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1. Introduction. An interesting problem in number theory is to find
solutions of polynomial congruences. In a recent work [9], Ram Murty con-
sidered the polynomial congruence ¢ = a (mod p), where p is a prime, ¢ is
a divisor of p — 1 and a?~1/¢ = 1 (mod p). He showed that the smallest
solution xg of the congruence is < p®/%(logp)/q. In this paper, we consider
consecutive solutions of that congruence when a = 1. We show that for
a natural number M, the above polynomial congruence has M consecutive
solutions for sufficiently large primes p. More precisely, we prove

THEOREM 1.1. Let p be an odd prime and M be a natural number such
that p > 2*MM?. Further, let q¢ be a prime divisor of p — 1 with q¢ >
(p— 1)V Then the congruence

(1) z?2 =1 (mod p)
has M consecutive solutions.

We also consider two-fold generalizations of the question investigated by
Ram Murty. In one direction, we study polynomial congruences of the type

2% =a (mod d),

where d is not necessarily prime, and in another direction, we consider con-
gruences of the form

f(@)?=a (mod p), (a,p) =1,
where f(x) € (Z/pZ)[z]. In particular, we prove the following theorems:

THEOREM 1.2. Let q,d be natural numbers such that q|¢(d). Also let
n(q) be the number of elements in (Z/dZ)* whose order divides q. Suppose
that the polynomial congruence

(2) z?=a (mod d)
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has a solution. Then the smallest solution xq satisfies
d'2¢(d)log d
n(q)

Note that Theorem [1.2]is non-trivial for n(q) > d'/?*¢. As an immediate
consequence, we have

‘370| <

COROLLARY 1.3. Let p be an odd prime, d = p™,2p™ and q| ¢(d). Sup-
pose that the polynomial congruence

(3) 9= a (mod d)
has a solution. Then the smallest solution xq satisfies
3n/2n 1o
|zo| < Z%.

REMARK 1.1. The case n = 1 in the above corollary is a theorem of
Ram Murty (see [9]).

THEOREM 1.4. Let p,q be primes such that q|| (p — 1). Also let f(z) be
a polynomial over Z/pZ which has m distinct roots and (¢,deg f) = 1 for
any C| (p —1)/q. Suppose that the polynomial congruence

(4) f(@)?=a (mod p), (a,p) =1,
has a solution. Then the smallest solution xq satisfies

3/21
20| < mp7logp

REMARK 1.2. Putting f(z) = = in Theorem [1.4] we again recover the
theorem of Ram Murty (see [9]). We also refer to a related article due to
Hudson [6].

Next we study the distribution of the roots (if they exist) of the congru-
ence x4 = a (mod d) with (a,d) = 1. We list the n(q) roots as r < -+ <
Tn(g) < d. In this context, we have the following theorem:

THEOREM 1.5. Fiz o € (0,1), § > 0 and a natural number d. Suppose
that q | ¢(d) and n(q) > d°. Then there exists an £(8) > 0 such that

#{ri|r! =a (mod d), 0 <r; <ad, 1 <i<n(q)}=n(qa+ O(n(q)d==®)).

In particular, if there is a solution of 27 = a (mod d), then the smallest
solution xg s K dt—<)

As an immediate corollary, we have

COROLLARY 1.6. Fiza € (0,1),6 > 0 and d = p™,2p™ with p odd prime.
Suppose that q| ¢(d) and q > d°. Then there is £(§) > 0 such that

#{ri |rl=a (mod d), 0 <r; <ad, 1 <i<q}=qa+ O(qd—=).
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2. Preliminaries. Throughout the paper p is prime, M, V, ¢, q,d are
natural numbers, Yq is the principal character modulo p or d depending on
the context. First we shall need the following estimate due to Weil [I1].

THEOREM 2.1 (Weil). For an integer ¢ satisfying 2 < { < p and for any
non-principal characters x1,...,x¢ and distinct ay, ... ,ay € Z/pZ, we have

Y amta)xn+an)| < (E= Db
n=1

For ¢ = 2, Davenport [4] proved the above bound. Note that when ¢ = 1,
the above sum is 0. Using this, we prove the following lemma.

LEMMA 2.2. Let N(p,M) denote the number of M consecutive solutions
of
z? =1 (mod p).

Then

() s

Proof. Write
p M-1

N =30 TT (527 e+ ),

n=1 j=0

where the inner sum is over all characters modulo p. Dividing the sum into
two parts, with x? = xp and x? # xo, we have

p M-1 M
Np,M)=@E-1)""Y ] (Q+ > x((nﬂ')q)) =p<q> + A,

n=1 j=0 X p—1
XT#X0
where
1 M »p 0
A:WZZQM_Z Z Z HX%Li(n‘i‘jz‘)
{=1n=1 (j17"'7j2) (Xm17"'7xmg) =1

0<j1<<je<M~1 Xgni;éXO

M q M-/ 1 p £ .
> (5) D L e | S

) (jlr'v'j@) (Xmla--meé)n:l =1
0<j1<+<ge<M—1 XgnﬁéXO

Hence by using the estimate of Weil (Theorem , one has

A] < M\/ﬁg <1\f> <q1>M_g < 2MM/p. =

p_
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We refer to [5] where the estimate of Weil has been exploited in another
context. We shall need the following generalization of the Pélya—Vinogradov
theorem for proving Theorems [1.2] and

LEMMA 2.3. If x (# x0) is an Lth order character to the prime modulus
p and if f(x) is a polynomial over Z/pZ which has m distinct roots and
(¢,deg f) =1, then
Z x(f(n)) < my/plogp for1 <T <p.
n<T
To prove Lemma [2.3] we need the following consequence of the works of
Weil [12, [13] (see also [2] and page 45 of [10]).

