\times}$. Conversely, if χ is not primitive, then χ factors through $(\mathbf{A}/P^{n-1}\mathbf{A})^{\times}$. Hence,

(3.2) χ is primitive if and only if $P \nmid a$.

When n is odd, i.e., n = 2m + 1, consider the restriction $\chi|_{H_m}$. Since $\chi|_{H_m}$ is a multiplicative character of H_m , by Lemma 2.1 there exist unique polynomials b and c in **A** with deg b, deg $c < \deg P$ such that $\chi|_{H_m} = \Psi_{b,c}$, that is,

$$\chi(1 + fP^m + gP^{2m}) = \chi|_{H_m}(1 + fP^m + gP^{2m}) = \Psi_{b,c}([1 + fP^m + gP^{2m}])$$

for all f and g in **A** with deg f, deg $g < \deg P$. Moreover, if c = 0 then χ factors through $(\mathbf{A}/P^{n-1}\mathbf{A})^{\times}$. Hence, if χ is primitive then $c \neq 0$.

To abbreviate our proof of the main theorem, we prove Lemma 3.1 below first. In the proof of this lemma, we use a result of Hsu [4] saying that when P is a monic polynomial in \mathbf{A} , then

(3.3)
$$\sum_{\deg f < \deg P} E\left(\frac{f^2}{P}\right) = |P|^{1/2} i^{(|P|-1)^2/4}$$

LEMMA 3.1. Let $n \geq 2$ be an odd integer, i.e., n = 2m + 1, and let χ be a primitive multiplicative character of $(\mathbf{A}/P^n\mathbf{A})^{\times}$. If $\chi|_{H_m} = \Psi_{b,c}$ for some b, c in \mathbf{A} with deg b, deg $c < \deg P$, then $c \neq 0$ and

$$\sum_{\substack{\text{eg } f < \text{deg } P}} \chi(1 + fP^m) = |P|^{1/2} E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \left(\frac{-2c}{P}\right) i^{(|P|-1)^2/4}$$

where c' denotes the polynomial in **A** such that $\deg c' < \deg P$, $c'c \equiv 1 \pmod{P}$, and $\left(\frac{-2c}{P}\right)$ is the polynomial quadratic residue symbol.

Proof. Since χ is primitive, we know that $c \neq 0$. Since $\chi|_{H_m} = \Psi_{b,c}$ and q is odd, from (2.6) we have

$$\sum_{\deg f < \deg P} \chi(1 + fP^m) = \sum_{\deg f < \deg P} \Psi_{b,c}([1 + fP^m])$$
$$= \sum_{\deg f < \deg P} E\left(\frac{bf - \frac{1}{2}cf^2}{P}\right)$$
$$= E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \sum_{\deg f < \deg P} E\left(\frac{-\frac{1}{2}c(f - bc')^2}{P}\right)$$
$$= E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \sum_{\deg f < \deg P} E\left(\frac{-\frac{1}{2}cf^2}{P}\right).$$

Furthermore, since $-\frac{1}{2}c \neq 0$, we have

$$\sum_{\deg f < \deg P} \chi(1 + fP^m) = E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \sum_{\deg f < \deg P} \left(\frac{-\frac{1}{2}c}{P}\right) E\left(\frac{f^2}{P}\right)$$
$$= E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \left(\frac{-\frac{1}{2}c}{P}\right) \sum_{\deg f < \deg P} E\left(\frac{f^2}{P}\right).$$

It follows directly from (3.3) that

$$\sum_{\deg f < \deg P} \chi(1 + fP^m) = E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \left(\frac{-\frac{1}{2}c}{P}\right) \cdot |P|^{1/2}i^{(|P|-1)^2/4}$$
$$= |P|^{1/2}E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \left(\frac{-2c}{P}\right)i^{(|P|-1)^2/4}.$$

