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An explicit factorisation of the zeta functions
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1. Introduction. Let n be an integer ≥ 3 and Fq a finite field of char-
acteristic p - n. We consider the family of hypersurfaces of Pn−1

Fq defined
by

Xψ : xn1 + · · ·+ xnn − nψx1 . . . xn = 0 (Dwork family),

where ψ ∈ Fq is a non-zero parameter. We will assume that Xψ is non-
singular, i.e. ψn 6= 1. We denote by |Xψ(Fqr)| the number of points of Xψ

over an extension Fqr of degree r of Fq; the zeta function of Xψ is defined by

ZXψ/Fq(t) = exp
(+∞∑
r=1

|Xψ(Fqr)|
tr

r

)
.

When q ≡ 1 mod n (see [10, Theorem 7.2, p. 174]) and when n is prime
(see [6, Theorem 9.5, p. 179]), it is shown that the zeta function of Xψ takes
the form

ZXψ/Fq(t) =
(Q(t, ψ)R(qρtρ, ψ))(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
,

where ρ is the order of q in (Z/nZ)×.
In this formula, Q(t, ψ) is a polynomial with integer coefficients of degree

n − 1. As proved by D. Wan (see [10, §7, eq. (14), p. 173]), this factor
comes from the zeta function of the quotient Yψ of Xψ ⊗ Fqρ by the group
{(ζ1, . . . , ζn) ∈ Fqρ | ζni = 1, ζ1 . . . ζn = 1} (Wan calls Yψ a “singular mirror”
of Xψ):

ZYψ/Fq(t) =
Q(t, ψ)(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
.

A simple equation of Yψ is (y1 + · · ·+ yn)n = (nψ)ny1 . . . yn.
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The factor R(t, ψ) is a polynomial with integer coefficients of degree

(n− 1)n + (−1)n(n− 1)
n

− (n− 1)

whose roots have absolute values q−(n−4)/2. We are interested in describing
the factorisation of R. Two approaches are possible: either predict, from a
theoretical point of view, the existence of a factorisation of R, or look for
explicit varieties with factors in their zeta functions appearing in R. Con-
cerning the first approach, we refer to [8]. The second approach is brought
up by Wan in [10, §7, p. 175] who mentions that it has been solved for n = 3,
n = 4 (Dwork) and n = 5 (Candelas, de la Ossa, and Rodríguez-Villegas);
a recent article of Katz [7] also takes up this subject from a different an-
gle (1).

The aim of this article is to handle the case where n is a prime number≥ 5
by using only properties of Gauss sums. The fact that n is prime allows us to
restrict to the case q ≡ 1 mod n in view of Haessig’s result [6, Theorem 9.5,
p. 179] that, when n is prime,

R(qt, ψ) = RXψ/Fqρ (q
ρtρ, ψ)1/ρ,

where ρ is the order of q in (Z/nZ)×. More precisely, if we define NR(qr)
by R(t, ψ) = exp

(∑+∞
r=1 NR(qr) t

r

r

)
, we will show the following result (Theo-

rem 5.10).

Theorem. Let n be a prime number ≥ 5 such that q ≡ 1 mod n. We
can write

(1.1) NR(qr) = q(n−5)/2N1(qr) + q(n−7)/2N3(qr) + · · ·+Nn−4(qr),

where each Nd(qr) is a sum of some |Hd,i(qr)| − (q − 1)l−1qd+1−l, the Hd,i

being varieties of Ad+2
Fq of hypergeometric type of odd dimension equal to d

with 1 ≤ d ≤ n− 4 (their equations are explicitly given in §5.3).

This equality in terms of number of points translates into a factorisation
of the polynomial R in terms of the zeta function of the preceding Hd,i(qr).

This article is organised as follows. In §2, we recall the formulas con-
cerning Gauss and Jacobi sums we will need. In §3, we compute, in terms
of Gauss sums, the number of points of some varieties of hypergeometric
type by a method similar to Koblitz’ [9]. In §4, we recall the formula for the
number of points of Xψ, and in §5, we compare this formula with those from
§3. Finally, in §6, we detail the cases n = 5 (already treated by Candelas, de
la Ossa, and Rodríguez-Villegas in [4]) and n = 7. The assumptions that n

(1) His results are in terms of traces of the Frobenius of the toric hypersurfaces
x1 . . . xn = λy1 . . . ym over a hypergeometric sheave.
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is prime and that q ≡ 1 mod n will only be used starting from §5 and §4.2
respectively.

Let us mention that our method does not give a geometric link between
Xψ and the varieties of hypergeometric type we consider.

2. Gauss and Jacobi sum formulas. In all this section, Fq will be a
finite field with q elements.

Let Ω be an algebraically closed field of characteristic zero, G a finite
abelian group and Ĝ = Hom(G,Ω∗) its character group. Let us recall the
orthogonality formula

(2.1)
1
|G|

∑
ϕ∈Ĝ

ϕ(g) =
{

1 if g = e,
0 if g 6= e,

where e is the neutral element of G. We will use this formula when G = Fq
or G = F∗q .

Let us now fix a non-trivial additive character ϕ : Fq → Ω∗.

Proposition 2.1 (Orthogonality formula).

(2.2)
1
q

∑
a∈Fq

ϕ(ax) =
{

1 if x = 0,
0 if x 6= 0.

Proof. This results from (2.1) above and the fact that every additive
character is of the form x 7→ ϕ(ax) for some a ∈ Fq.

Definition 2.2. If χ : F∗q → Ω∗ is a multiplicative character, we define
the Gauss sum

G(ϕ, χ) =
∑
x∈F∗q

ϕ(x)χ(x).

If 1 is the trivial character of F∗q , we have G(ϕ,1) = −1.

Proposition 2.3 (Reflection formula). If χ is a non-trivial character
of F∗q ,

(2.3) G(ϕ, χ)G(ϕ, χ−1) = χ(−1)q.

Proof. Let us recall the proof of this simple property (see also [2, Theo-
rem 1.1.4(a), p. 10]). We have

G(ϕ, χ)G(ϕ, χ−1) =
∑
x,y∈F∗q

ϕ(x+ y)χ(x/y).
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Making the change of variable x = yz, we obtain

G(ϕ, χ)G(ϕ, χ−1) =
∑
y,z∈F∗q

ϕ(y(1 + z))χ(z)

= χ(−1)(q − 1) +
∑

z∈F∗q , z 6=−1

(∑
y∈F∗q

ϕ(y(1 + z))
)
χ(z).

We conclude by making the change of variable y′ = y(1 + z) and by using
the orthogonality formula.

Proposition 2.4 (Multiplication formula). Let d ≥ 1 be an integer di-
viding q − 1. If η is a character of F∗q ,

(2.4)
G(ϕ, ηd)∏

χd=1G(ϕ, ηχ)
=

η(d)d∏
χd=1, χ 6=1G(ϕ, χ)

.

Proof. This seemingly simple formula does not seem to admit an elemen-
tary proof; we refer the reader to [2, Theorem 11.3.5, p. 355] for additional
details.

Definition 2.5. If (χ1, . . . , χr) is a finite sequence of characters of F∗q ,
we define the Jacobi sum

J(χ1, . . . , χr) =
∑

x1,...,xr∈F∗q
x1+···+xr=1

χ1(x1) . . . χr(xr).

Proposition 2.6 (Link with Gauss sums). If χ1, . . . , χr are characters
of F∗q not all trivial,

(2.5) J(χ1, . . . , χr) =


1
q

G(ϕ, χ1) . . . G(ϕ, χr)
G(ϕ, χ1 . . . χr)

if χ1 . . . χr = 1,

G(ϕ, χ1) . . . G(ϕ, χr)
G(ϕ, χ1 . . . χr)

if χ1 . . . χr 6= 1.

Proof. Let us briefly recall the proof (see also [2, Theorem 10.3.1, p. 302]).
The additive convolution of the functions χ1, . . . , χr is defined by

(χ1 ∗ · · · ∗ χr)(a) =
∑

x1+···+xr=a
xi∈F∗q

χ1(x1) . . . χr(xr).

It is equal to (χ1 . . . χr)(a)J(χ1, . . . , χr) when a 6= 0. To compute the value
when a = 0, we notice that the sum of (χ1 ∗ · · · ∗χr)(a) over a ∈ Fq is 0 since
at least one of the χi is non-trivial. Thus, (χ1∗· · ·∗χr)(0) is 0 if χ1 . . . χr 6= 1
and is −(q − 1)J(χ1, . . . , χr) if χ1 . . . χr = 1. Moreover,

r∏
i=1

G(ϕ, χi) =
∑
a∈Fq

ϕ(a)(χ1 ∗ · · · ∗ χr)(a),
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and so
r∏
i=1

G(ϕ, χi) = J(χ1, . . . , χr) ·
{
G(ϕ, χ1 . . . χn) if χ1 . . . χr 6= 1,
G(ϕ,1)− (q − 1) if χ1 . . . χr = 1,

which shows the result.

Proposition 2.7 (Fourier inversion formula). For every map f : F∗q →Ω,

(2.6) ∀x ∈ F∗q , f(x) =
1

q − 1

∑
η∈bF∗q

(∑
y∈F∗q

f(y)η−1(y)
)
η(x).

Proof. This is a direct consequence of the orthogonality formulas for the
characters of the abelian group F∗q .

Corollary 2.8. If x ∈ F∗q ,

(2.7) ϕ(x) =
1

q − 1

∑
η∈bF∗q

G(ϕ, η−1)η(x).

3. Number of points of some varieties of hypergeometric type.
In all of this section, n will be an integer ≥ 2 and Fq a finite field with q
elements.

3.1. Computation of the number of points. We consider here some
affine varieties of hypergeometric type for which we compute the number of
points by using Gauss sums and taking inspiration from Koblitz [9, §5].

Theorem 3.1. Let k ≥ l ≥ 2 be two integers and λ ∈ F∗q a parameter.
Denote by Hλ ⊂ Ak+1 the affine variety defined by{

yn = xα1
1 . . . xαkk (1− x1)β1 . . . (1− xl−1)βl−1(1− xl − · · · − xk)βl ,

λx1 . . . xl = 1,

where αi and βi are integers ≥ 1. The number of points of Hλ over Fq is

|Hλ(Fq)| = (q − 1)l−1qk−l +
∑
χn=1
χ 6=1

1
q − 1

∑
η

Nλ,χ,η η(λ),

where

Nλ,χ,η =
1

qν
G(ϕ, χα1η) . . . G(ϕ, χαlη)G(ϕ, χβ1) . . . G(ϕ, χβl)G(ϕ, χαl+1) . . . G(ϕ, χαk )

G(ϕ, χα1+β1η) . . . G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

with ν denoting the number of trivial characters among those appearing in
the denominator (namely, χαj+βjη for 1 ≤ j ≤ l − 1 and χαl+···+αk+βlη).



246 P. Goutet

Proof. To simplify, we shall write yn = Q(x1, . . . , xk) for the first equa-
tion defining Hλ. We have

|Hλ(Fq)| =
∑

x∈Fkq , y∈Fq
yn=Q(x)
λx1...xl=1

1 =
∑
x∈Fkq

λx1...xl=1

∑
y∈Fq

yn=Q(x)

1

with

|{y ∈ Fq | yn = z}| =
{

1 if z = 0,
1 +

∑
χn=1
χ 6=1

χ(z) if z 6= 0,

and thus

|Hλ(Fq)| =
∑
x∈Fkq

λx1...xl=1
Q(x)=0

1 +
∑
x∈Fkq

λx1...xl=1
Q(x)6=0

(
1 +

∑
χn=1
χ 6=1

χ(Q(x))
)

=
∑
x∈Fkq

λx1...xl=1

1 +
∑
x∈Fkq

λx1...xl=1
Q(x)6=0

∑
χn=1
χ 6=1

χ(Q(x))

= (q − 1)l−1qk−l +
∑
χn=1
χ 6=1

∑
x∈Fkq

λx1...xl=1
Q(x) 6=0

χ(Q(x))

= (q − 1)l−1qk−l +
∑
χn=1
χ 6=1

∑
x∈Fkq
Q(x)6=0

χ(Q(x))δλx1...xl,1,

where δz,z′ is the Kronecker delta (= 1 if z = z′ and = 0 otherwise). Because

∀z, z′ ∈ F∗q , δz,z′ =
1

q − 1

∑
η∈bF∗q

η(z/z′),

we may write

|Hλ(Fq)| = (q − 1)l−1qk−l

+
∑
χn=1
χ 6=1

1
q − 1

∑
η∈bF∗q

( ∑
x∈Fkq
Q(x) 6=0

χ(Q(x))η(x1 . . . xl)
)
η(λ).

Let us compute Nλ,χ,η =
∑

Q(x)6=0 χ(Q(x))η(x1 . . . xl). As αi and βi are > 0,
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Nλ,χ,η =
∑

(x1,...,xk)∈(F∗q )k

∀i≤l−1, xi 6=1
xl+···+xk 6=1

(χα1η)(x1)χβ1(1− x1) . . . (χαl−1η)(xl−1)

· χβl−1(1− xl−1)(χαlη)(xl)χαl+1(xl+1) . . . χαk(xk)

· χβl(1− xl − · · · − xk).

We recognize a product of Jacobi sums:

Nλ,χ,η = J(χα1η, χβ1) . . . J(χαl−1η, χβl−1)J(χαlη, χαl+1 , . . . , χαk , χβl).

By using formula (2.5), we deduce that

Nλ,χ,η =
1

qν
G(ϕ, χα1η) . . . G(ϕ, χαlη)G(ϕ, χβ1) . . . G(ϕ, χβl)G(ϕ, χαl+1) . . . G(ϕ, χαk )

G(ϕ, χα1+β1η) . . . G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

with ν as defined in the theorem.

Notations. Let Nλ,χ,η be as in the previous theorem; we define

Nλ,χ =
1

q − 1

∑
η∈bF∗q

Nλ,χ,η η(λ) and Nλ =
∑
χn=1
χ 6=1

Nλ,χ,η.

Corollary 3.2. Assume that n is odd, none of the elements of the
sequence (β1, . . . , βl, αl+1, . . . , αk) is divisible by n, and for 1 ≤ b ≤ n−1 the
number of terms of the sequence ≡ b mod n is equal to the number of terms
≡ −b mod n (this implies that k is even). When these conditions are met,
we say we have complete pairing. In this case,

Nλ,χ,η = qk/2−ν
G(ϕ, χα1η) . . . G(ϕ, χαlη)

G(ϕ, χα1+β1η) . . . G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

where ν is the number of trivial characters appearing in the denominator.

Proof. This is an immediate consequence of the reflection formula (2.3):

G(ϕ, χβ1) . . . G(ϕ, χβl)G(ϕ, χαl+1) . . . G(ϕ, χαk) = qk/2.

(Note that because χ 6= 1 and all αi and βj are 6≡ 0 mod n, the charac-
ters appearing are all non-trivial, and so the reflection formula applies with
χ(−1) = 1 as n is odd.)

3.2. Link with some hypergeometric hypersurfaces. Assume that
n is odd and that α1 +β1 ≡ 0 mod n. In that case, Hλ has the same number
of points as the hypersurface of Ak defined by

yn = xα2
2 . . . xαkk (1− x2)β2 . . . (1− xl−1)βl−1

· (1− xl − · · · − xk)βl+1(1− λx2 . . . xl)β1

without the points where x2 . . . xl = 0. In this way we recover a hypersurface
of the same type as in [4, §11.1] when n = 5 (see also Example 6.1 below).



248 P. