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1. Introduction and statement of results. For A € C\ {0,1}, the
Legendre normal form elliptic curve E()) is given by

(1) EN): y*=x(x—1)(z—\).

It is well known (for example, see [3]) that E()\) is isomorphic to the complex
torus C/Ly, where Ly = Zwi(\) 4+ Zwa(\), and the periods wi(\) and wa(A)
are given by the integrals

0

wid) = _SOO Ja@ - Dz - N

These integrals can be expressed in terms of Gauss’s hypergeometric func-
tion

1
(2) o Fy(z) := oFy <2’

dx T dx
and wa(d) = S\/x:z:—l Yz —A)
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where (a), =a(a+1)---(a+n—1). More precisely, for A € C\ {0, 1} with
Al [A = 1] < 1, we have

(3) w1(>\) = 2F1(1 — )\) and (.UQ()\) = 7T2F1(/\).

The parameter A is a “modular invariant”. To make this precise, for z
in H, the upper half of the complex plane, we define the lattice A, := Z+Zz,
and let p be the Weierstrass elliptic function associated to A,. The function
A(z) defined by

1+¢q 8
_ 1/2
( - H(Hq” 1/2> ’
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where ¢ := €*™*, is a modular function on I'(2) that parameterizes the
Legendre normal family above. In particular, we have C/A, = E(A(2)).
Furthermore, for any lattice A = Zwy + Zws with S(wi/w2) > 0, C/A is
isomorphic (over C) to E()) if and only if A is in the orbit of A(w;/ws)
under the action of the modular quotient SLy(Z)/I"(2) = SLo(Z/27Z). This
quotient is isomorphic to S3, and the orbit of X is

1 1 AoA-1
{)\’A’l_A’l—A’)\—l’ A }

In view of this structure, it is natural to study expressions like

(5) () — (Q_l)

which measures the difference between periods of the isomorphic elliptic
curves E(\) and E(52;). Taking into account that A(z) has level 2, it is
natural to consider the modular function

Fi(M2) = o F1 (50
(6) L(z)f 241 2 1()\() 1) :q_1+2q3_q7_2q11+.”'

2RA22)) — oFi (x0a)

It turns out that L(z) is a Hauptmodul for the genus zero congruence group
I'h(16). Here we study the p-adic properties of the Fourier expansion of
L(z) using the theory of harmonic Maass forms. To make good use of this
theory, we “normalize” L(z) to obtain a weight 2 modular form whose poles
are supported at the cusp oo for a modular curve with positive genus. The
first case where this occurs is I1(32), where the space of weight 2 cusp forms
is generated by the unique normalized cusp form

o
(1) 9(2)==q [0 =P —¢*")? =q—2¢° —=3¢" + 64" + - .

n=1
Our normalization is

o0

(8) §(2) = D Cln)g" := —g(2)L(22) = —¢~'+2¢*+¢"—2¢" " +5¢""+- - .
n=-—1

REMARK. It turns out that F(z) satisfies the following identities:

3(z) = % : d%L(z) —4 Lg((;)) = L(2) ﬁ%&) 9 F1(A(82)).

The cusp form g(z) plays a special role in the context of Legendre normal
form elliptic curves. Under the Shimura—Taniyama correspondence, g(z) is
the cusp form which gives the Hasse-Weil L-function for F(—1), the con-
gruent number elliptic curve

9) E(-1): 9? =23 — =
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By the change of variable z — z — 1, we find that E(—1) is isomorphic
to E(2). Since A = /\il when A = 2, we see that g(z) is the cusp form
corresponding to the “fixed point” of .

We show that §(z) has some surprising p-adic properties which relate the
Hauptmodul L(z) to the cusp form g(z). These properties are formulated
using Atkin’s U-operator

(10) Za(n)q"IU(m) = Za(mn)q".

THEOREM 1.1. If p =3 (mod 4) is a prime for which p{ C(p), then as
a p-adic limit we have

_ o SEUEre
G
REMARK. The p-adic limit in Theorem [1.I|means that if we write g(z) =
> 00 1 ag(n)q™, then for all positive integers n the difference
C(np2w+1)
o ()
becomes uniformly divisible by arbitrarily large powers of p as w — +oc.
REMARK. A short calculation in MAPLE shows that p 1 C(p) for every

prime p = 3 (mod 4) less than 25000. We speculate that there are no primes
p =3 (mod 4) for which p|C(p).

