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1. Introduction. Let L > 0 and M be rational integers such that
L − 4M > 0 and (L,M) = 1. Let α and β be the two roots of the tri-
nomial x2 −

√
Lx + M . For a non-negative integer n, the nth term in the

Lehmer sequence {Pn} and the associated Lehmer sequence {Qn} (see [11])
are defined by

Pn := Pn(α, β) =


αn − βn

α− β
for n odd,

αn − βn

α2 − β2
for n even,

and

Qn := Qn(α, β) =


αn + βn

α+ β
for n odd,

αn + βn for n even.
Lehmer sequences have many interesting properties and often arise in the
study of Diophantine equations. The arithmetic properties of the numbers
Pn can be found in [11, 25].

Let a, b be positive integers such that ab is not a square. Diophantine
equations of the form

(1.1) aX4 − bY 2 = c,

where c ∈ {±1,±2,±4}, have received considerable interest, as we see from
the references [2, 7, 8, 17, 19, 22, 23]. The study of these equations goes
back to the classical work of Ljunggren [12, 13, 15, 16], who was able to
prove many sharp results on (1.1). The following cases have been considered:
Ljunggren [15] (c = −1), [16] (c = 4), Luca and Walsh [17] (c = −2), Luo
and Yuan [18] (c = ±4), Akhtari [1] (c = 1) and Yuan and Li [28] (c = 2).

As an application of some results on (1.1), Luca and Walsh [17] proved
the following theorem.
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Theorem LW1 (Theorem 3 in [17]).

1. The equation
(X2 + 1)(Y 2 + 1) = Z4

has no positive integer solutions.
2. The only positive integer solutions of the equation

(X2 + 1)(Y 2 − 1) = Z4

are (X,Y, Z) = (1, 3, 2), (239, 3, 26).
3. The equation

(X2 − 1)(Y 2 − 1) = Z4

has no positive integer solutions.

In this paper, we will investigate the positive integer solutions (x, y, z)
of the Diophantine equations of the type

(1.2) (x2 ± C)(y2 ±D) = z4,

where C,D ∈ {1, 2, 4}. The main purpose is try to completely solve the
remaining eighteen equations of the type (1.2). The main results of the
present paper are as follows. Throughout, � stands for a square, and

(
A
B

)
for the Jacobi symbol of A with respect to B, where A and B are coprime
integers.

Theorem 1.1. Let A > 1 be a positive integer. Then the Diophantine
equation

(1.3) (AX2 + 1)(AY 2 + 1) = Z4

has no positive integer solutions (X,Y, Z) with X 6= Y .

Theorem 1.2.

(1) The only positive integer solutions of the equation

(1.4) (X2 + 4)(Y 2 + 4) = Z4

are (X,Y, Z) = (1, 11, 5), (11, 1, 5).
(2) The equation

(1.5) (X2 − 4)(Y 2 − 4) = Z4

has no positive integer solutions.
(3) The equation

(1.6) (X2 − 2)(Y 2 − 2) = Z4

has no positive integer solutions.
(4) The only positive integer solutions of the equation

(1.7) (X2 + 2)(Y 2 + 2) = Z4

are (X,Y, Z) = (1, 5, 3), (5, 1, 3).
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(5) The equation

(1.8) (X2 + 2)(Y 2 − 2) = Z4

has no positive integer solutions.
(6) The equation

(1.9) (X2 + 2)(Y 2 + 1) = Z4

has no positive integer solutions.
(7) The equation

(1.10) (X2 − 2)(Y 2 + 1) = Z4

has no positive integer solutions.
(8) The equation

(1.11) (X2 + 2)(Y 2 − 4) = Z4

has no positive integer solutions.
(9) The equation

(1.12) (X2 + 2)(Y 2 + 4) = Z4

has no positive integer solutions.
(10) The only positive integer solution to the equation

(1.13) (X2 + 2)(Y 2 − 1) = Z4

is (X,Y, Z) = (5, 2, 3).
(11) The only positive integer solutions to the equation

(1.14) (X2 + 4)(Y 2 + 1) = Z4

are (X,Y, Z) = (11, 2, 5), (2, 239, 26), (478, 1, 26).
(12) The only positive integer solutions of the equation

(1.15) (X2 + 4)(Y 2 − 4) = Z4

are (X,Y, Z) = (2, 6, 4), (478, 6, 52).
(13) The equation

(1.16) (X2 + 4)(Y 2 − 1) = Z4

has no positive integer solutions.
(14) The equation

(1.17) (X2 − 4)(Y 2 + 1) = Z4

has no positive integer solutions.
(15) The equation

(1.18) (X2 − 4)(Y 2 − 1) = Z4

has only infinitely many trivial positive solutions (X,Y, Z) =
(2Y, Y, 2S), where Y, S are positive integers with Y 2 − 2S2 = 1.
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(16) The only positive integer solutions to the equation

(1.19) (X2 − 2)(Y 2 + 4) = Z4

are (X,Y, Z) = (2, 2, 2), (2, 478, 26).
(17) The equation

(1.20) (X2 − 4)(Y 2 − 1) = 4Z4, 2 - X,

has no positive integer solutions.

However, we have not been able to solve the following two equations:

(X2 − 2)(Y 2 − 4) = Z4, 2 |XY,(1.21)

(X2 − 2)(Y 2 − 1) = Z4, 2 |X.(1.22)

We leave this as an open question.

2. The results on the equation ax2 − by4 = c. In this section, we
will list all the related results on equations ax2 − by4 = ±2,±4, which will
be used later.

Let a and b be odd positive integers such that the equation

(2.1) aX2 − bY 2 = 2

is solvable in positive integers (X,Y ). Let (a1, b1) be the minimal positive
solution to (2.1), and define

(2.2) α =
a1
√
a+ b1

√
b√

2
.

Furthermore, for k odd, define

(2.3) αk =
ak
√
a+ bk

√
b√

2
,

where (ak, bk) are positive integers. It is well known that all positive integer
solutions (X,Y ) of (2.1) are of the form (ak, bk).

By investigating the occurrence of squares and certain square classes in
some sets of Lehmer sequences, Luca and Walsh [17] completely solved the
Diophantine equations of the type

(2.4) ax2 − by4 = 2.

Theorem LW2 (Theorem 2 in [17]).

1. If b1 is not a square, then equation (2.4) has no solutions.
2. If b1 is a square and b3 is not a square, then (X,Y ) = (a1,

√
b1) is the

only solution of (2.4).
3. If b1 and b3 are both squares, then (X,Y ) = (a1,

√
b1), (a3,

√
b3) are

the only solutions of (2.4).
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Recently, by the method similar to that in Luca and Walsh [17], Yuan and
Li [28] confirmed a conjecture of Akhtari, Togbe and Walsh [3] by proving
the following result.

Theorem YL ([28]). For any positive odd integers a, b, the equation
aX4 − bY 2 = 2 has at most one solution in positive integers, and such
a solution must arise from the minimal solution to the quadratic equation
aX2 − bY 2 = 2.

Let A and B be odd positive integers such that the Diophantine equation

(2.5) Ax2 −By2 = 4

has solutions in odd, positive integers x, y. Let a1, b1 be the minimal positive
integer solution. Define

(2.6)
an

√
A+ bn

√
B

2
=
(
a1

√
A+ b1

√
B

2

)n

.

With these assumptions, Ljunggren [16] showed the following two results by
computing some Jacobi’s symbols of the related Lehmer sequences.

Theorem Lj. The Diophantine equation Ax4 − By2 = 4 has at most
two solutions in positive integers x, y.

1. If a1 = h2 and Aa2
1 − 3 = k2, there are only two solutions, namely,

x =
√
a1 = h and x =

√
a3 = hk.

2. If a1 = h2 and Aa2
1 − 3 6= k2, then x =

√
a1 = h is the only solution.

3. If a1 = 5h2 and A2a4
1 − 5Aa2

1 + 5 = 5k2, then the only solution is
x =
√
a5 = 5hk.

Otherwise there are no solutions.

By computing more Jacobi’s symbols of the related Lehmer sequences,
Luo and Yuan [18] proved the following result.

Theorem LY ([18]).

1. If b1 is not a square, then the equation

(2.7) Ax2 −By4 = 4

has no positive integer solutions except in the case b1 = 3h2 and
Bb21 + 3 = 3k2, when y =

√
b3 is the only solution of (2.7).

2. If b1 is a square, then (2.7) has at most one positive integer solution
other than y =

√
b1, which is given by either y =

√
b3 or y =

√
b2, the

latter occurring if and only if a1 and b1 are both squares and A = 1
and B 6= 5.



74 P. Z. Yuan and J. G. Luo

3. Other lemmas. In this section, we present some other lemmas that
will be used later.

Lemma 3.1 ([27]). Let D 6= 2 be a positive non-square integer with 8 - D.

(i) If 2 |D, then one and only one of the Diophantine equations

(3.1) kx2 − ly2 = 1

has integer solutions, where (k, l) ranges over all pairs of integers
such that k > 1, kl = D.

(ii) If 2 - D, then one and only one of the Diophantine equations

(3.2) kx2 − ly2 = 1, kx2 − ly2 = 2

has integer solutions, where (k, l) in the former equation ranges over
all pairs of integers such that k > 1, kl = D, and (k, l) in the latter
equation ranges over all pairs of integers such that k > 0, kl = D.

(iii) If 2 - D and the Diophantine equation x2 −Dy2 = 4 has solutions
in odd integers x and y, then one and only one of the Diophantine
equations

(3.3) kx2 − ly2 = 4

has integer solutions, where (k, l) ranges over all pairs of integers
such that k > 1, kl = D.

The following lemma will be used in the proofs.

Lemma 3.2.

(i) Let k > 1 and l be odd positive integers such that kx2 − ly2 = 4,
2 - xy, has positive integer solutions. Then kx2− ly2 = 1 has positive
integer solutions.

(ii) Let D be a positive integer such that x2−Dy2 = 4, 2 - xy, is solvable.
Then one and only one of the Diophantine equations

kx2 − ly2 = 1

has integer solutions, where (k, l) ranges over all pairs of integers
such that k > 1, kl = D.

Proof. Obvious from Lemma 3.1(iii).

We also need the following ten known results.

Lemma 3.3 ([19]). Let p be an odd prime. If (L,M) ≡ (0, 3) (mod 4)
and

(
L
M

)
= 1, then the equation Pp = px2 with x an integer has no solutions.

Lemma 3.4 ([18]). Let L and M be coprime positive odd integers with
L− 4M > 0. If Qn = ku2, k |n, then n = 1, 3, 5. If Qn = 2ku2, k |n, then
n = 3.
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Lemma 3.5 ([28]). Let p be an odd prime. If (L,M) ≡ (2, 3) (mod 4)
and

(
L
M

)
= 1, then the equation Pp = px2 with x an integer has no integer

solutions provided that p > 3, and the equation Pp = x2 has no integer
solutions.

Lemma 3.6 ([17]). Let p be an odd prime. If (L,M) ≡ (2, 1) (mod 4)
and

(
L
M

)
= 1, then the equation Pp = x2 with x an integer has no integer

solutions provided that p > 3, and the equation Pp = px2 has no integer
solutions.

Lemma 3.7 ([14]). The only positive integer solutions to the equation

x2 − 2y4 = −1

are (x, y) = (1, 1), (239, 13).

Lemma 3.8 ([6], [26]). Let d > 3 be a non-square such that the Pell
equation

X2 − dY 2 = −1

is solvable in positive integers, and let τ = v+ u
√
d denote its minimal pos-

itive integer solution. Then the only positive integer solution to the equation

X2 − dY 4 = −1

is (X,Y ) = (v,
√
u).

Lemma 3.9 ([21]).

(i) Let a and b be positive integers, with a non-square, such that the
equation aX2− bY 2 = 1 is solvable in positive integers. Let (v, w) be
the solution with v minimal, and put τ = v

√
a + w

√
b. Let w = n2l

with l odd and square-free. Then the Diophantine equation

(3.4) ax2 − by4 = 1

has at most one solution in positive integers. If a solution (x, y) to
(3.4) exists, then x

√
a+ y2

√
b = τ l.

(ii) Let D > 0 be a non-square integer. Define

Tn + Un

√
D = (T1 + U1

√
D)n,

where T1 + U1

√
D is the fundamental solution of the Pell equation

(3.5) X2 −DY 2 = 1.

Then there are at most two positive integer solutions (X,Y ) to the
equation

(3.6) X2 −DY 4 = 1.

1. If two solutions with Y1 < Y2 exist, then Y 2
1 = U1 and Y 2

2 = U2,
except when D = 1785 or D = 16 · 1785, in which case Y 2

1 = U1

and Y 2
2 = U4.
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2. If only one positive integer solution (X,Y ) to equation (3.6) exists,
then Y 2 = Ul where U1 = lv2 for some square-free integer l, and
either l = 1, l = 2 or l = p for some prime p ≡ 3 (mod 4).

Lemma 3.10 ([20], [9]). Let the fundamental solution of the equation
v2 − du2 = 1 be a + b

√
d. Then the only possible solutions to the equation

X4 − dY 2 = 1 are given by X2 = a and X2 = 2a2 − 1; both solutions occur
in the following cases: d = 1785, 7140, 28560.

Lemma 3.11 ([5]). Let s, d be positive integers with s > 1. Then the
Diophantine equation

s2X4 − dY 2 = 1

has at most one positive integer solution (X,Y ), which can be given by
X2s +

√
dY = as + b

√
d, where as + b

√
d is the minimal positive integer

solution of the equation s2T 2 − dU2 = 1.

Let A > 1 and B be positive integers with AB non-square, and let
v
√
A+w

√
B be the minimal positive integer solution to the equation Ax2−

By2 = 1. By the result of the first author [29], Bennett, Togbe and Walsh [4]
and Akhtari [1], we have the following lemma.

Lemma 3.12 ([4], [1]). The Diophantine equation

(3.7) Ax4 −By2 = 1

has at most two positive integer solutions. Moreover, (3.7) is solvable if and
only if v is a square; and if x2

√
A+ y

√
B = (v

√
A+w

√
B)k, then k = 1 or

k = p ≡ 3 (mod 4) is a prime.

The following lemma is a generalization of an old result (Theorem 7.4.8
in [29]) of the first author.

Lemma 3.13. Suppose the equation

A(ru2)2 −By2 = 1,

where A > 1, AB is not a square, and r |A, has a solution. Let a1

√
A+b1

√
B

be its minimal positive integer solution. Then a1 = rv2 for some positive
integer v.

Proof. Let (ak, bk) be positive integers such that

(3.8) ak

√
A+ bk

√
B = (a1

√
A+ b1

√
B)k.

We have ak = a1 · ak
a1

= ru2 and gcd(a1, ak/a1) | k, r | k. Hence

Pk = ak/a1 = r1l�, a1 = r2l�, r = r1r2, r1l | k.
Now we show that r1l = 1. Assume that this is not so and let p > 2 be a
prime divisor of r1l. Then

(3.9) Pk/Pk/p = pv2
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for some positive integer v. This sequence satisfies the hypothesis of Lemma
3.3, therefore (3.9) is impossible, so r1l = 1, as desired. Hence a1 = r�.

Lemma 3.14. Let a and b be odd positive integers such that the equa-
tion (2.1) is solvable in positive integers (X,Y ). Let (a1, b1) and (ak, bk) be
defined by (2.2) and (2.3), respectively.

(i) If ak = r�, r | aa1k, r square-free, then k = 1 or 3.
(ii) If bk = s�, s | bb1k, r square-free, then k = 1 or 3.

Proof. First we prove (ii). Since bk = b1 · (bk/b1) = r�, s | bb1k and
gcd(b1, bk/b1) | k, we have

Pk = bk/b1 = s1l�, b1 = s2l�, s = s1s2, s1l | k.
Let p be the largest prime divisor of k. Since

Pk =
Pk

Pk/p
· Pk/p = s1l�, gcd(Pk/Pk/p, Pk/p) | p,

we have Pk/Pk/p = � or p�. Applying Lemma 3.6 to

Pk

Pk/p
= P ′p =

αk − αk

αk/p − αk/p

we find that p = 3. Hence k = 3m for some non-negative integer m. If m > 1,
then the above argument and Lemma 3.6 show that P9 = � and P3 = �,
which implies that the equation ax2 − bb21y4 = 2 has three positive integer
solutions (x, y) with y = 1,

√
P3 and

√
P9, which contradicts Theorem LW2.

Therefore k = 1 or 3.
Next we prove (i). By Lemma 3.5, we get k = 3m for some non-negative

integer m. If m > 1, then a similar argument and Lemma 3.5 show that
P9 = 3P3� and P3 = 3�, which implies that the equation aa1x

4 − by2 = 2
has two positive integer solutions (x, y) with x = 1 and

√
P9, contradicting

Theorem YL. Therefore k = 1 or 3.

We also need the following two lemmas.

Lemma 3.15.

(i) The equation
5x4 + 5x2 + 1 = y2

has no positive integer solutions.
(ii) The only positive integer solutions of the equation

5x4 − 5x2 + 1 = y2

are (x, y) = (1, 1), (3, 19).

Proof. We obtain the results by MAGMA computations.
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Lemma 3.16. The only positive integer solution to the system{
3x2 − y2 = 2,
2x2 − z2 = 1,

is (x, y, z) = (1, 1, 1).

Proof. We have x2 + y2 = 2z2 and 2 - xyz. Hence there are integers u, v
such that

z = u2 + v2, x = u2 − v2 + 2uv.

Substituting this into 2x2 − z2 = 1 we get

u4 + 8u3v + 2u2v2 − 8uv3 + v4 = 1.

By a MAGMA computation, we obtain uv=0, and thus (x, y, z)=(1, 1, 1).

4. Proof of Theorem 1.1. Define

R = {p | (AX2 + 1); ordp(AX2 + 1) ≡ 1 (mod 4)},
S = {p | (AX2 + 1); ordp(AX2 + 1) ≡ 2 (mod 4)},
Q = {p | (AX2 + 1); ordp(AX2 + 1) ≡ 3 (mod 4)},

and
r =

∏
p∈R

p, s =
∏
p∈S

p, t =
∏
p∈Q

p.

By the above notation and (1.3) we have

(4.1) rts2(tu2
1)2 −AX2 = 1, rts2(ru2

2)2 −AY 2 = 1

for some positive integers u1 and u2. Suppose rts2 > 1, and denote by
ε = T1

√
rts2 + U1

√
2 the minimal positive solution of the equation

(4.2) rts2T 2 −AU2 = 1.

Then, by Lemma 3.13 and (4.1), we obtain

T1 = t� = r�,

and so rt = 1 since gcd(r, t) = 1. Hence (4.1) becomes

(4.3) s2u4
1 −AX2 = 1, s2u4

2 −AY 2 = 1,

which has no positive integer solutions with X 6= Y by Lemma 3.11. There-
fore (1.3) has no positive integer solutions with X 6= Y .

5. Proof of Theorem 1.2
(1) The equation (X2 + 4)(Y 2 + 4) = Z4. We first consider the solution

(X,Y, Z) of (1.4) with 2 - XY . Define
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R = {p | (X2 + 4); ordp(X2 + 4) ≡ 1 (mod 4)},
S = {p | (X2 + 4); ordp(X2 + 4) ≡ 2 (mod 4)},
Q = {p | (X2 + 4); ordp(X2 + 4) ≡ 3 (mod 4)},

and
r =

∏
p∈R

p, s =
∏
p∈S

p, t =
∏
p∈Q

p.

Then

(5.1) X2 + 4 = rts2(tu2
1)2, Y 2 + 4 = rts2(ru2

2)2, Z = rstu1u2.

We denote by (T1, U1) the minimal positive solution of the equation

(5.2) rts2T 2 − U2 = 4

and let

α =
T1

√
rts2 + U1

2
.

For a positive integer k ≥ 1, we define (Tk, Uk) to be positive integers such
that

Tk

√
rts2 + Uk

2
= αk.

It is well known that all odd positive solutions of (5.2) are of the form
(T,U) = (Tk, Uk) for some positive integer k with 3 - k. With the above
notations, for any positive integer solution (X,Y, Z) to (X2+4)(Y 2+4) = Z4

with 2 - XY , we have X = Uk and Y = Ul for some integers k and l and
3 - kl, and that

(5.3) Tk = tu2
1, Tl = ru2

2

for some odd positive integers u1 and u2.
Let d = gcd(k, l), k = dk1, l = dl1. Then 2 - kl. Noting that every prime

divisor of gcd(Tk/Td, rtTd) divides k1, we have

Tk/Td = k2�, k2 | k1.

Now we apply Lemma 3.4 to

Qk1 =
Tk

Td
=
αk1d + αk1d

αd + αd
,

to deduce that k1 ∈ {1, 5}. Similarly, l1 ∈ {1, 5}.
Since k 6= l, we may assume that k1 = 1 and l1 = 5. Hence

Td = tu2
1, T5d = ru2

2.

If t > 1, then t |T5d/Td since rt square-free, gcd(T5d/Td, rt) | 5, so t = 5 and
T5d = 5u2

1. Similarly, if r > 1, then r = 5. Therefore rt = 5.
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If r = 1 and t = 5, then Td = 5u2
1 and T5d = u2

2. By a direct computation
we get 5s4T 4

d − 5s2T 2
d + 1 = (u2/5u1)2, so sTd = 1 or 3 by Lemma 3.15,

which is impossible since 5 |Td.
If r = 5 and t = 1, then Td = u2

1 and T5d = 5u2
2. Similarly, we have

5s4T 4
d − 5s2T 2

d + 1 = (u2/u1)2, thus sTd = 1 or 3. If sTd = 3, then s = 3,
Td = 1 and 45−4 = U2

d , which is impossible. If sTd = 1, then Ud = 1, u2 = 5
and (X,Y, Z) = (1, 11, 5).

