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Bounds on ternary cyclotomic coefficients
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1. Introduction. Let

Φpqr(x) =
∏

(k,pqr)=1, 0<k<pqr

(x− ζkpqr) =
∑
n

apqr(n)xn

be a ternary cyclotomic polynomial with p < q, r prime, q 6= r and ζpqr =
e2πi/pqr. The coefficients of Φpqr have been the subject of study for over a
century. The main problem is to estimate the following parameters:

(1.1) A+ = max
n

apqr(n), A− = min
n
apqr(n), A = max{A+,−A−}.

The first bound on A was given by Bang [2] who showed that A ≤ p− 1.
This bound was later improved by Beiter [3]. She proved that A ≤ p−bp/4c.
Beiter also came up with the following conjecture:

Conjecture 1.1. A ≤ (p+ 1)/2.

This is now known to be false. Gallot and Moree [5] found infinitely many
pairs of primes q, r for every ε > 0 and p sufficiently large, such that A >
(2/3− ε)p. Also they updated Beiter’s Conjecture into the following form:

Conjecture 1.2. A ≤ 2
3p.

This is still an open problem.
In this paper we derive a new bound on the size of ternary cyclotomic

coefficients, which depends on the inverses of q and r modulo p (denoted
here by q′ and r′, respectively). The main results of this paper are given in
the three theorems below, with Theorem 1.4 being an easy consequence of
Theorem 1.3.

Theorem 1.3. Let A+ and A− be defined as in (1.1). Then

A+ ≤ min{2α+ β, p− β}, −A− ≤ min{p+ 2α− β, β},
where α = min{q′, r′, p− q′, p− r′} and αβqr ≡ 1 (mod p), 0 < β < p.
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Theorem 1.4. Put β∗ = min{β, p− β}. Then

(1.2) A ≤ min{2α+ β∗, p− β∗}.

Theorem 1.4 improves the following bound obtained by Bachman [1]:

(1.3) A ≤ min{(p− 1)/2 + α, p− β∗}.

One can deduce, by reductio ad absurdum, that the bound (1.2) is at least
as strong as (1.3). It is also easy to check that the bound (1.2) is strictly
stronger than (1.3) if and only if α + β∗ < (p− 1)/2. This happens for
exactly 1

2(p − 3)(p − 5) of all the (p − 1)2 pairs (x, y) of residue classes q
and r modulo p.

As an application, we prove a density result showing that Conjecture 1.2
holds for at least 25/27 + O(1/p) of all the ternary cyclotomic polynomials
with the smallest prime factor dividing their order equal to p. We also prove
that the average A of these polynomials does not exceed (p+ 1)/2 (Bach-
man’s Theorem gives 8/9 + O(1/p), respectively (7p− 1)/12 + O(1/p), for
these values; methods of computing them are similar to those used in our
proofs of Corollaries 4.2 and 4.3).

We also exhibit, for every prime p > 12, some new classes of ternary
cyclotomic polynomials Φpqr for which the set of coefficients is very small.
For example A ≤ 3 if q ≡ ±1 (mod p) and r ≡ ±1 (mod p).

Our method also leads to a simpler, independent proof of the so called
jump one property of the ternary cyclotomic coefficients due to Gallot and
Moree [6]:

Theorem 1.5. If Φpqr(x) =
∑

n∈Z apqr(n)xn is a ternary cyclotomic
polynomial, then

|apqr(n)− apqr(n− 1)| ≤ 1 for every n ∈ Z.

2. The numbers Fk. We define some special numbers, which are the
key tools in the proofs of Theorems 1.3 and 1.5. Throughout the paper we
assume that k ∈ Z, fix p, q, r and denote by ak, bk, ck the unique integers
such that 0 ≤ ak < p, 0 ≤ bk < q, 0 ≤ ck < r and

k ≡ akqr + bkrp+ ckpq (mod pqr).

Let

Fk =
ak
p

+
bk
q

+
ck
r
− k

pqr
.

Observe that Fk ∈ {0, 1, 2} for −(qr + rp+ pq) < k < pqr, since

0 ≤ akqr+bkrp+ckpq−k < (p−1)qr+(q−1)rp+(r−1)pq+qr+rp+pq = 3pqr.

In this section we establish some properties of the sequence Fk.
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Lemma 2.1. If Fk = 0 then ak ≤ bk/qrc. If Fk = 2 then

ak ≥
⌈
k + pq + rp

qr

⌉
.

Proof. The first implication is obvious. For the second one we note that

k + 2pqr = akqr + bkrp+ ckpq ≤ akqr + (q − 1)rp+ (r − 1)pq,

thus akqr ≥ k + rp+ pq, completing the proof.

Lemma 2.2. Let p′q, p′r be the inverses of p modulo q and r respectively.
Then

Fk − Fk−q =


−1 if ak < r′ and ck < p′r,
1 if ak ≥ r′ and ck ≥ p′r,
0 otherwise.

The analogous statement holds for Fk − Fk−r with ck, r
′, p′r replaced by

bk, q
′, p′q respectively.

Proof. Observe that ak−q ≡ ak− r′ (mod p), ck−q ≡ ck− p′r (mod r) and
bk−q = bk. Therefore

ak − ak−q =
{
r′ − p if ak < r′,
r′ if ak ≥ r′,

ck − ck−q =
{
p′r − r if ck < p′r,
p′r if ck ≥ p′r.

Let [P ] ∈ {0, 1} be the logical value of a statement P . Then

Fk − Fk−q =
ak − ak−q

p
+
bk − bk−q

q
+
ck − ck−r

r
− 1
pr

=
r′

p
+
p′r
r
− 1
pr
− [ak < r′]− [ck < p′r]

= 1− [ak < r′]− [ck < p′r],

and the lemma holds.

Lemma 2.3. Let M = max{q′, r′} and m = min{q′, r′}. Then

Fk − Fk−q − Fk−r + Fk−q−r =



0 if ak < M +m− p,
−1 if M +m− p ≤ ak < m,
0 if m ≤ ak < M ,
1 if M ≤ ak < M +m,
0 if M +m ≤ ak.

This equality also holds for any permutation of (p, q, r) with similarly defined
M and m.

Proof. Using Lemma 2.2 we obtain

Fk − Fk−q = 1− [ak < r′]− [ck < p′r],

Fk−r − Fk−q−r = 1− [ak−r < r′]− [ck−r < p′r].
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Since ak−r ≡ ak − q′ (mod p) and ck−r = ck, we have

Fk − Fk−q − Fk−r + Fk−q−r

= [ak−r < r′]− [ak < r′]
= [ak < q′ + r′ − p]− [ak < q′] + [ak < q′ + r′]− [ak < r′]
= [ak < M +m− p]− [ak < m]− [ak < M ] + [ak < M +m].

Now it is easy to verify the lemma, since M +m−p<m ≤M <M +m.

Lemma 2.4. We have

Fk + Fk−p−q + Fk−q−r + Fk−r−p = Fk−p + Fk−q + Fk−r + Fk−p−q−r.

Proof. By Lemma 2.3, the value of Fk − Fk−q − Fk−r + Fk−q−r depends
only on k modulo p. Thus

Fk − Fk−q − Fk−r + Fk−q−r = Fk−p − Fk−p−q − Fk−r−p + Fk−p−q−r.

3. Proof of Theorem 1.3. Bloom [4] gave a relation between the
ternary cyclotomic coefficients and the numbers k such that k = akqr +
bkrp+ ckpq with ak, bk and ck defined in the previous section. This equality
holds if and only if Fk = 0, so we can express his result in terms of Fk.

Lemma 3.1. Denote by Nd(t1, . . . , tl) the number of d’s in the given se-
quence. Then

apqr(n) =
n∑

k=n−p+1

(N0(Fk, Fk−q−r)−N0(Fk−q, Fk−r))

=
n∑

k=n−p+1

(N2(Fk, Fk−q−r)−N2(Fk−q, Fk−r))

=
1
2

n∑
k=n−p+1

(N1(Fk−q, Fk−r)−N1(Fk, Fk−q−r)).

Proof. The first equality is due to Bloom [4]. Here we rewrite his proof
which uses formal series:

Φpqr(x) =
(1−xpqr)(1−xp)(1−xq)(1−xr)
(1−x)(1−xqr)(1−xrp)(1−xpq)

≡ (1−xq)(1−xr)(1+x+ · · ·+xp−1)
∑

a,b,c≥0

xaqr+brp+cpq (mod xpqr).

Note that if k ≤ deg(Φpqr) < pqr then there exists at most one triple (a, b, c)
such that k = aqr+ brp+ cpq. This equality holds if and only if Fk = 0 with
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a = ak, b = bk, c = ck. Then

apqr(n) =
n∑

k=n−p+1

([Fk = 0]− [Fk−q = 0]− [Fk−r = 0] + [Fk−q−r = 0])

=
n∑

k=n−p+1

(N0(Fk, Fk−q−r)−N0(Fk−q, Fk−r)).

For simplicity we will use the following notations:

N+
0 = N0(Fn, Fn−1, . . . , Fn−p+1, Fn−q−r, Fn−q−r−1, . . . , Fn−q−r−p+1),

N−0 = N0(Fn−q, Fn−q−1, . . . , Fn−q−p+1, Fn−r, Fn−r−1, . . . , Fn−r−p+1),

and similarly N+
1 , N

−
1 , N

+
2 , N

−
2 . We have just proved that apqr(n)=N+

0 −N
−
0 .

Now by Lemma 2.3 we have

N+
1 + 2N+

2 −N
−
1 − 2N−2 =

n∑
k=n−p+1

(Fk − Fk−q − Fk−r + Fk−q−r)

= min{M +m, p} −M +m−max{M +m− p, 0} = 0,

where we have used the fact that there is a bijection between the sets
{n, n − 1, . . . , n − p + 1} and {an, an−1, . . . , an−p+1}, because akqr ≡ k
(mod p). Moreover

N+
0 +N+

1 +N+
2 = N−0 +N−1 +N−2 = 2p.

By simple arithmetical operations, these equalities lead to

apqr(n) = N+
0 −N

−
0 = N+

2 −N
−
2 =

1
2
(N−1 −N

+
1 ).

Using the first equality of Lemma 3.1, we consider the 4-tuples Qk =
(Fk, Fk−q, Fk−r, Fk−q−r), where k ∈ {n, n − 1, . . . , n − p + 1}, such that
N0(Fk, Fk−q−r) 6= N0(Fk−q, Fk−r). Lemmas 2.2 and 2.3 will help us to ex-
clude the existence of most of the 81 possible such 4-tuples.

If N0(Qk) ∈ {0, 4} then N0(Fk, Fk−q−r) = N0(Fk−q, Fk−r), so we are not
going to consider these cases. Also if N0(Qk) = 2, then N0(Fk, Fk−q−r) =
N0(Fk−q, Fk−r) or |Fk−Fk−q−Fk−r+Fk−q−r| ≥ 2, contradicting Lemma 2.3,
therefore this case does not need to be considered either.

To describe the other possibilities we note the following facts:

• if N0(Qk) = 3 then by Lemma 2.2 the only non-zero entry here is equal
to 1,
• if N0(Qk) = 1 then Fl = 0 for some l ∈ {k, k − q, k − r, k − q − r}. By

Lemma 2.2 we have Fl±q = 1 and Fl±r = 1, where the sign depends
on l.

All these cases are described in the table below.
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Case Qk Fk − Fk−q N0(Fn, Fn−q−r)

−Fk−r + Fk−q−r −N0(Fn−q, Fn−r)

1 (0, 0, 1, 0), (0, 1, 0, 0), −1 1

(0, 1, 1, 1), (1, 1, 1, 0)

2 (0, 0, 0, 1), (1, 0, 0, 0), 1 −1

(1, 0, 1, 1), (1, 1, 0, 1)

3 (0, 1, 1, 2), (2, 1, 1, 0) 0 1

4 (1, 0, 2, 1), (1, 2, 0, 1) 0 −1

Denote by Cl the number of integers k ∈ {n, n − 1, . . . , n − p + 1} for
which the lth case occurs. Then we have

A+ ≤ C1 + C3, −A− ≤ C2 + C4.

In order to prove Theorem 1.3 it is enough to show that

C1, C2 ≤ α,(3.1)
C3 ≤ min{α+ β, p− α− β},(3.2)
C4 ≤ min{β − α, p+ α− β}.(3.3)

In fact, we will count values of ak instead of k.
Note that α = min{m, p−M}, whereM andm are defined in Lemma 2.3.
Case 1. By Lemma 2.3 we have M +m− p ≤ ak < m, so

C1 ≤ m−max{0,M +m− p} = min{m, p−M} = α.

Case 2. By Lemma 2.3 we have M ≤ ak < M +m, so

C2 ≤ min{M +m, p} −M = min{m, p−M} = α.