EXAMPLE. Here we illustrate the phenomenon in Theorem for the
primes p = 3 and 7. For convenience, we let

FIU @)

(1) Suln) = SO

If p = 3, then

So(3;2) =q+ %qB +6¢° —34¢' T+ - = g(2) (mod 3),
F1(3;2) =q+ %q5 — %qg — %qw —1258¢' T + ... = g(2) (mod 32),
Fa(3;2) = g — §0° + B¢+ = g(2) (mod 3%,
§(3:2) = q— 12229;12@5 - 3403132858%874546992963465663 @ +--=g(z) (mod 3%
If p=7, then

Fo(7;2) = g+ 40¢° 4 18¢° 4 104¢™2 4+ 51" + - - - = g(2) (mod 7),
F1(T;2) =g+ 191%440(]5 _ 9:19315q9 4 215353209456(]13 4= g(2) (mod 72).

Theorem [I.1]arises naturally in the theory of harmonic Maass forms. The
proof depends on establishing a certain relationship between § and g. This
is achieved by viewing them as certain derivatives of the holomorphic and
non-holomorphic parts of a harmonic weak Maass form that we explicitly
construct as a Poincaré series. We then use recent work of Guerzhoy, Kent,
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and the second author [2] that explains how to relate such derivatives of a
harmonic Maass form p-adically (cf. Section 2).

2. Proof of Theorem Here we prove Theorem [I.1] after recalling
crucial facts about harmonic Maass forms.

2.1. Harmonic Maass forms and a certain Poincaré series. We
begin by recalling some basic facts about harmonic Maass forms (for ex-
ample, see Sections 7 and 8 of [6]). Suppose that & > 2 is an even integer.
The weight k£ hyperbolic Laplacian is defined by

0? 0? 0 0
A= ==+ = ky| =— +i—=—|.
F Y <8x2+8y2)+2 y<8x+18y>
A harmonic weak Maass form of weight k on [H(N) is a smooth function
f +H — C satisfying:
e f is invariant under the usual |7 slash operator for every v € IH(N).
o Aif=0.

e There exists a polynomial
ny
Pr=7 cf(-n)q " eClg']
n=0

such that f(z) — Pr(z) = O(e™%¥) as y — oo for some € > 0. We
require similar growth conditions at all other cusps of (V).

The polynomial Py, for a given cusp, is called the principal part of f at that
cusp. The vector space of all forms satisfying these conditions is denoted
by Hy(N). Note that if M} (N) denotes the space of weakly holomorphic
modular forms on Iy(N) then M} (N) C Hi(N).

Any form f € Hs j(N) has a natural decomposition as f = f* + f~,
where f7 is holomorphic on H and £~ is a smooth non-holomorphic function
on H. Let D be the differential operator ﬁd% and let &, := 2iy’”%. Then

(12)  DM'(f) = D" (f7) € Mj(N) and & k(f) = &-r(f7) € Sk(N),
where Si (V) is the space of weight k cusp forms on I(H(V). In particular,
there is a cusp form gy of weight k attached to any Maass form f of weight
2—k. Since & (M,_,(N)) = 0, it follows that many harmonic Maass forms
correspond to gs. In [I], Bruinier, Rhoades, and the second author narrow
down the correspondence by specifying certain additional restrictions on f.
Specifically, they define a harmonic weak Maass form f € Hy_ () to be
good for a normalized newform g € S;(IV), whose coefficients lie in a number
field Fy, if the following conditions are satisfied:

e The principal part of f at the cusp co belongs to Fy[g!].
e The principal parts of f at other cusps (if any) are constant.
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e & () =g/llgl?, where || - || is the Petersson norm.

It is also shown in that paper that every newform has a corresponding good
Maass form.

Theorem depends on the interplay between the newform g(z) in @
and a certain harmonic Maass form which is intimately related to the Haupt-
modul L(z). These forms are constructed using Poincaré series.

We first recall the definition of (holomorphic) Poincaré series. Denote by
I'o(N)oso the stabilizer of oo in Ih(N) and set e(z) := €2™%. For integers m,
k > 2 and positive NV, the classical holomorphic Poincaré series is defined by

[o.¢]
P(m,k,N;z) = > e(t2)wy = q" + > a(m, k, Nin)q".
YELH(N)oo\Io(N) n=1
We extend the definition to the case k = 2 using “Hecke’s trick”. For a
positive integer m, we have P(m,k,N;z) € Sg(N) and P(—m,k,N;z) €
M, ;6 (N). The Poincaré series P(—m, k, N; z) is holomorphic at all cusps ex-
cept oo where the principal part is ¢=™.
The coefficients of these functions are infinite sums of Kloosterman sums
multiplied with the I,, and J,, Bessel functions. The modulus ¢ Kloosterman

sum K.(a,b) is
av + bv~!
R =)
vE(Z/cL)*

It is well known (for example, see [4] or Proposition 6.1 of [I]) that for
positive integers m we have

(k=1)/2 > fr 4
a(m, b, Nn) :2w(_1)k/z<n> 'ZM' JH(WN vcm>

m g Nc
(k—1)/2 o0
n Kyc(—m,n 4my/mn
oo Nom =2r(-02(T) 3 T ()
c=1

Furthermore, the Petersson norm of the cusp form P(m, k, N; z) for positive
m is given by
(k—2)!
(4m)k—1
These Poincaré series are related to the Maass—Poincaré series which we
now briefly recall. Let M,,,H(z) be the usual Whittaker function given by
M, (2) = e #2212 By (n— v 4 1/2,1 4 2455 2),

where 1 F1(a,b;2) =Y 0 ((Z)): Z. For y > 0 set

(13) |P(m, k,N; 2)||* = (1+a(m,k,N;m)).

M (@ +iy) == e(—ma) (dmmy) ™ 2M g (1) o (dmmy).
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Then, for £ > 2 the Poincaré series

Q(—m,k,N;z) := Z M k()Y
YELO(N)oo\ T (N)

isin Hy_x(N) (for example, see [1]). This series converges normally for k& > 2,
and we can extend its definition to the case k = 2 using analytic continuation
to get a form in Hy(N). These different Poincaré series are connected via
the differential operators D and &, as follows (see §6.2 of [1]):

(14) Dk_l(Q(—m,k,N;z)) = —mk_lP(—m,k,N; z),
m)k—1
(15) & 1(Q(—m,k,N;2)) = %‘5—)2)' - P(m,k,N;z).

The following lemma relates § and g using these Poincaré series.

LEMMA 2.1. The following are true:

(1) We have
_ P(1,2,32;2)
9C) = A ran 235 1)
(2) Q(—1,2,32; z) is good for g.
(3) D(Q(-1,2,32;2)) = §(2).

Proof. Since g and P(1,2,32;z) are both non-zero cusp forms in the
one-dimensional space S2(32), the first equality follows easily. For the second
equality, note that § and —P(—1,2,32;2) have the same principal part at
oo and no constant term, hence their difference must be in S3(32), hence
a multiple of g. Further, since K3o.(—1,1) = 0 for all ¢ > 1, we see that
the coefficient of ¢ in both § and —P(—1,2,32;2) is zero, and it follows
that they must be equal. The proof of the “goodness” of () follows from the
properties of @ listed above and from and . Claim (3) now follows

from . n

2.2. Proof of Theorem Theorem [I.1] is a consequence of the
following theorem which was recently proved by Guerzhoy, Kent, and the
second author.

THEOREM 2.2 (Theorem 1.2(2) of [2]). Let g € Sk(N) be a normalized
CM newform. Suppose that f € Hy_(N) is good for g and set

F:=Dt1f = Z c(n)q".

and F(z) =—-P(-1,2,32;z).

n>>>—oo
If p is an inert prime in the CM field of g such that p*~1 { c(p), and if
(16) lim_p v Pl (p2oH) £,

w—00
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then as a p-adic limit we have
o F\U(p2w+1)
g = c(p2e )
We require a lemma regarding the existence of certain modular functions
with integral coefficients that are holomorphic away from the cusp oc.
LEMMA 2.3. Let Z((q)) denote the ring of Laurent series in q over Z.
(1) For each positive integer n Z 1 (mod 4) there exists a modular func-
tion
— |
¢n=q " +0(q) € My(32) N Z((q))
such that ¢, is holomorphic at all cusps except co.
(2) For eachn > 5 with n =1 (mod 4) there exists a modular function
$n=q " +a-1g"" +0(q) € M(32) NZ((q))

such that ¢, is holomorphic at all cusps except cc.
(3) In both cases, the coefficients of ¢ (2) vanish for all indices not con-
gruent to —n (mod 4).