Next we consider the solution (X,Y, Z) of (1.4) with 2 |XY . Then 2 |X
and 2 |Y , say X = 2X1, Y = 2Y1, Z = 2Z1, and we obtain

(X2
1 + 1)(Y 2

1 + 1) = Z4
1 .

By item 1 of Theorem LW1, the above equation has no positive integer solu-
tions. Therefore, the only positive integer solutions to (1.4) are (X,Y, Z) =
(1, 11, 5), (11, 1, 5).

(2) The equation (X2 − 4)(Y 2 − 4) = Z4. We first consider the solution
(X,Y, Z) of (1.5) with 2 - XY . We retain the definitions of r, s, and t as
given at the beginning of the proof of Theorem 1.2(1), but define them to
be square-free numbers built up from prime divisors of X2 − 4 instead of
X2 + 4. We denote by (T1, U1) the minimal positive solution of the equation

(5.4) T 2 − rts2U2 = 4

and let

α =
T1 + U1

√
rts2

2
.

For a positive integer k ≥ 1, we define (Tk, Uk) to be positive integers such
that

Tk + Uk

√
rts2

2
= αk.

Proceeding as before, it follows that there are integers k and l such that
X = Tk and Y = Tl,

(5.5) Uk = tu2
1, Ul = ru2

2

for some odd positive integers u1 and u2.
We may assume that d = gcd(k, l), k = dk1, l = 2ul1d, 2 - k1l1, u ≥ 0.

Then Ud = gcd(Uk, Ul) = c� with c | rt since gcd(r, t) = 1. Since

Ul =
Ul

Ul1d
· Ul1d, gcd(Ul/Ul1d, rUl1d) = 1,

we have
Ul1d = r�.

Since every prime divisor of gcd(Uk1d/Ud, rtUd) divides k1, we obtain

Uk1d/Ud = n�, n | k1.
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Applying Lemma 3.4 to

Qk1 =
Uk1d

Ud
=

(αd)k1 + (−αd)k1

(αd) + (−αd)
,

we have k ∈ {1, 5}. Similarly, l ∈ {1, 5}. Since 2 - UkUl, k 6= l, we may
assume that k1 = 1 and l1 = 5. Hence

Ud = tu2
1, U5d = ru2

2.

If t > 1, then t |U5/U1 since rt is square-free, gcd(T5/T1, rt) | 5, so t = 5 and
U1 = 5u2

1. Similarly, if r > 1, then r = 5. Thus rt = 5 when rt > 1.
If r = 1 and t = 5, then Ud = 5u2

1 and U5d = u2
2. It follows that

5s4U4
d + 5s2U2

d + 1 = (u2/5u1)2. This yields sUd = 0 by Lemma 3.15, which
is impossible. If r = 5 and t = 1, then Ud = u2

1 and U5d = 5u2
2, and

5s4U4
d + 5s2U2

d + 1 = (u2/u1)2. This yields sUd = 0 by Lemma 3.15 again,
which is also impossible.

Next we consider the solution (X,Y, Z) of (1.5) with X 6= Y and 2 |XY .
If 2 |X and 2 |Y , then X = 2X1, Y = 2Y1, Z = 2Z1, and we obtain

(X2
1 − 1)(Y 2

1 − 1) = Z4
1 .

By item 3 of Theorem LW1 the above equation has no positive integer
solutions. If 2 - X and 2 |Y (the case that 2 - Y and 2 |X is similar), say
Y = 2Y1, Z = 2Z1, then we obtain

(X2 − 4)(Y 2
1 − 1) = 4Z2

1 , 2 - X,

which has no positive integer solutions by Theorem 1.2(17). Hence (1.5) has
no positive integer solutions.

(3) The equation (X2 − 2)(Y 2 − 2) = Z4. It is obvious that for any
solution (X,Y, Z) of the equation, we have X 6= Y and 2 - XY Z. We
retain the definitions for r, s, and t as given at the beginning of the proof of
Theorem 1.2(1), but define them to be square-free numbers built up from
prime divisors of X2 − 2 instead of X2 + 4.

From (1.6) we have

(5.6) X2 − rt(tsu2
1)2 = 2, Y 2 − rt(rsu2

2)2 = 2, Z = rstu1u2

for some positive integers u1 and u2. We denote by (T1, U1) the minimal
positive solution of the equation

(5.7) T 2 − rts2U2 = 2

and for a positive integer k ≥ 1, we define (Tk, Uk) to be positive integers
such that

Tk + Uk

√
rts2√

2
=
(
T1 + U1

√
rts2√

2

)k

.
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Proceeding as before, it follows that there are integers k and l such that
X = Tk and Y = Tl for some odd integers k and l, and

(5.8) Uk = tu2
1, Ul = ru2

2

for some positive integers u1 and u2. By Lemma 3.14, we have k, l ∈ {1, 3}.
Since 2 - UkUl, k 6= l, we may assume that k = 1 and l = 3. Hence

U1 = tu2
1, U3 = ru2

2.

If t > 1, then t |U3/U1 since rt is square-free, gcd(U3/U1, rt) | 3, so t = 3 and
U1 = 3u2

1. Similarly, if r > 1, then r = 3. Thus rt = 3 since gcd(r, t) = 1.
If r = 1 and t = 3, then U1 = 3u2

1 and U3 = u2
2. It follows that

18s2u4
1 + 1 =

(
u2

3u1

)2

,

which is also impossible since 2 - su2
1. If r = 3 and t = 1, then U1 = u2

1 and
U3 = 3u2

2. It follows that

2s2u4
1 + 1 =

(
u2

u1

)2

,

which is impossible since 2 - su2
1. Hence (1.6) has no positive integer solu-

tions.

(4) The equation (X2 + 2)(Y 2 + 2) = Z4. It is obvious that for any
solution (X,Y, Z) of (1.7), we have X 6= Y and 2 - XY Z. We retain the
definitions for r, s, and t as given at the beginning of the proof of Theo-
rem 1.2(1), but define them to be square-free numbers built up from prime
divisors of X2 + 2 instead of X2 + 4.

From (1.7) we have

(5.9) rt(tsu2
1)2 −X2 = 2, rt(rsu2

2)2 − Y 2 = 2

for some positive integers u1 and u2. We denote by (T1, U1) the minimal
positive solution of the equation

(5.10) rts2T 2 − U2 = 2

and for a positive integer k ≥ 1, we define (Tk, Uk) to be positive integers
such that

Tk

√
rts2 + Uk√

2
=
(
T1

√
rts2 + U1√

2

)k

.

Proceeding as before, we have X = Uk and T = Ul for some odd integers
k and l, and

(5.11) Tk = tu2
1, Tl = ru2

2

for some positive integers u1 and u2. Moreover, rt = 3.
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If r = 1 and t = 3, then T1 = 3u2
1 and T3 = u2

2. It follows that

18s2u4
1 − 1 =

(
u2

3u1

)2

,

which has no solutions (s, u1, u2).
If r = 3 and t = 1, then T1 = u2

1 and T3 = 3u2
2. It follows that

2s2u4
1 − 1 =

(
u2

u1

)2

.