Note that

if M +m ≥ p then α = p−M and β = p−m

and
if M +m ≤ p then α = m and β = M.

We also put γ = bn/qrc+ 1 and recall that k ∈ {n, n− 1, . . . , n− p+ 1}.
In order to simplify the notation, we divide the third case into Cases 3a

and 3b and define C3a and C3b as above for the 4-tuples (0, 1, 1, 2) and
(2, 1, 1, 0) respectively. Obviously, C3 = C3a + C3b.

Case 3a. By Lemma 2.2 we have ak < m,M , thus by Lemma 2.3 ak <
M + m − p. By Lemma 2.1, ak < γ and ak −M −m + 2p = ak−q−r ≥ γ.
Finally

max{γ +M +m− 2p, 0} ≤ ak < min{γ,M +m− p},
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and we obtain

C3a ≤ min{γ,M +m− p} −max{γ +M +m− 2p, 0}
= min{γ, p− γ,M +m− p, 2p−M −m}
≤ min{M +m− p, 2p−M −m} = min{α+ β, p− α− β}

as long as M +m ≥ p. Otherwise C3a = 0.

Case 3b. By Lemma 2.2, ak ≥M ≥ m, so by Lemma 2.3, ak ≥M +m.
By Lemma 2.1, ak −M −m = ak−q−r < γ and ak ≥ γ. Finally

max{γ,M +m} ≤ ak < min{p, γ +M +m}.
Therefore

C3b ≤ min{p, γ +M +m} −max{γ,M +m}
= min{γ, p− γ,M +m, p−M −m}
≤ min{M +m, p−M −m} = min{α+ β, p− α− β}

as long as M +m ≤ p. Otherwise C3b = 0.

Case 3. We claim that C3 ≤ min{α+β, p−α−β}. If M +m = p, then
C3 = 0, α + β = p and so the estimate holds. In case M +m 6= p Cases 3a
and 3b exclude each other and then the estimate also holds.

Case 4. Assume that q′ = m and r′ = M . By Lemma 2.2, we have
M ≤ ak < m (for Fk−q = 0) or m ≤ ak < M (when Fk−r = 0). The
first inequality is impossible, so Fk−q = 2 and Fk−r = 0. By Lemma 2.1,
ak −m = ak−r < γ and ak −M + p = ak−q ≥ γ. Finally

max{M + γ − p,m} ≤ ak < min{m+ γ,M},
and

C4 ≤ min{m+ γ,M} −max{M + γ − p,m}
= min{γ, p− γ, p−M +m,M −m}
≤ min{p−M +m,M −m} = min{β − α, p+ α− β}.

This completes the verification of (3.1)–(3.3) and the proof of Theo-
rem 1.3.

4. The bound on A. In this section we derive a bound on A =
max{A+,−A−}. We also establish some infinite families of triples (p, q, r)
with restrictions on q and r modulo p only, for which A is bounded by a
constant independent of p, q, r.

We also apply our bound on A to estimate the density of the set of ternary
cyclotomic polynomials such that A ≤ cp, for any real c > 0 and fixed p. In
view of Conjecture 1.2, the most interesting case is c = 2/3.

At the end we prove a weaker version of the old Beiter’s Conjecture.
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Proof of Theorem 1.4. By Theorem 1.3, we have

A ≤ max{min{2α+ β, p− β},min{p+ 2α− β, β}}.

If β < 1
2p then

A ≤ max{min{2α+ β, p− β}, β} = min{2α+ β, p− β}
= min{2α+ β∗, p− β∗}.

Also if β > 1
2p then

A ≤ max{p− β,min{p+ 2α− β, β}} = min{2α+ p− β, β}
= min{2α+ β∗, p− β∗}.

Corollary 4.1. Let p > 12 and p = 2d2±1 = 3d3±1 = 4d4±1 = 6d6±1
for some integers d2, d3, d4, d6. Let also d1 = 1. If q is congruent to ±di and
r is congruent to ±dj modulo p, then

A ≤ min{2i+ j, i+ 2j} ≤ 18.

Proof. Just observe that α = min{i, j}, β∗ = max{i, j} and apply The-
orem 1.4.

Denote by

Dp(c) = lim sup
n→∞

#{(q, r) : p < q < r < n, Apqr ≤ cp}
#{(q, r) : p < q < r < n}

the density of the ternary cyclotomic polynomials with the smallest prime
factor of their order equal to p, for which A ≤ cp.