Proof. This follows by induction. Specifically, let L(z) be as in @ and
set
$2(2) == L(22) =q 2 +2¢° — g™ + -+,
05(2) = L(=)L(22) = g~ + 20+ ¢ + 24" + -+
Both ¢9 and ¢3 are modular functions of level 32 with integer coefficients.
It is clear that one can inductively construct polynomials

Epn(iﬂ,y) = Ztn(ivj)xiyj € Z[l’,y]

such that ¥, (¢2(z), ¢3(2)) satisfies the conditions on the principal parts in
Lemma [2.3] For example

¢7(2) = ¢3(T)pa(2)> — 263(T) =q "+ q+8¢° +2¢° + -+
Furthermore, if n is even (resp. n = 3 (mod 4), resp. n = 1 (mod 4))
then one sees that ¥,(x,y) = ¥,(x,1) (i.e. it is purely a polynomial in
) (resp. ¥,(r,y) equals y multiplied by a polynomial in x?, resp. ¥, (z,y)
equals ry multiplied by a polynomial in 22?). This remark establishes the
last assertion. m

This sequence of modular functions turns out to be closely related to §
as follows.

COROLLARY 2.4. Ifn > 2 and ¢,(2) = Y12, An(D)d', then C(n) =
—A,(1).

Proof. Since C(n) = 0 whenever n # 3 (mod 4), then the corollary
follows trivially for such n by Lemma [2.3(3). For n = 3 (mod 4), the
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meromorphic differential §(z)¢,(z)dz is holomorphic everywhere except at
the cusp oco. Recall that the sum of residues of a meromorphic differential
is zero. Furthermore, the residue at oo of the differential h(z)dz (for any
weight 2 form h) is a multiple of the constant term in its g-expansion. Since
§(z) = DQ(—-1,2,32; z) we see that § has no constant term at any cusp,
and hence §¢, vanishes at all cusps except oco. It follows that the residue
at co must be zero, and the result follows since the constant term of the
g-expansion of S(z)gf)n(z) is C(n) + An(1). =

Proof of Theorem [1.1. By Theorem [2.2] Lemma [2.I] and the fact that
the primes inert in Q(: ) the CM field for g, are the primes p = 3 (mod 4),
it suffices to prove under the assumption that p t C(p).

Recall that the weight k& mth Hecke operator T'(m) (see [B, 6]) acts on

M, (N) by
(17) FIT(m)(2) = fIU(p)(2) + P f(p2).

It is obvious from the definition that integrality of the coefficients is pre-
served for forms of positive weight. In particular, for

F=-¢"+2¢+q" —2¢" +---,
we get
312T(p) = —pg? + C(p)g + O(¢*),

and F|2T'(p) is holomorphic at all cusps except co. For p = 3 (mod 4) Lemma
and Corollary [2.4] give
o oo

(18) FoT(p)(2) = d(2) = D ag(n)g" = Y nAy(n)q"

n=-—p n=-—p
From we get
SIU(p) = 8p(2) — pS(p2)-
Acting by U(p?) gives
JIUM®) = ¢, lU®?) = pF(2)|U (p),
and it follows by induction that

(19) pUFIU P Zp*%prU Y — U (p).
If
wlggopfwg‘U(pQw+l) :0’

then

[e.9]

FlUp) = p e, lUw™).

=1
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(The convergence here is p-adic.) Focusing on the coefficient of ¢ gives

Clp) = plag ™) =D p P (A40M)).
=1 =1

Hence
Cp)=p> P (40")),
=1

which contradicts the hypothesis that p t+ C(p). Thus hypothesis is
satisfied, thereby proving the theorem. =
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