Combining this with the first equation of (5.9) we obtain

3s2u4
1 −X2 = 2, 2s2u4

1 −m2 = 1,

which has only the positive integer solution (s, u1, X,m) = (1, 1, 1, 1) by
Lemma 3.16. Hence all positive integer solutions of (1.7) are (X,Y, Z) =
(1, 5, 3), (5, 1, 3).

For the proofs of Theorem 1.2(5)–(7), we note that the equations in (5)–
(7) have no solutions (X,Y, Z) with 2 |Z, so we only consider the solutions
(X,Y, Z) with 2 - Z.

(5) The equation (X2 + 2)(Y 2− 2) = Z2, 2 - XY . From the equation we
have

X2 + 2 = du2
1, Y 2 − du2

2 = 2, Z = du1u2,

which is impossible by Lemma 3.1 since both equations x2 − dy2 = 2 and
dx2 − y2 = 2 would then have solutions.

(6) The equation (X2 + 2)(Y 2 + 1) = Z2, 2 - X. From the equation we
have

X2 + 2 = du2
1, du2

2 − Y 2 = 1, Z = du1u2,

which is impossible by Lemma 3.1 since both equations dx2 − y2 = 2 and
dx2 − y2 = 1 would then have solutions.

(7) The equation (X2 − 2)(Y 2 + 1) = Z2, 2 - X. From the equation we
have

X2 − 2 = du2
1, du2

2 − Y 2 = 1, Z = du1u2,

which is impossible by Lemma 3.1 since both equations x2 − dy2 = 2 and
dx2 − y2 = 1 would then have solutions.

(8) The equation (X2 + 2)(Y 2 − 4) = Z4. We divide the proof into two
cases.

Case 1: 2 - XY . We consider the following more general equation:

(X2 + 2)(Y 2 − 4) = Z2, 2 - XY.
From the above equation we have

(5.12) X2 + 2 = du2
1, Y 2 − du2

2 = 4, Z = du1u2.
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It follows from Lemma 3.2(ii) and the second equation of (5.12) that one of
the equations d1x

2−d2y
2 = 1 with d1 > 1 and d1d2 = d has a solution, which

is impossible by Lemma 3.1 since both equations d1x
2 − d2y

2 = 1, d1 > 1
and dx2 − y2 = 2 would then have solutions.

Case 2: 2 |XY . It is easy to see that (1.11) has no integer solutions
when 2 |X and 2 - Y by taking the equation modulo 4.

We first consider the subcase 2 |X and 2 |Y . Write X = 2X1, Y =
2Y1, Z = 2Z1. Then (1.11) becomes

(5.13) (2X2
1 + 1)(Y 2

1 − 1) = 2Z4
1 .

We retain the definitions for r, s, and t but define them to be square-free
numbers built up from prime divisors of 2X2 + 1 instead of AX2 + 1, as
given at the beginning of the proof of Theorem 1.1. From (5.13) we have

(5.14) rts2(tu2
1)2 − 2X2

1 = 1, Y 2
1 − 2rts2(ru2

2)2 = 1

for some positive integers u1 and u2. From the second equation of (5.14) and
Lemma 3.1, we eventually get

rts2(rm2)2 − 2n4 = 1

as we did in the proof of Theorem 1.2(4). Hence (2X2
1 + 1)(2n4 + 1) = Z4

2 ,
which has no positive integer solutions by Theorem 1.1.

Next we deal with the subcase 2 - X and 2 |Y . Write Y = 2Y1, Z = 2Z1.
We obtain the equation

(5.15) (X2 + 2)(Y 2
1 − 1) = 4Z4

1 .

From (5.15), we have

(5.16) rts2(tu2
1)2 −X2 = 2, Y 2

1 − 4rts2(ru2
2)2 = 1

for some positive integers u1 and u2. Similarly, from the second equation of
(5.16) and Lemma 3.1, we finally obtain

rts2(rm2)2 − n4 = 2, 2 - n.
Hence (X2 + 2)(n4 + 2) = Z4

2 , 2 - Xn, which has only the positive integer
solution (X,n,Z1) = (5, 1, 3) by Theorem 1.2(4), and thus r = 1, t = 3,
s = 1. Now the second equation of (5.16) becomes Y 2

1 − 12u4
2 = 1, which is

easily seen to have no positive integer solutions by Lemma 3.9.

(9) The equation (X2 + 2)(Y 2 + 4) = Z4. We divide the proof into two
cases.

Case 1: 2 - XY . We consider the more general equation

(X2 + 2)(Y 2 + 4) = Z2, 2 - XY.
From the above equation we have

(5.17) X2 + 2 = du2
1, du2

2 − Y 2 = 4, Z = du1u2.
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It follows from the second equation of (5.17) that the equation dx2 − y2

= 1 has a solution, which is impossible by Lemma 3.1 since both equations
dx2 − y2 = 2 and dx2 − y2 = 1 would then have solutions.

Case 2: 2 |XY . It is easy to see that (1.12) has no integer solutions
when 2 - X or 2 - Y by taking the equation modulo 16. Hence it suffices to
consider the case 2 |X and 2 |Y . Write X = 2X1, Y = 2Y1, Z = 2Z1. Then
(1.12) becomes

(5.18) (2X2
1 + 1)(Y 2 + 1) = 2Z4

1 .

As before, it follows from (5.18) that

(5.19) rts2(tu2
1)2 − 2X2

1 = 1, 2rts2(ru2
2)2 − Y 2

1 = 1

for some positive integers u1 and u2. This contradicts Lemma 3.1 when
rts > 1. If rst = 1, then the first equation of (5.19) becomes u4

1 − 2X2
1 = 1,

which has no positive integer solutions by Lemma 3.10.

(10) The equation (X2 + 2)(Y 2− 1) = Z4. We divide the proof into two
cases.

Case 1: 2 - X. We retain the definitions r, s, and t as given at the
beginning of the proof of Theorem 1.2(4). From (1.13) we have

(5.20) rts2(tu2
1)2 −X2 = 2, Y 2 − rts2(ru2

2)2 = 1

for some positive integers u1 and u2. It is easy to see that rts2 6= 1. From
the second equation of (5.20), we have the following two subcases.

Subcase 1: 2 |u2. Then

Y + 1 = 2ar21u
4
3, Y − 1 = 2br22u

4
4, r1r2 = 2r, 2u3u4 = u2,

and thus ar21u
4
3 − br22u4

4 = 1. If a > 1, then both equations rts2x2 − y2 = 2
and ax2−by2 = 1 have solutions, which contradicts Lemma 3.1. Hence a = 1
and r | r2. Continuing the above process for the equation r21u

4
3−rts2r22u4

4 = 1,
we finally get

rts2(rm2)2 − n4 = 2.

Subcase 2: 2 - u2. Then

Y + 1 = ar21u
4
3, Y − 1 = br22u

4
4, r1r2 = r, u3u4 = u2,

and thus ar21u
4
3 − br22u4

4 = 2. If b > 1, then both equations rts2x2 − y2 = 2
and ax2 − by2 = 2 have solutions, which contradicts Lemma 3.1. Hence
b = 1, a = rts2 and r = r1, r2 = 1, and we also get the equation

rts2(rm2)2 − n4 = 2.