Corollary 4.2.

Dp(c)


≥ 4

3c
2 +O(1/p) if 0 < c ≤ 1/2,

≥ 1− 2
3(3− 4c)2 +O(1/p) if 1/2 < c < 3/4,

= 1 if c ≥ 3/4.

Proof. Note that α and β∗ depend only on the residue classes of q and r
modulo p. Let a(i, j) = min{2α+β∗, p−β∗}, where α and β∗ are computed
for the polynomial Φpqr with q′ ≡ i (mod p) and r′ ≡ j (mod p). Using
Theorem 1.4 and Dirichlet’s Prime Number Theorem we obtain

Dp(c) ≥ lim
n→∞

∑
a(i,j)≤cp #{(q, r) : p < q < r < n, (q, r) ≡ (i, j) (mod p)}

#{(q, r) : p < q < r < n}

= lim
n→∞

n2

2(p−1)2 log2 n

∑
a(i,j)≤cp 1

n2

2 log2 n

=
1

(p− 1)2
∑

a(i,j)≤cp

1,

where the sum runs over all the non-zero residue classes i and j modulo p.
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It is not difficult to see that∑
a(i,j)≤cp

1 = 8
∑

1≤α≤β∗≤(p−1)/2

∑
min{2α+β∗,p−β∗}≤cp

1 +O(p).

In case c ≤ 1/2 we have

Dp(c) ≥
8

(p− 1)2

bcp/3c∑
α=1

bcpc−2α∑
β∗=α

1 +O(1/p)

=
8(p2c2/6 +O(p))

(p− 1)2
+O(1/p) =

4
3
c2 +O(1/p).

Assume that 1/2 < c < 3/4. Then

Dp(c) ≥
8

(p− 1)2
( (p−1)/2∑

β∗=1

β∗∑
α=1

1−
d(1−c)pe−1∑
β∗=bcp/3c+1

β∗∑
α=b(cp−β∗)/2c+1

1
)

+O(1/p)

= 8(p2/8− p2(9− 24c+ 16c2)/12 +O(p))/(p− 1)2 +O(1/p)

= 1− 2
3
(3− 4c)2 +O(1/p).

The third equality in the corollary is obvious.

Our bound on the value D(c) = limp→∞Dp(c) may be interpreted as a
quotient of two areas. The denominator is the area of the triangle described
by the inequalities 0 < x < y < 1/2. The numerator is the area defined by
the inequalities

0 < x < y < 1/2, 2x+ y < c, 1− y < c.

We can apply our estimation of Dp(c) to check that Conjecture 1.2 is
true in at least 25/27 + O(1/p) cases and the old Beiter’s Conjecture 1.1
holds for at least 1/3 +O(1/p) cases.

Although Conjecture 1.1 does not hold in general, we are able to prove
a weaker version of it, with the same bound. Let A(p) denotes the average
value of A for all the ternary cyclotomic polynomials with the smallest prime
dividing their order equal to p. More precisely,

A(p) = lim sup
n→∞

∑
p<q<r<nApqr

#{(q, r) : p < q < r < n}
.

Corollary 4.3. A(p) ≤ (p+ 1)/2.

Proof. Applying the method of Corollary 4.2 we obtain

A(p) ≤ 1
(p− 1)2

p−1∑
i=1

p−1∑
j=1

a(i, j) =
4

(p− 1)2

(p−1)/2∑
i=1

(p−1)/2∑
j=1

a(i, j).



14 B. Bzdęga

Let k ≤ (p− 1)/2 be a positive integer. Then

k∑
i=1

a

(
i, i+

p−1
2
− k
)

=
k∑
i=1

min
{

3i− k +
p− 1

2
, k − i+ p+ 1

2

}

=
(p+1)k

2
+

k∑
i=1

min{3i−k−1, k− i} =
(p+1)k

2
.

Now we have

(p−1)/2∑
i=1

(p−1)/2∑
j=1

a(i, j)

=
(p−1)/2∑
k=1

k∑
i=1

(
a

(
i, i+

p− 1
2
− k
)

+ a

(
i+

p− 1
2
− k, i

))
−

(p−1)/2∑
i=1

a(i, i)

= 2
(p−1)/2∑
k=1

k∑
i=1

a

(
i, i+

p− 1
2
− k
)
−

(p−1)/2∑
i=1

a(i, i)

=
p+ 1

2

(
2

(p−1)/2∑
k=1

k − p− 1
2

)
=

(p+ 1)(p− 1)2

8
.

