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On the distribution of primitive Pythagorean triangles
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1. Introduction and main results. A primitive Pythagorean triangle
is a triple (a, b, c) of natural numbers with a2 + b2 = c2, a < b, gcd(a, b, c)
= 1. For a large real number x, let P (x), A(x) and H(x) denote the number
of primitive Pythagorean triangles with perimeter, area and hypotenuse less
than x, respectively. Many authors have studied the asymptotic behavior of
P (x), A(x) and H(x).

In 1900, D. N. Lehmer [10] showed that

P (x) =
log 2
π2

x+ o(x), H(x) =
1

2π
x+ o(x).

In 1948, D. H. Lehmer [9] proved

(1.1) P (x) =
log 2
π2

x+O(x1/2 log x).

In 1955, J. Lambek and L. Moser [8] obtained (1.1) again and proved

(1.2) H(x) =
1

2π
x+O(x1/2 log x)

and

(1.3) A(x) = cx1/2 +O(x1/3),

where c = (2π5)−1/2Γ 2(1/4).
In 1955, R. E. Wild [21] proved

(1.4) A(x) = cx1/2 − c′x1/3 +Rarea(x),

where

c′ =
|ζ(1/3)|(1 + 2−1/3)
ζ(3/4)(1 + 4−1/3)

and Rarea(x) = O(x1/4 log x).
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In 1980, J. Duttlinger and W. Schwarz [3] proved that there exists a
positive constant δ > 0 such that

(1.5) Rarea(x) = O(x1/4e−δ log1/2 x).

It is difficult to reduce the exponents 1/2, 1/2, 1/4 in the error terms of
(1.1), (1.2), and (1.4), since the current technique depends on the strongest
estimations of

∑
n≤x µ(x), and the best zero-free regions of the Riemann

zeta function so far. Therefore it is natural to search for stronger estimates
under the Riemann Hypothesis (RH). The exponent 1/4 in Rarea(x) was
improved by several authors under RH (see [11], [15], [14], [16], [22]). It
is also of interest to consider the distributions of P (x), A(x) and H(x)
unconditionally in short intervals.

In this paper, we shall prove the following

Theorem 1.1. If RH is true, then for any ε > 0, we have

(1.6) P (x) =
log 2
π2

x+O(x
5805
15408

+ε).

Theorem 1.2. For any sufficiently small ε > 0 and x
131
416

+2ε < H ≤ x,
we have

(1.7) P (x+H)− P (x) =
log 2
π2

H +O(Hx−ε).

Theorem 1.3. For any sufficiently small ε > 0 and x
435
616

+2ε < H ≤ x,
we have

(1.8) A(x+H)−A(x) =
c

2
Hx−1/2 +O(Hx−1/2−ε),

where c is as in (1.3).

Notations. We use {t} and [t] to denote the fractional part and the
integer part of t, respectively, and ‖t‖ to denote the distance between t
and the nearest integer; ε denotes a small positive constant which may be
different at different occurrences; µ(n) denotes the Möbius function; e(t) =
e2πit; m ∼ M means M < m ≤ 2M and m � M means c1M < m ≤ c2M
for some c2 > c1 > 0.

2. Proof of Theorem 1.1

2.1. Some preliminary lemmas. The following lemmas will be needed
in our proof. Lemma 2.1 is the well-known Euler–Maclaurin summation
formula (for example, see Theorem 2.1 of Chapter 2 in [17]). Lemma 2.2 is
due to Vaaler [19]. Lemma 2.3 is Theorem 2.2 of Min [12] (see also Lemma 6
of Chapter 1 in [20]). Lemma 2.4 is Theorem 2 of Baker [1] with (κ, λ) =
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(1/2, 1/2). Lemma 2.5 is Theorem 3 of Robert and Sargos [18]. Lemmas 2.6–
2.8 are Lemma 6, Proposition 1 and Lemma 1 of Fouvry and Iwaniec [5],
respectively.