It follows that (X2 + 2)(n4 + 2) = Z4
1 . From the proof of the equation

(X2 + 2)(Y 2 + 2) = Z4 we have X = 5, n = 1, hence X = 5, Y = 2, Z = 3.
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Therefore the equation (X2 + 2)(Y 2− 1) = Z4 has only the positive integer
solution (X,Y, Z) = (5, 2, 3) with 2 - X.

Case 2: 2 |X. Write X = 2X1, Z = 2Z1. Then (1.13) becomes

(5.21) (2X2
1 + 1)(Y 2 − 1) = 8Z4

1 .

The remaining proof is similar to the proof of Case 1 of Theorem 1.2(8).
Thus the Diophantine equation (X2 + 2)(Y 2 − 1) = Z4 with 2 |X has no
positive integer solutions.

Therefore the equation (X2 + 2)(Y 2 − 1) = Z4 has only the positive
integer solution (X,Y, Z) = (5, 2, 3).

(11) The equation (X2 + 4)(Y 2 + 1) = Z4. We divide the proof into two
cases.

Case 1: 2 - X. An argument similar to the one employed for (1.4) shows
that there exist odd integers k and l such that 3 | l and X = Uk and Y = Ul

and

(5.22) Tk = tu2
1, Tl = 2ru2

2

for some positive integers u1 and u2.
Let d = gcd(k, l), k = dk1, l = dl1. Then 2 - k1l1. By a similar method

to the proof of Theorem 1.2(1) and by Lemma 3.4, we have k1 ∈ {1, 5} and
l1 = 3. We first consider the case k1 = 1. Then

Td = t�, T3d = 2r�.

Since gcd(T3d/Td, rt) | 3, rt |T3d/Td and 3 - rts2, we have rt = 1, which is
impossible. Hence

k1 = 5, T3d = 2r�, T5d = t�.

Since gcd(T3d/Td, rt) | 3 and 3 - rt, we have r = 1. Similarly, t = 5. Now
from Td = gcd(T3d, T5d) = �, T5 = 5�, and r = 1, t = 5, we derive that
5s4T 4

d − 5s2T 2
d + 1 = �, and so sTd = 1 or 3 by Lemma 3.15. If sTd = 1,

then s = 1, Td = 1, Ud = 1, T3d = 2, T5d = 5, and thus (1.14) has a
solution (X,Y, Z) = (11, 2, 5). If sTd = 3, then s = 3, Td = 1, which is
impossible since 3 - Z. Therefore (1.14) has only one positive integer solution
(X,Y, Z) = (11, 2, 5).

Case 2: 2 |X. Write X = 2X1, Z = 2Z1. As before we obtain the
equation

(5.23) (X2
1 + 1)(Y 2

1 + 1) = 4Z4
1 ,

and from (5.23) we have

(5.24) 2rts2(tu2
1)2 −X2

1 = 1, 2rts2(ru2
2)2 − Y 2 = 1.
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Similarly, by Lemma 3.13, we have rt = 1, and so

(5.25) 2s2u4
1 −X2

1 = 1, 2s2u4
2 − Y 2 = 1,

which implies that s = 1 by Lemma 3.8. Thus

(5.26) X2
1 − 2u4

1 = −1, Y 2 − 2u4
2 = −1.

It follows from Lemma 3.8 that (X1, Y, u1, u2) = (1, 239, 1, 13), (239, 1, 13, 1).
Therefore the only positive integer solutions to the Diophantine equation

(X2 + 4)(Y 2 + 1) = Z4 are (X,Y, Z) = (11, 2, 5), (2, 239, 26), (478, 1, 26).

(12) The equation (X2 + 4)(Y 2− 4) = Z4. We divide the proof into two
cases.

Case 1: 2 - XY . We define r, s, and t as at the beginning of the proof
of Theorem 1.2(1). We only consider the solution (X,Y, Z) of (1.15) with
2 - XY . From (1.15) we have

(5.27) rts2(tu2
1)2−X2 = 4, Y 2−rts2(ru2

2)2 = 4, Z = rstu1u2, 2 - Z.
From the second equation of (5.27) there are positive integers a, b, r1, r2,
u3, u4 such that

Y + 2 = ar21u
4
3, Y − 2 = br22u

4
4, ab = rts2, r = r1r2, u2 = u3u4,

hence

(5.28) ar21u
4
3 − br22u4

4 = 4, 2 - abr1r2u3u4.

If a, b > 1, then both equations rts2x2 − y2 = 1 and ax2 − by2 = 1 with
ab = rts2, a, b > 1 have integer solutions, contradicting Lemma 3.1.

If a > 1 and b = 1, then r1 = r, r2 = 1, and so

(5.29) rts2(ru2
3)2 − u4

4 = 4, u4 |u2.

If a = 1 and b = rts2, then repeating the above process for the equation
u4

3 − rts2(ru2
4)2 = 4 we eventually obtain

(5.30) rts2(rm2)2 − n4 = 4, n |u2.

Combining (5.30) or (5.29) and the first equation of (5.27) we get

(5.31) (n4 + 4)(X2 + 4) = Z4
1 , 2 - Xn.

By Theorem 1.2(1), equation (5.31) has no positive integer solutions. There-
fore, (1.15) has no positive integer solutions with 2 - XY .

Case 2: 2 |XY . It is easy to see that the equation (X2+4)(Y 2−4) = Z4

has no integer solutions when 2 |X and 2 - Y by taking the equation mod-
ulo 16.

Assume 2 |X and 2 |Y . Write X = 2X1, Y = 2Y1, Z = 2Z1. Then, from
(1.15), we obtain

(5.32) (X2
1 + 1)(Y 2

1 − 1) = Z4
1 .
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By Theorem LW1, the above equation has only the positive integer solutions
(X1, Y1, Z1) = (1, 3, 2), (239, 3, 26).

Next we consider the case 2 - X and 2 |Y . Write Y = 2Y1, Z = 2Z1.
Then

(5.33) (X2 + 4)(Y 2
1 − 1) = 4Z4

1 .

From (5.33) we have

(5.34)
rts2(tu2

1)2 −X2 = 4, Y 2
1 − 4rts2(ru2

2)2 = 1,
Z1 = rstu1u2, 2 - X.

Similarly, from the second equation of (5.34) and Lemma 3.1, we eventually
obtain

(5.35) rts2(rm2)2 − 4n4 = 1 or rts2(rm2)2 − n4 = 1.

Combining (5.35) and the first equation of (5.34) we get

(5.36) (4n4 + 1)(X2 + 4) = Z4
2 or (n4 + 1)(X2 + 4) = Z4

2 , 2 - X.

By the proof of Theorem 1.2(11), only the first equation in (5.36) has the
positive integer solution (X,n,Z2) = (11, 1, 5).

Therefore, (1.15) has only the positive integer solutions (X,Y, Z) =
(2, 6, 4), (478, 6, 52).

(13) The equation (X2 +4)(Y 2−1) = Z4. We first consider the solution
(X,Y, Z) of (1.16) with 2 - X. We retain the definitions for r, s, and t as
given at the beginning of the proof of Theorem 1.2(1). Then from (1.16) we
have

(5.37) rts2(tu2
1)2 −X2 = 4, Y 2 − rts2(ru2

2)2 = 1, Z = rstu1u2.