The formula for the argument of $\tau(\chi)$ is given in

398

d

THEOREM 3.2. Let $n \geq 2$ be an integer, let χ be a multiplicative character of $\mathbf{A}/P^n\mathbf{A}$, and let $m = \lfloor n/2 \rfloor$. Let a be the polynomial in \mathbf{A} with deg $a < m \deg P$ such that $\chi|_{K_m} = \Psi_a$. Then

- (1) if χ is not primitive, then $\tau(\chi) = 0$;
- (2) if χ is primitive and n is even, then $P \nmid a$ and

$$\tau(\chi) = |P|^{n/2}\chi(-a);$$

(3) if χ is primitive, n is odd, and $\chi|_{H_m} = \Psi_{b,c}$ with b, c in \mathbf{A} and $\deg b, \deg c < \deg P$, then $P \nmid a, c \neq 0$, and

$$\tau(\chi) = |P|^{n/2} \chi(-a) E\left(\frac{\frac{1}{2}b^2c'}{P}\right) \left(\frac{-2c}{P}\right) i^{(|P|-1)^2/4}.$$

Proof. Every element [f] in $(\mathbf{A}/P^n\mathbf{A})^{\times}$ can be uniquely represented as

$$[g][1+hP^m],$$

where $g \in \mathbf{A}$ with deg $g < m \deg P$, $P \nmid g$, and $h \in \mathbf{A}$ with deg $h < (n-m) \deg P$. From the definition of the polynomial Gauss sum, we have

$$\begin{split} \tau(\chi) &= \sum_{[f] \in (\mathbf{A}/P^n \mathbf{A})^{\times}} \chi(f) E\left(\frac{f}{P^n}\right) \\ &= \sum_{\deg g < m \deg P, \, P \nmid g} \sum_{\deg h < (n-m) \deg P} \chi(g(1+hP^m)) E\left(\frac{g(1+hP^m)}{P^n}\right). \end{split}$$

Since χ is a multiplicative character of $\mathbf{A}/P^n\mathbf{A}$, we have

(3.4)
$$\chi(g(1+hP^m)) = \chi(g)\chi(1+hP^m)$$

Applying the definition of $\operatorname{res}_{\infty}$ and $\deg g < m \deg P$, we get $E\left(\frac{g}{P^n}\right) = 1$ and

(3.5)
$$E\left(\frac{g(1+hP^m)}{P^n}\right) = E\left(\frac{g+ghP^m}{P^n}\right)$$
$$= E\left(\frac{g}{P^n}\right)E\left(\frac{ghP^m}{P^n}\right) = E\left(\frac{gh}{P^{n-m}}\right)$$

Combining (3.4) and (3.5) yields

(3.6)
$$\tau(\chi) = \sum_{\deg g < m \deg P, P \nmid g} \chi(g) \sum_{\deg h < (n-m) \deg P} \chi(1+hP^m) E\left(\frac{gh}{P^{n-m}}\right).$$

When n is even, n = 2m, we have

$$\tau(\chi) = \sum_{\deg g < m \deg P, P \nmid g} \chi(g) \sum_{\deg h < m \deg P} \chi(1 + hP^{n-m}) E\left(\frac{gh}{P^m}\right).$$

Applying (3.1), (2.1), and (2.2) to the above expression, we get

$$\begin{split} \tau(\chi) &= \sum_{\deg g < m \deg P, \ P \nmid g} \chi(g) \sum_{\deg h < m \deg P} \psi_a([h]) \psi_g([h]) \\ &= \sum_{\deg g < m \deg P, \ P \nmid g} \chi(g) \sum_{\deg h < m \deg P} \psi_{a+g}([h]). \end{split}$$

According to (2.3), we have

$$\sum_{\deg h < m \deg P} \psi_{a+g}([h]) = \begin{cases} |P^m| & \text{if } g = -a, \\ 0 & \text{otherwise.} \end{cases}$$

From (3.2),

$$\tau(\chi) = \begin{cases} 0 & \text{if } \chi \text{ is not primitive,} \\ |P|^m \chi(-a) & \text{if } \chi \text{ is primitive.} \end{cases}$$