Lemma 2.1. Suppose f(u) is three times continuously differentiable on
[a, b]. Then∑

a<n≤b
f(n) =

b�

a

f(u) du− f(b)ψ(b) + f(a)ψ(a) + ψ1(b)f ′(b)

− ψ1(a)f ′(a)−
b�

a

ψ1(u)f ′′(u) du,

where ψ(t) = {t} − 1/2, ψ1(t) = {t}2/2− {t}/2 + 1/12.

Lemma 2.2. For any H0 ≥ 2, we have

ψ(t) =
∑

1≤|h|≤H0

a(h)e(ht) +O
( ∑

0≤h≤H0

b(h)e(ht)
)
,

where a(h)� 1/h and b(h)� 1/H0.

Lemma 2.3. Let A1, . . . , A5 be absolute positive constants. Suppose f(x)
and g(x) are algebraic functions on [a, b] and

A1

R
≤ |f ′′(x)| ≤ A2

R
, |f ′′′(x)| � A3

RU
, U > 1,

|g(x)| ≤ A4G, |g′(x)| ≤ A5GU
−1
1 , U1 > 1.

Suppose α ≤ f ′(x) ≤ β for x ∈ [a, b]. Then∑
a<n≤b

g(n)e(f(n)) = eπi/4
∑

α≤u≤β
bu

g(nu)√
f ′′(nu)

e(f(nu)− unu)

+O(G log(β − α+ 2) +G(b− a+R)(U−1 + U−1
1 ))

+O

(
Gmin

[√
R,max

(
1
〈α〉

,
1
〈β〉

)])
,

where nu is the solution of f ′(n) = u,

〈t〉 =
{
‖t‖ if t is not an integer,
β − α if t is an integer,

bu =
{

1 if α < u < β, or both α and β are not integers,
1/2 if u = α or β is an integer,√

f ′′ =
{√

f ′′ if f ′′ > 0,
i
√
|f ′′| if f ′′ < 0.

Lemma 2.4. Let α, α1, α2, z be real numbers such that zαα1α2 6= 0 and
α /∈ N. Let M ≥ 2, M1 ≥ 1, M2 ≥ 1, and let am and bm1m2 be complex
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numbers with |am| ≤ 1, |bm1m2 | ≤ 1. Let F1 = |z|MαMα1
1 Mα2

2 . If F1 ≥
M1M2, then∑
m∼M

∑
m1∼M1

∑
m2∼M2

ambm1m2e(zm
αmα1

1 mα2
2 )

�MM1M2{(M1M2)−1/2 + F
1/6
1 M−1/3(M1M2)−1/6} log(2MM1M2).

Lemma 2.5. Let α(α− 1)βγ 6= 0, X > 1. Define∣∣∣ ∑
M<m≤2M

zm

∣∣∣∗ := max
M<M1≤M2≤2M

∣∣∣ M2∑
m=M1

zm

∣∣∣
and

S :=
∑
h∼H

∑
n∼N

∣∣∣∣ ∑
M<m≤2M

e

(
X

mαhβnγ

MαHβNγ

)∣∣∣∣∗,
where H, M , N are positive integers. Then for any ε > 0, we have

S �ε (HNM)1+ε

((
X

HNM2

)1/4

+
1

M1/2
+

1
X

)
.

Lemma 2.6. Let 0 < L ≤ N < vN < λL and let al be complex numbers
with |al| ≤ 1. Then∑

N<n<vN

an =
1

2π

L�

−L

( ∑
L<l<λL

all
−it
)
N it(vit − 1)t−1 dt+O(log(2 + L)),

where the constant implied in O depends on λ only.

Lemma 2.7. Let X and Y be two finite sets of real numbers, X ⊂
[−X,X], Y ⊂ [−Y, Y ]. Then for any complex functions u(x) and v(y),∣∣∣∑
x∈X

∑
y∈Y

u(x)v(y)e(xy)
∣∣∣2

≤ 20(1 +XY )
∑

x,x′∈X
|x−x′|≤Y −1

|u(x)u(x′)|
∑
y,y′∈Y

|y−y′|≤X−1

|v(y)v(y′)|.

Lemma 2.8. Let αβ 6= 0, ∆ > 0, M ≥ 1 and N ≥ 1. Let A(M,N ;∆) be
the number of quadruples (m, m̃, n, ñ) such that∣∣∣∣(m̃m

)α
−
(
ñ

n

)β∣∣∣∣ < ∆,

with M < m, m̃ ≤ 2M and N < n, ñ ≤ 2N . Then

A(M,N ;∆)�MN log(2MN) +∆M2N2.
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2.2. Reduction of the problem. We always assume x > 0 is a large
real number in this paper. Define

Dper(x) := {(α, β) ∈ R2 : 2α2 + 2αβ ≤ x, 0 < β < α}.
Let Lper(x) and L′per(x) denote the numbers of lattice points and of primitive
lattice points inside Dper(x), respectively (“per” comes from “perimeter”).

Lemma 2.9. We have

P (x) =
∞∑
k=0

(−1)kL′per

(
x

2k

)
, L′per(x) =

∞∑
m=1

µ(m)Lper

(
x

m2

)
.

Proof. This is contained in Lambek and Moser [8].

For Lper(x), we have the following

Lemma 2.10. We have

(2.1) Lper(x) = c1x− c2x1/2 + Eper(x),

where

c1 =
log 2

4
, c2 =

√
2 + 1
4

,(2.2)

Eper(x) = −
∑

1
2
x1/2<d≤ 1√

2
x1/2

ψ

(
x

2d

)
+O(1).(2.3)

Proof. Let x′ = 1
2((2x+ 1)1/2− 1). By the definition of Lper(x), we have

Lper(x) =
∑

2d2+2dl≤x
l<d

1 =
∑

2d2+2dl≤x
l≤d

1−
∑

2d2+2dl≤x
d=l

1(2.4)

=
∑
d≤x′

∑
l≤min(d, x

2d
−d)

1−
[
x1/2

2

]

=
∑

d≤ 1
2
x1/2

d+
∑

1
2
x1/2<d≤x′

([
x

2d

]
− d
)
−
[
x1/2

2

]
= Σ1 + 2Σ2 −Σ3 − x1/2/2 +O(1),

where

Σ1 =
∑

1
2
x1/2<d≤x′

[
x

2d

]
, Σ2 =

∑
d≤ 1

2
x1/2

d, Σ3 =
∑
d≤x′

d.

It is easy to see that

(2.5) Σ2 =
1
2

[
x1/2

2

]([
x1/2

2

]
+ 1
)

=
x

8
− x1/2

2
ψ

(
x1/2

2

)
+O(1).
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Similarly,

(2.6) Σ3 =
x

4
−
√

2
4
x1/2 −

√
2

2
x1/2ψ(x′) +O(1).

For Σ1, we have

(2.7) Σ1 =
∑

1
2
x1/2<d≤x′

(
x

2d
− ψ

(
x

2d

)
− 1

2

)

=
x

2

∑
1
2
x1/2<d≤x′

1
d
−

∑
1
2
x1/2<d≤x′

ψ

(
x

2d

)
− 1

2

∑
1
2
x1/2<d≤x′

1

=
x

2

∑
1
2
x1/2<d≤x′

1
d
−
√

2− 1
4

x1/2 −
∑

1
2
x1/2<d≤

√
2

2
x1/2

ψ

(
x

2d

)
+O(1).

By Lemma 2.1 we have

(2.8)
∑

1
2
x1/2<d≤x′

1
d

=
x′�

1
2
x1/2

1
t
dt−

√
2x−1/2ψ(x′) + 2x−1/2ψ

(
x1/2

2

)
+O

(
1
x

)

= log
(

1
2

((2x+ 1)1/2 − 1)
)
− log

(
x1/2

2

)
−
√

2x−1/2ψ(x′)

+ 2x−1/2ψ

(
x1/2

2

)
+O

(
1
x

)
=

log 2
2
−
√

2
2
x−1/2 −

√
2x−1/2ψ(x′) + 2x−1/2ψ

(
x1/2

2

)
+O

(
1
x

)
.

Now Lemma 2.10 follows by (2.4)–(2.8).

Lemma 2.10 is important in our proofs of Theorems 1.1 and 1.2. Note
that the expression (2.3) of Eper(x) is similar to

∆(x) = −2
∑

d≤x1/2

ψ

(
x

d

)
+O(1),

which appears as the error term in the Dirichlet divisor problem. Therefore,
many approaches used in the study of ∆(x) can also be applied to the
estimate of Eper(x). The latest result for the upper bound of ∆(x) reads
(see Huxley [6])

∆(x)� x
131
416 (log x)

26947
8320 .
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Similarly, combining (2.3) with the results of Huxley [6], we immediately get

(2.9) Eper(x)� x
131
416

+ε.

Suppose 1 ≤ y � x1/2 is a parameter to be determined. By Lemma 2.10,
we decompose L′per(x) as

L′per(x) =
∑
m≤y

µ(m)Lper

(
x

m2

)
+
∑
m>y

µ(m)Lper

(
x

m2

)
(2.10)

= c1x
∑
m≤y

µ(m)
m2

− c2x1/2
∑
m≤y

µ(m)
m

+ S1 + S2,

where c1, c2 are defined by (2.2), and

S1 =
∑
m≤y

µ(m)Eper

(
x

m2

)
,(2.11)

S2 =
∑
m>y

µ(m)Lper

(
x

m2

)
.(2.12)

2.3. Estimation of S2. We shall estimate S2 in a standard way. The
key step is a familiar contour integration technique in the spirit of Mont-
gomery and Vaughan [13], which is used in many occasions when estimating
primitive lattice points (for example, see [7], [16], [23]). We only give an
outline of the technique here.

Suppose s = σ + it. For σ > 1, define

Z(s) :=
∞∑
n=1

r(n)
ns

, where r(n) :=
∑

2d2+2dl=n
l<d

1.

Obviously, r(n) ≤ d(n)� nε.

Lemma 2.11. Z(s) has the following properties:

(i) Z(s) has an analytic continuation to σ > 1/4, which has two simple
poles at s = 1, 1/2 with residues c1, −c2/2 respectively, where c1, c2
are defined by (2.2).

(ii) Suppose 1/4 < θ < 1/2 is the smallest α such that Eper(x) � xα.
For any real parameter T ≥ 10, we have

2T�

T

∣∣∣∣Z(9 + 4θ
16

+ it

)∣∣∣∣2 dt� T 1+ε.

Proof. This can be proved in the same way as Lemma 5.2 of Zhai [22]
(quoted as Lemma 4.4 in this paper) with slight modifications only.

To estimate S2, we need the following lemma, the proof of which is
contained in Nowak [16].
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Lemma 2.12. Assume RH. Suppose that for some σ ≥ 1/2, T ≥ 10,

2T�

T

|Z(σ + it)|2 dt� T 1+ε.

Then

S2 = c1x
∑
m>y

µ(m)
m2

+O(xθ+ε + xσ+εy1/2−2σ),

where θ is as in Lemma 2.11(ii).

By (2.9) and Lemmas 2.11, 2.12, we take θ = 131
416 + ε, σ = 9+4θ

16 and
y = x

651
1926 , thus

S2 = c1x
∑
m>y

µ(m)
m2

+O(xθ+ε + x(9+4θ)/16+εy−(5+4θ)/8)(2.13)

= c1x
∑
m>y

µ(m)
m2

+O(x
5805
15408

+ε).

2.4. Estimation of S1. By (2.11) and Lemma 2.10,

S1 = −
∑
m≤y

µ(m)
∑

x1/2

2m
<u≤ x1/2

√
2m

ψ

(
x

2um2

)
+O(y).

Our aim is to prove S1 � x
5805
15408

+ε for y = x
651
1926 . By Lemma 2.2, we have

S1 � |S1(x, y,H0)|+ |S2(x, y,H0)|+ x1/2+εH−1
0 + y,

where

S1(x, y,H0) =
∑
m≤y

µ(m)
∑
h≤H0

a(h)
∑

x1/2

2m
<u≤ x1/2

√
2m

e

(
hx

2um2

)
,

S2(x, y,H0) =
∑
m≤y

∣∣∣∣ ∑
h≤H0

b(h)
∑

x1/2

2m
<u≤ x1/2

√
2m

e

(
hx

2um2

)∣∣∣∣,
with a(h)� 1/h and b(h)� 1/H0. From now on we will take H0 = x

1899
15408 ,

thus

(2.14) S1 � |S1(x, y,H0)|+ |S2(x, y,H0)|+ x
5805
15408

+ε.
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We shall only prove S1(x, y,H0) � x
5805
15408

+ε. The proof of S2(x, y,H0) �
x

5805
15408

+ε is similar and easier. By Lemma 2.3,

S1(x, y,H0)

� x1/4

∣∣∣∣ ∑
m≤y

µ(m)
∑
h≤H0

ha(h)
∑

h≤v≤2h

1
m1/2h3/4v3/4

e

(√
2x1/2h1/2v1/2

m

)∣∣∣∣
+ x

5805
15408 .

Let n = hv. By a splitting argument and partial summation, we have

(2.15) x−εS1(x, y,H0)� x1/4 sup
1�M�y

1�N�H2
0

M−1/2N−3/4|S∗1(x,M,N)|+ x
5805
15408 ,

where

S∗1(x,M,N) =
∑
m∼M

µ(m)
∑
n∼N

ane

(√
2x1/2n1/2

m

)
with |an| ≤ 1.

We shall estimate M−1/2N−3/4S∗1(x,M,N) in three cases.

Case 1: M ≤ x3/11, N � H2
0 . Note that S∗1(x,M,N) is the same

exponential sum as in [2] apart from the constant
√

2. We use the result
of [2] directly to obtain

(2.16) x−εM−1/2N−3/4|S∗1(x,M,N)| � x5/44,

for M � x3/11 and N � x3/11. This estimate is acceptable for us, since
H2

0 � x3/11 and 1
4 + 5

44 <
5805
15408 .

Case 2: x3/11 < M � y, x−
1953
3852M2 ≤ N � H2

0 . By Lemma 2.4 (take
m1 = 1,m2 = n),

x−εM−1/2N−3/4|S∗1(x,M,N)| �M1/2N−1/4 + x1/12N1/6 � x
1953
15408 .

Case 3: x3/11 < M � y,N � x−
1953
3852M2. By the skillful decomposition

due to Montgomery and Vaughan [13] and a splitting argument, we can
decompose S∗1(x,M,N) into at most O(logM) sums of the following two
forms:

Σ1 =
∑
n∼N

an
∑
k∼K

bk
∑

r∼Mk−1

e

(√
2x1/2n1/2

kr

)
, K �M1/3,

Σ2 =
∑
n∼N

an
∑
k∼K

bk
∑

r∼Mk−1

cre

(√
2x1/2n1/2

kr

)
, M1/3 � K �M1/2,
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where bk � M ε and cr � M ε. Applying Lemma 2.5 to Σ1 with X, M , H,
N replaced by x1/2M−1N1/2, MK−1, K, N , respectively, we get

(2.17) x−εM−1/2N−3/4Σ1

� x1/8M−1/4N1/8K1/4 +N1/4K1/2 + x−1/2M3/2N−1/4

� x
1899
30816M1/12 + x−

1953
15408M2/3 + x−1/2M3/2 � x

1953
15408 .

Applying Lemma 2.6 to the sum over r in Σ2, we get

Σ2 �

1
2
MK−1�

− 1
2
MK−1

∣∣∣∣t−1(2it − 1)
∑
n∼N

an
∑
k∼K

bk(Mk−1)it

×
∑

1
2
Mk−1<r<2Mk−1

crr
ite

(√
2x1/2n1/2

kr

)∣∣∣∣ dt+O(NK log x).