If 2 - u2, then from the second equation of (5.37) there are positive integers
a, b, r1, r2, u3, u4 such that

Y + 1 = ar21u
4
3, Y − 1 = br22u

4
4, ab = rts2, r = r1r2, u2 = u3u4,

hence

(5.38) ar21u
4
3 − br22u4

4 = 2, 2 - abr1r2u3u4.

It follows that both equations rts2x2 − y2 = 1 and ax2 − by2 = 2, ab =
rts2, 2 - xy have integer solutions, contradicting Lemma 3.1.

If 2 |u2, then from the second equation of (5.38) there are positive inte-
gers a, b, r1, r2, u3, u4 such that

Y + 1 = 2ar21u
4
3, Y − 1 = 2br22u

4
4, ab = rts2, 2r = r1r2, u2 = u3u4,

hence

(5.39) ar21u
4
3 − br22u4

4 = 1.
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If a, b > 1, then both equations rts2x2−y2 = 1 and ax2−by2 = 1, ab = rts2,
a, b > 1 have integer solutions, contradicting Lemma 3.1. If a > 1 and b = 1,
then r1 = r, r2 = 1, and so

(5.40) rts2(ru2
3)2 − 4u4

4 = 1.

If a = 1 and b = rts2, then repeating the above process for the equation
u4

3 − rts2(ru2
4)2 = 1 we eventually obtain

(5.41) rts2(rm2)2 − 4n4 = 1.

Combining (5.41) or (5.40) and the first equation of (5.37) we get

(5.42) (4n4 + 1)(X2 + 4) = Z4
1 , 2 - X.

By the proof of Theorem 1.2(11), equation (5.42) has only the positive inte-
ger solution (X,n,Z1) = (11, 1, 5). Therefore, (1.16) has no positive integer
solutions with 2 - X.

Next we consider the case 2 ‖ X. Write X = 2X1, Z = 2Z1 with X1

odd. From (1.16) we obtain

(5.43) X2
1 + 1 = 2rts2(tu2

1)2, Y 2 − 1 = 2rts2(ru2
2)2.

Similarly, from the second equation of (5.43) and Lemma 2.1, we obtain

(5.44) 2rts2(2ru2
3)2 = u4

4 + 1, u3, u4 ∈ N.

Combining the first equation of (5.43) and equation (5.44) leads to

(u4
4 + 1)(X2

1 + 1) = Z4
2 ,

which is impossible by Theorem LW1.
Now we consider the case 4 |X. Write X = 2X1, Z = 2Z1 with X1 even.

We obtain

(5.45) X2
1 + 1 = rts2(tu2

1)2, Y 2 − 1 = rts2(2ru2
2)2.

Similarly, from the second equation of (5.45) and Lemma 3.1, we obtain

(5.46) rts2(ru2
3)2 = (2u2

4)2 + 1, u3, u4 ∈ N.

Combining the first equation of (5.45) and equation (5.46), we derive

((2u2
4)2 + 1)(X2

1 + 1) = Z4
2 ,

which is impossible by Theorem LW1. Thus the Diophantine equation
(X2 + 4)(Y 2 − 1) = Z4 has no positive integer solutions.

(14) The equation (X2 − 4)(Y 2 + 1) = Z4. We consider the solution
(X,Y, Z) of (1.17) with 2 - X. We retain the definitions for r, s, and t as
given at the beginning of the proof of Theorem 1.2(2). Then

(5.47) X2 − 4 = rts2(tu2
1)2, Y 2 + 1 = rts2(ru2

2)2, Z = rstu1u2.
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From the first equation of (5.47) there are positive integers a, b, t1, t2, u3, u4

such that

X + 2 = at21u
4
3, X − 2 = bt22u

4
4, ab = rts2, t = t1t2, u2 = u3u4,

hence

(5.48) at21u
4
3 − bt22u4

4 = 4, 2 - abr1r2u3u4.

If a, b > 1, then both equations rts2x2−y2 = 1 and ax2−by2 = 1, ab = rts2,
have integer solutions, contradicting Lemma 3.1.

If a > 1 and b = 1, then r1 = r, r2 = 1, and so

(5.49) rts2(ru2
3)2 − u4

4 = 4, u4 |u2.

If a = 1 and b = rts2, then repeating the above process for the equation
u4

3 − rts2(ru2
4)2 = 4 we finally obtain

(5.50) rts2(rm2)2 − n4 = 4, n |u2.

Combining (5.50) or (5.49) and the second equation of (5.47) we get

(5.51) (n4 + 4)(Y 2 + 1) = Z4
1 , 2 - n.

By Theorem 1.2(11), equation (5.51) has no positive integer solutions. There-
fore, (1.17) has no positive integer solutions with 2 - X.

We now consider the case 2 ‖ X. Write X = 2X1, Z = 2Z1 with X1 odd.
We obtain

(5.52) X2
1 − 1 = 2rts2(tu2

1)2, Y 2 + 1 = 2rts2(ru2
2)2.

From the first equality of (5.52) and Lemma 3.1 we get

(5.53) X1 + 1 = 4rts2(2ru2
3)2, X1 − 1 = 2u4

4.

Thus

(5.54) 2rts2(2ru2
3)2 = u4

4 + 1,

which is impossible by taking the equation modulo 4.
Now we assume that 4 |X. Write X = 2X1, Z = 2Z1 with X1 even. We

obtain

(5.55) X2
1 − 1 = rts2(tu2

1)2, Y 2 + 1 = rts2(2ru2
2)2;

however, the second equation of (5.55) is impossible by taking it modulo 4.
Thus the Diophantine equation (X2−4)(Y 2+1) = Z4 has no positive integer
solutions.

(15) The equation (X2 − 4)(Y 2 − 1) = Z4. We first consider the case
2 - X. An argument similar to the one employed in the solution of (1.18)
shows that there exist positive integers k and l such that 3 | l and X = Tk

and Y = Tl and
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(5.56) Uk = tu2
1, Ul = 2ru2

2

for some positive integers u1 and u2.
We may assume that d = gcd(k, l), k = dk1, l = 2ul1d, 2 - k1l1, u ≥ 0.

Then Ud = gcd(Uk, Ul) = c� with c | rt since gcd(r, t) = 1. Since

Ul =
Ul

Ul1d
· Ul1d, gcd(Ul/Ul1d, rUl1d) = 1,

we have
Ul1d = 2r�.

Since every prime divisor of gcd(Ul1d/Ud, rtUd) divides l1, we obtain

Ul1d/Ud = m�, m | l1.

Applying Lemma 3.4 to

Ql1 =
Ul1d

Ud
=

(αd)l1 + (−αd)l1

(αd) + (−αd)

we have l1 = 3. Similarly, k1 ∈ {1, 5}. We first consider the case k1 = 1.
Then

Ud = t�, U3d = 2r�.

Since every prime divisor of gcd(T3d/Td, rt) divides 3, and rt |T3d/Td (as
gcd(r, t) = 1), we have rt = 3, which is impossible since T 2

d −3s2U2
d = 4 and

2 - Td. Hence
k1 = 5, T3d = 2r�, T5d = t�.

Since every prime divisor of gcd(T3d/Td, rt) divides 3, we have r | 3; similarly,
t | 5.

Since T 2
d − rts2U2

d = 4, 2 - Td, we have rt 6= 1, 3, 15, so r = 1 and t = 5.
Now from Ud = gcd(U3d, U5d) = �, U5d = 5�, r = 1, t = 5, we derive that
5s4U4

d +5s2U2
d +1 = �, and so sTd = 0 by Lemma 3.15, which is impossible.

Therefore (1.18) has no positive integer solutions with 2 - X.
Now we consider the case 2 |X. Write X = 2X1, Z = 2Z1. Then (1.18)

becomes

(5.57) (X2
1 − 1)(Y 2 − 1) = 4Z2

1 .

We first consider the case 2 |X1Y . We may assume that 2 |Y and 2 - X1.
From (5.57), there are positive integers u1, u2 such that

(5.58) Y 2 − 1 = rts2(ru2)2, X2
1 − 1 = 4rts2(tu2

1)2, 2 - rtsu2.

From the first equation of (5.58), there exist odd integers m,n, r1, r2, u3, u4

such that

(5.59) m(r1u2
3)2 − n(r2u2

4)2 = 2, mn = rts2, r1r2 = r, u3u4 = u2.
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From the second equation of (5.58) and Lemma 3.1, there exist positive
integers t1, t2, u5, u6 such that

(5.60) X + 1 = 2t21u
4
5, X − 1 = 2t22rts

2u4
6, 2 |u6, t1t2 = t.

It follows that t1 = 1 and

(5.61) u4
5 − rts2t2u4

6 = 1, 2 |u6.

From (5.59), (5.61) and Lemma 3.1, we derive

u2
5 + 1 = 2u2

7,

which implies that u5 = 239 and

2392 − 1 = 3 · 5 · 7 · 17 · 25 = 8rts2u4
8,

which is impossible.
Finally we consider the case 2 - X1Y . From (5.57), there are positive

integers u1, u2 such that

(5.62) Y 2 − 1 = 2rts2(ru2)2, X2
1 − 1 = 2rts2(tu2

1)2, 2 - rtsu2.

From the first equation of (5.62), there exist positive integers m > 1, n, r1,
r2, u3, u4 such that

(5.63)
m(r1u2

3)2 − n(r2u2
4)2 = 1, mn = 2rts2 or mn = rts2/2,
r1r2 = r, u3u4 = u2.

From the second equation of (5.62), (5.63) and Lemma 3.1, there exist pos-
itive integers t1, t2, u5, u6 such that

(5.64) mt21u
4
5 − nt22u4

6 = 1, t1t2 = t.

Since m > 1, it follows from Lemma 3.13, (5.63) and (5.64) that r1t1 = 1,
and so rt |n and m = 2s21. Therefore we have the equation

(5.65)
2s21u

4
3 − rts22(ru2

4)2 = 1, 2s21u
2
5 − rts22(tu2

6)2 = 1,
s1s2 = s or s1s2 = s/2.

We denote by (T1, U1) the minimal positive integer solution of the Pell equa-
tion

(5.66) 2s21T
2 − rts22U2 = 1

and let ε = T1

√
2s21 +U1

√
rts22. For a positive integer k ≥ 1, let (Tk, Uk) be

positive integers given by

Tk

√
2s21 + Uk

√
rts22 = εk.

Assume rt > 1. By Lemma 3.12, we assume that T1

√
2s21 + U1

√
rts22 =

u2
3

√
2s21 + ru2

4

√
rts22 and Tk

√
2s21 + Uk

√
rts22 = u2

5

√
2s21 + tu2

6

√
rts22. Then

Uk = tu2
6 = U1 · tu2

6/(ru
2
4). It follows that rt | k, say k = rtl for some positive
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integer l. Observe that k = p ≡ 3 (mod 4) and rt > 1; by Lemma 3.12 again,
we obtain l = 1 and the equation

2s21 − ps22U4 = 1, p ≡ 3 (mod 4),

which is impossible by taking it modulo 8.
Now we assume that rt = 1. Then, by Lemma 3.9, the equation X2 −

2s2U4 = 1 has at most one positive integer solution (X,U), so X1 = Y,
u1 = u2 by (5.58). Obviously, (5.58) has infinite many trivial solutions
(X1, Y, S, u1, u2) = (Y, Y, S, 1, 1), where Y 2 − 2S2 = 1.

Therefore the Diophantine equation (X2− 4)(Y 2− 1) = Z4 has only the
trivial solutions (X,Y, Z) = (2Y, Y, 2S), where Y 2 − 2S2 = 1.

(16) The equation (X2− 2)(Y 2 + 4) = Z4. We divide the proof into two
cases.

Case 1: 2 - XY . We consider the more general equation

(X2 − 2)(Y 2 + 4) = Z2, 2 - XY.
From the above equation we have

(5.67) X2 + 2 = du2
1, du2

2 − Y 2 = 4, Z = du1u2.

It follows from the second equation of (5.67) that the equation dx2 − y2

= 1 has a solution, which is impossible by Lemma 3.1 since both equations
x2 − dy2 = 2 and dx2 − y2 = 1 would then have solutions.

Case 2: 2 |XY . It is easy to see that the equation (X2 − 2)(Y 2 + 4)
= Z4 has no integer solutions when 2 |X and 2 - Y by taking the equation
modulo 4. We consider two subcases.

Subcase 1: 2 |X and 2 |Y . Write X = 2X1, Y = 2Y1, Z = 2Z1. We
obtain

(5.68) (2X2
1 − 1)(Y 2

1 + 1) = 2Z4
1 .

We retain the definitions for r, s and t as given at the beginning of the proof
of Theorem 1.1, but define them to be square-free numbers built up from
prime divisors of 2X2

1 − 1 instead of AX2
1 + 1. We obtain

2X2
1 − rts2(tu2

1)2 = 1,(5.69)

2rts2(ru2
2)2 − Y 2

1 = 1,(5.70)

for some positive integers u1 and u2 with Z1 = rtsu1u2. It follows from
Lemma 3.1 that rts2 = 1. Therefore

2X2
1 − u4

1 = 1,(5.71)

Y 2
1 − 2u4

2 = −1.(5.72)

It follows from (5.71), (5.72) and Lemma 3.7, and a theorem of Ljunggren,
that X1 = 1, u1 = 1, (Y1, u2) = (1, 1), (239, 13).
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Subcase 2: 2 - X and 2 |Y . Write Y = 2Y1, Z = 2Z1. We obtain

(5.73) (X2 − 2)(Y 2
1 + 1) = 4Z4

1 .

We retain the definitions for r, s and t as given at the beginning of the
proof of Theorem 1.2(3). We have

X2 − rts2(tu2
1)2 = 2,(5.74)

rts2(2ru2
2)2 − Y 2

1 = 1,(5.75)

for some positive integers u1 and u2. It follows from Lemma 3.1 that rts2 = 1.
Therefore

(5.76) X2 − u4
1 = 2,

which is impossible. Thus the only positive integer solutions of the Diophan-
tine equation (X2−2)(Y 2+4) = Z4 are (X,Y, Z) = (2, 2, 2) and (2, 478, 26).

(17) The equation (X2−4)(Y 2−1) = 4Z4. The proof is almost the same
as for (X2 − 4)(Y 2 − 1) = Z4, 2 - X; we leave the details to the reader.

This completes the proof of Theorem 1.2.
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