Finally we get A(p) ≤ (p+ 1)/2.

5. Proof of Theorem 1.5. First we present a simple expression for the
difference of two consecutive coefficients of a ternary cyclotomic polynomial
in terms of Fk:

Lemma 5.1. Put

N+ = N1(Fn, Fn−p−q, Fn−q−r, Fn−r−p),

N− = N1(Fn−p, Fn−q, Fn−r, Fn−p−q−r).

Then
apqr(n)− apqr(n− 1) =

1
2
(N− −N+).

Moreover

apqr(n)− apqr(n− 1)

= N0(Fn, Fn−p−q, Fn−q−r, Fn−r−p)−N0(Fn−p, Fn−q, Fn−r, Fn−p−q−r)

= N2(Fn, Fn−p−q, Fn−q−r, Fn−r−p)−N2(Fn−p, Fn−q, Fn−r, Fn−p−q−r).
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Proof. By Lemma 3.1,

apqr(n)− apqr(n− 1)

=
1
2

n∑
k=n−p+1

(N1(Fk−q, Fk−r)−N1(Fk, Fk−q−r))

− 1
2

n−1∑
k=n−p

(N1(Fk−q, Fk−r)−N1(Fk, Fk−q−r))

=
1
2
(N1(Fn−p, Fn−q, Fn−r, Fn−p−q−r)−N1(Fn, Fn−p−q, Fn−q−r, Fn−r−p))

=
1
2
(N− −N+).

The remaining two equalities can be established in the same way.

Now we are ready to prove Theorem 1.5. By Lemma 5.1 we have

|apqr(n)− apqr(n− 1)| = 1
2
|N− −N+| ≤ 2,

where equality may hold only if N− = 4, N+ = 0 or N+ = 4, N− = 0. We
will show that either is impossible.

Indeed, for some permutation (t, u, v) of (p, q, r) by Lemma 5.1 we have
Fn−t =Fn−u ∈ {0, 2} in the case of (Fn, Fn−p−q, Fn−q−r, Fn−r−p) = (1, 1, 1, 1).
Therefore |Fn − Fn−t − Fn−u + Fn−t−u| = 2.

Also if (Fn−p, Fn−q, Fn−r, Fn−p−q−r) = (1, 1, 1, 1) then for some permu-
tation (t, u, v) we have Fn−t−u = Fn−u−v ∈ {0, 2} and |Fn−u − Fn−t−u −
Fn−u−v + Fn−t−u−v| = 2. Both cases contradict Lemma 2.3.

Acknowledgments. This research was done when the author was a
student at the Faculty of Mathematics and Computer Science of the Adam
Mickiewicz University in Poznań. The author would like to thank Wojciech
Gajda for suggesting the problem and his help in improving the paper. He
would also like to thank Pieter Moree for helpful comments, and the referee
for help in simplifying the proof of Corollary 4.2.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number The-
ory 100 (2003), 104–116.

[2] A. S. Bang, Om ligningen Φn(x) = 0, Tidsskr. Math. 6 (1895), 6–12.
[3] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial Φpqr, II, Duke

Math. J. 38 (1971), 591–594.
[4] D. M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math.

Monthly 75 (1968), 370–372.

http://dx.doi.org/10.1016/S0022-314X(02)00119-1
http://dx.doi.org/10.1215/S0012-7094-71-03873-7
http://dx.doi.org/10.2307/2313416


16 B. Bzdęga

[5] Y. Gallot and P. Moree, Ternary cyclotomic polynomials having a large coefficient,
J. Reine Angew. Math. 632 (2009), 105–125.

[6] —, —, Neighboring ternary cyclotomic coefficients differ by at most one, J. Ramanu-
jan Math. Soc. 24 (2009), 235–248.

Bartłomiej Bzdęga
Stróżyńskiego 15A/20
60-688 Poznań, Poland
E-mail: exul@wp.pl

Received on 3.1.2009
and in revised form on 12.10.2009 (5904)


	Introduction
	The numbers Fk
	Proof of Theorem 1.3
	The bound on A
	Proof of Theorem 1.5