Applying Lemma 2.7 to the three-dimensional exponential sum in the inte-
gral with X =

√
2x1/2r−1 and Y = n1/2k−1, we get

(2.18) x−εΣ2 � x1/4N1/4M−1/2A1/2
1 A

1/2
2 +NK,

where

A1 =
∑

|x1/2r−1
1 −x1/2r−1

2 |�N−1/2K

r1,r2∼MK−1

1, A2 =
∑

|n1/2
1 k−1

1 −n
1/2
2 k−1

2 |�x−1/2MK−1

r1,r2∼MK−1

k1,k2∼K

1.

For A1 we have

A1 �
∑

|r1−r2|�x−1/2M2N−1/2K−1

r1,r2∼MK−1

1(2.19)

�MK−1(1 + x−1/2M2N−1/2K−1).

Applying Lemma 2.8 to A2, we have

A2 � NK log(NK) + (x−1/2MN−1/2)N2K2.(2.20)

Combining (2.19), (2.20) with (2.18) yields

x−εM−1/2N−3/4Σ2

� x−1/4M +N1/4K1/2 +M1/2N−1/4K−1/2 + x1/4M−1/2

� x−1/4M + x−
1953
15408M3/4 +M1/3 + x

1
4M−1/2 � x

1953
15408 .

Now S1 � x
5805
15408

+ε follows by combining the estimates in Cases 1–3 with
(2.14) and (2.15).
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2.5. Proof of Theorem 1.1. Under the assumption of RH, we have

c3x
1/2
∑
m≤y

µ(m)
m
� x1/2+εy−1/2 � x

5805
15408 .

Combining this and the estimates for S1, S2 with (2.10), we get

(2.21) L′per(x) = c1ζ(2)−1x+O(x
5805
15408

+ε).

Theorem 1.1 follows immediately from (2.21) and Lemma 2.9.

3. Proof of Theorem 1.2. By (1.1), it is easy to see that (1.7) holds
for x1/2+2ε < H ≤ x. Hence we only need to prove (1.7) for x

131
416

+2ε < H ≤
x1/2+2ε. By Lemma 2.9, we write

L′per(x+H)− L′per(x) =
∞∑
m=1

µ(m)
(
Lper

(
x+H

m2

)
− Lper

(
x

m2

))
=
∑
m≤xε

+
∑
m>xε

,

say. By Lemma 2.10 and (2.9), we have∑
m≤xε

= c1ζ(2)−1H +O(x
131
416

+ε).

To estimate
∑

m>xε , we need the following lemma which is contained in the
proof of Theorem 1 of Filaseta and Trifonov [4].

Lemma 3.1. For any integer k ≥ 1, we have∑
x≤nmk<x+y

m>xε

1� yx−ε/2 + x1/(2k+1)+ε.

Now we estimate
∑

m>xε . Note that Lper(x) =
∑

n≤x r(n). Hence by
Lemma 3.1,∑

m>xε

=
∑

x≤nm2<x+H
m>xε

r(n)µ(m)� xε
2

∑
x≤nm2<x+H

m>xε

1� Hx−ε + x1/5+3ε,

where we have used the estimate r(n) � nε. By the above arguments, we
get

L′per(x+H)− L′per(x) = c1ζ(2)−1H +O(Hx−ε + x
131
416

+ε).

This together with Lemma 2.9 yields Theorem 1.2.

4. Proof of Theorem 1.3. Define

Darea(x) := {(α, β) ∈ R2 : αβ(α2 − β2) < x, 0 < β < α}.
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Let Larea(x) and L′area(x) denote the number of lattice points and primitive
lattice points inside Darea(x), respectively. For s = σ + it, σ > 1, define

f1(k; y) :=
∑

d4mn(m2−n2)=k
d>y

µ(d), f2(k) :=
∑

mn(m2−n2)=k

1,

and

F1(s; y) :=
∞∑
k=1

f1(k; y)
ks

, F2(s) :=
∞∑
k=1

f2(k)
ks

, F (s; y) :=
∑
d>y

µ(d)
d4s

.

Obviously

(4.1) F1(s; y) = F2(s)F (s; y).