When n is odd, n = 2m + 1, we write h in (3.6) as $h_0 + h_1 P$, where $h_0, h_1 \in \mathbf{A}$ with deg $h_0 < \deg P$ and deg $h_1 < m \deg P$. Hence, (3.6) becomes

$$\begin{aligned} \tau(\chi) &= \sum_{\substack{\deg g < m \deg P \\ P \nmid g}} \chi(g) \sum_{\substack{\deg h_0 < \deg P \\ \deg h_1 < m \deg P}} \chi(1 + h_0 P^m + h_1 P^{m+1}) E\left(\frac{g(h_0 + h_1 P)}{P^{n-m}}\right) \\ &= \sum_{\substack{\deg g < m \deg P, P \nmid g}} \chi(g) \sum_{\substack{\deg h_1 < m \deg P}} \chi(1 + h_1 P^{m+1}) E\left(\frac{gh_1}{P^{n-m-1}}\right) \\ &\times \sum_{\substack{\deg h_0 < \deg P}} \chi(1 + h_0 P^m) E\left(\frac{gh_0}{P^{n-m}}\right). \end{aligned}$$

Since

$$\deg gh_0 = \deg g + \deg h_0 \le (n-m) \deg P - 2,$$

we have $E\left(\frac{gh_0}{P^{n-m}}\right) = 1$ and so

$$\tau(\chi) = \sum_{\deg g < m \deg P, P \nmid g} \chi(g) \sum_{\deg h_1 < m \deg P} \chi(1 + h_1 P^{n-m}) E\left(\frac{gh_1}{P^m}\right) \times \sum_{\deg h_0 < \deg P} \chi(1 + h_0 P^m).$$

Similar to the discussion in the case of even n, we obtain

$$\tau(\chi) = \begin{cases} 0 & \text{if } \chi \text{ is not primitive,} \\ |P|^m \chi(-a) \sum_{\deg h_0 < \deg P} \chi(1+h_0 P^m) & \text{if } \chi \text{ is primitive,} \end{cases}$$

400

and Lemma 3.1 yields

if χ is not primitive,

$$\tau(\chi) = \left\{ |P|^{n/2} \chi(-a) E\left(\frac{\frac{1}{2}b^2c}{P}\right) \left(\frac{-2c}{P}\right) i^{(|P|-1)^2/4} \quad \text{if } \chi \text{ is primitive.} \quad \bullet \right\}$$

References

- [1] S. Chowla, On Gaussian sums, Proc. Nat. Acad. Sci. USA 48 (1962), 1127–1128.
- R. J. Evans, Generalizations of a theorem of Chowla on Gaussian sums, Houston J. Math. 3 (1977), 343–349.
- T. Funakura, A generalization of the Chowla-Mordell theorem on Gaussian sums, Bull. London Math. Soc. 24 (1992), 424–430.
- [4] C.-N. Hsu, On polynomial reciprocity law, J. Number Theory 101 (2003), 13–31.
- [5] J.-L. Mauclaire, Sommes de Gauss modulo p^α. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 109–112.
- [6] —, Sommes de Gauss modulo p^{α} . II, ibid., 161–163.
- [7] L. J. Mordell, On a cyclotomic resolvent, Arch. Math. (Basel) 13 (1962), 486–487.
- [8] R. Odoni, On Gauss sums (mod p^n), $n \ge 2$, Bull. London Math. Soc. 5 (1973), 325–327.
- [9] J. Yang and W. Zheng, On a theorem of Chowla, J. Number Theory 106 (2004), 50–55.

Chih-Nung Hsu Department of Mathematics National Taiwan Normal University 88 Sec. 4, Ting-Chou Road Taipei, Taiwan, R.O.C. E-mail: maco@math.ntnu.edu.tw Ting-Ting Nan Institute of Mathematics Academia Sinica Nankang, Taipei, Taiwan 11529, R.O.C. E-mail: ayanami-nan@math.ntnu.edu.tw

Received on 19.6.2009 and in revised form on 15.12.2009

(6063)