THEOREM 2.4. Let p be prime and x (# xo) be a multiplicative character
of order £ with ¢| (p—1). Suppose that f(x) is a polynomial over Z/pZ which
has m distinct roots and (¢,deg f) = 1. Then

p
| > x(Fm)etan/p)| < myp,
n=1
where e(z) = e>™7,
Proof of Lemma[2.5 Write

Now -
(5) S () = S x(fm) Y (; S e(aln - b)/m)
n<T n=1 b<T a=1

0 otherwise.

lpeam 1 ifm=0 (mod p),
;2 /p)—{

By interchanging the summations in (|5]), we have

> ox(f ZZX Je(an/p) 3 e(~ab/p)

n<T a=1n=1 b<T

1P
fZSfaZ —ab/p) <<mfzf
Pa b<T
by using Theorem [2.4] and the fact that
1 p
P
)Z —ab/p)| < | sin (7a/p)| <<a

b<T
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Hence

> x(f(n)) < my/plogp. =

n<T
To prove Theorem [1.5] we need the following Erdoés—Turan inequality
(see page 8 of [§]) and a theorem of Bourgain [IJ.

LEMMA 2.5. Let {x,,} be a sequence of real numbers in (0,1). For a €
(0,1) and V € N, let N(V,a) = #{n < V|0 < z, < a}. Then, for any
natural numbers M, one has

M
\% 1
]N(V,a)—Va|§M+1—|—3 E E‘ E e(mxy)|.
m=1 n<V

REMARK 2.1. The constant 3 in the above estimate has been improved
to 1 by Mauduit, Rivat and Sérkézy [7]. The original inequality without
explicit constants is due to Davenport [4].

THEOREM 2.6 (Bourgain). Fiz § > 0 and a natural number d. For any
subgroup H of (Z/dZ)* with order > d°, there is an £'(§) > 0 such that

‘ Z e(am/d)‘ < [H|d~='©).

zeH

3. Proof of the theorems
Proof of Theorem[1.1 Using Lemma we have

M M
p(515) - v < [N -p(S 1) | <2y
Thus
q M M
(6) VD (p_1> > oM\
implies N(p, M) > 0. By hypothesis, we have
q 1 1

-1 (p—1)/m > PN
Hence @ is satisfied if p > 24MM*, u
REMARK 3.1. Note that the given conditions in Theorem ensure
g>(p— 1)171/4M > (24MM4)171/4M > 92M 2.
Proof of Theorem[1.4. Write
=3 o > e,

n<T
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where the inner sum is over all characters modulo d. Since

Z)_((G)X(nq) _ { ¢(d) if n?=a (mod d),

0 otherwise,

S counts all solutions of up to T. Further,

1
=2 sl X xaxtn + 3 x@xn},

n<T X X
x7=xXo XI#X0

where xq is the principal character modulo d. Thus, we have

=ML LY @) Y )

o 2 N o
= nqujc)z)T + O(Vdlogd),

by Pélya—Vinogradov (see page 143 of [3]). From this, we see that the main
term is greater than the error term provided
d/2¢(d)logd
n(q)

Hence the theorem. =

Proof of Theorem[1.4 Write
5= 3 1 YR
X

n<T

where the inner sum is over all characters modulo p. Then S counts the
number of solutions of up to T. As before, by dividing the inner sum
into two parts depending on whether x? = o or not, we get

I LS @) Y ).

p=1 p_lxqsﬁxa n<T

By the given hypothesis, (order(x?),deg f) = 1. Hence by Theorem we
have

g =

qT

S:Zfl

+ O(m+/plogp).
This completes the proof. m

Proof of Theorem[1.5 List the roots of the polynomial congruence
(7) z?9=a (mod d), (a,d)=1,
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as 71 < -+ < Tp(q). Consider the sequence {r;/d} of rational numbers in
(0,1). Then by the Erdés—Turan inequality (Lemma , we have

> (7))

i<n(q)

n(q) Mo
IN(n(q), @) —nlg)al < g7 +3 S -~

m=1
for any o € (0,1) and M > 1. Consider the subgroup
H={ne€(Z/dZ)"|n?=1 (mod d)}

of (Z/dZ)*. Note that all roots of (7)) lie in a coset bH with ¢ = a (mod d)
of H. Hence by the theorem of Bourgain (Theorem , we have

> ) =I5 ()

i<n(q) heH

6)'

< n(q)d==

Hence by choosing M > d=' () we see that
#{ri |rl=a (mod d),0 <r; <ad,1 <i<n(q)}
= N(n(q), a) = n(g)a + O(n(q)d ).
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