To prove Theorem 1.3 we need the following lemmas. Lemma 4.1 is due
to Lambek and Moser [8]. Lemma 4.2 is due to Nowak [16, p. 176]. Lemmas
4.3 and 4.4 are (4.7) and Lemma 5.2 of Zhai [22], respectively. Lemma 4.5 is
a well-known result on the mean value of Dirichlet polynomial (for example,
see Theorem 2.2 of Chapter 29 in [17] with q = 1).

Lemma 4.1. We have

A(x) =
∞∑
k=0

(−1)kL′area

(
x

4k

)
, where L′area(x) =

∞∑
m=1

µ(m)Larea

(
x

m4

)
.

Lemma 4.2. We have

Larea(x) = c3x
1/2 − c4x1/3 + Farea(x),

where

c3 =
Γ 2(1/4)
4(2π)1/2

, c4 = |ζ(1/3)|(1 + 2−1/3),

Farea(x)� x
23
146 (log x)

315
146 .

Lemma 4.3. For 1 ≤ y � x1/4, we have∑
d≤y

∣∣∣∣Farea

(
x

d4

)∣∣∣∣� x
127
616 log

963
308 x+ x1/8y1/2 log4 x.

Lemma 4.4. F2(s) has the following properties:

(i) F2(s) has an analytic continuation to σ > 1/8. It has two simple
poles at s = 1/2, 1/3 with residues c3/2, −c4/3, respectively, where
c3, c4 are defined in Lemma 4.2.

(ii) F2(σ + it)� min
(
log |t|, 2

2σ−1

)
for σ ≥ 1/2 and |t| ≥ 2.

(iii) F2(σ + it)� |t|(4−8σ)/3 log t uniformly for 1/8 < σ1 ≤ σ ≤ 1/2 and
|t| ≥ 2.
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(iv) For any T ≥ 10, we have
2T�

T

∣∣∣∣F2

(
24
73

+ it

)∣∣∣∣2 dt� T log7 T.

Lemma 4.5. For any arithmetic function a : N→ C, we have
T�

−T

∣∣∣∣∑
n≤x

a(n)
nit

∣∣∣∣2 dt�∑
n≤x

(T + n)|a(n)|2.

From (1.4) and (1.5), it is easy to see that (1.8) holds for x3/4+ε < H ≤ x,
hence we only need to prove (1.8) for x

435
616

+2ε < H ≤ x3/4+ε. Lemma 4.1
gives

(4.2) L′area(x+H)− L′area(x) =
∞∑
d=1

µ(d)
(
Larea

(
x+H

d4

)
− Larea

(
x

d4

))
.

Suppose xε < y � x1/4 is a parameter to be determined. We divide the sum
over d into two sums,

(4.3) L′area(x+H)− L′area(x) =
∑
d≤y

+
∑
d>y

,

say. By Lemmas 4.2 and 4.3,∑
d≤y

= c3((x+H)1/2 − x1/2)
∑
d≤y

µ(d)
d2

(4.4)

− c4((x+H)1/3 − x1/3)
∑
d≤y

µ(d)
d4/3

+O(x
127
616

+ε + x1/8+εy1/2).

By the definition of Larea(x), we have∑
d>y

=
∑
d>y

µ(d)
∑

x
d4<mn(m2−n2)<x+H

d4

1(4.5)

=
∑

x<d4mn(m2−n2)≤x+H
d>y

µ(d) =
∑

x<k≤x+H
f1(k; y).

By Perron’s formula,∑
x<k≤x+H

f1(k; y) =
1

2πi

1+ε+ix�

1+ε−ix
F1(s; y)

(x+H)s − xs

s
ds+O(xε).

Move the line of integration above to <s = σ0 = 24
73 . By the residue theorem,

we have
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(4.6)
∑

x<k≤x+H
f1(k; y) = Ress=1/2 + Ress=1/3 +O(xε)

+
1

2πi

( σ0+ix�

σ0−ix
−

σ0+ix�

1+ε+ix

−
1+ε−ix�

σ0−ix

)
F2(s)F (s; y)

(x+H)s − xs

s
ds

where Ress=1/2,1/3 are the residues of F2(s)F (s; y) (x+H)s−xs

s at s = 1/2, 1/3,
respectively. By Lemma 4.4(i),

Ress=1/2 + Ress=1/3 = c3((x+H)1/2 − x1/2)
∑
n>y

µ(d)
d2

(4.7)

− c4((x+H)1/3 − x1/3)
∑
n>y

µ(d)
d4/3

.

By Lemma 4.4(ii) & (iii), we easily get

(4.8)
1

2πi

( σ0−ix�

1+ε−ix
+

1+ε+ix�

σ0+ix

)
� x

127
616

+ε.

Now we only need to estimate

1
2πi

σ0+ix�

σ0−ix
�
∣∣∣∣ x�

0

F2(σ0 + it)F (σ0 + it; y)
(x+H)σ0+it − xσ0+it

σ0 + it
dt

∣∣∣∣
�

∣∣∣ y�
0

∣∣∣+
∣∣∣ x�
y

∣∣∣,
say. By Cauchy’s equality, Lemma 4.4(iv) and Lemma 4.5, we have∣∣∣ y�

0

∣∣∣ =
∣∣∣ y�
0

F2(σ0 + it)F (σ0 + it; y)
( x+H�

x

uσ0−1+it du
)
dt
∣∣∣

�
x+H�

x

uσ0−1 du
∣∣∣ y�
0

F2(σ0 + it)F (σ0 + it; y) dt
∣∣∣

� ((x+H)σ0 − xσ0)
( y�

0

|F2(σ0 + it)|2 dt
)1/2( y�

0

|F (σ0 + it; y)|2 dt
)1/2

� Hxσ0−1y1/2
(∑
d>y

(y + d)d−8σ0

)1/2
� Hxσ0−1y3/2−4σ0

and∣∣∣ x�
y

∣∣∣ =
∣∣∣∣ x�
y

F2(σ0 + it)F (σ0 + it; y)
(x+H)σ0+it − xσ0+it

σ0 + it
dt

∣∣∣∣
� xσ0 max

y�M�x
M−1

( 2M�

M

|F2(σ0 + it)|2dt
)1/2( 2M�

M

|F (σ0 + it; y)|2 dt
)1/2
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� xσ0+ε max
y�M�x

M−1/2
(∑
d>y

(M + d)d−8σ0

)1/2

� xσ0+ε max
y�M�x

(y1/2−4σ0 +M−1/2y1−4σ0)� xσ0+εy1/2−4σ0 .

Thus

(4.9)
1

2πi

σ0+ix�

σ0−ix
� Hxσ0−1y3/2−4σ0 + xσ0+εy1/2−4σ0 .

Combining (4.6)–(4.9) with (4.5), we get∑
d>y

= c3((x+H)1/2 − x1/2)
∑
n>y

µ(d)
d2

(4.10)

− c4((x+H)1/3 − x1/3)
∑
n>y

µ(d)
d4/3

+O(x
127
616

+ε +Hxσ0−1y3/2−4σ0 + xσ0+εy1/2−4σ0).

This together with (4.3), (4.4) yields

L′area(x+H)− L′area(x)

= c3ζ(2)−1((x+H)1/2 − x1/2)− c4ζ(4/3)−1((x+H)1/3 − x1/3)

+O(x
127
616

+ε + x1/8+εy1/2 +Hxσ0−1y3/2−4σ0 + xσ0+εy1/2−4σ0)

=
c3
2
ζ(2)−1Hx−1/2 +O(x

127
616

+ε) +O(x1/8+εy1/2 + xσ0+εy1/2−4σ0)

+O(Hxσ0−1+εy3/2−4σ0 +Hx−2/3).

Take y = x1/4−1/32σ0 . On recalling σ0 = 24
73 , it is easy to check that the

second O-term is � x
127
616

+ε and the third O-term is � Hx−1/2−ε. Thus

(4.11) L′area(x+H)− L′area(x)

=
c3
2
ζ(2)−1Hx−1/2 +O(Hx−1/2−ε + x

127
616

+ε).

Now Theorem 1.3 follows from (4.11) and Lemma 4.1.
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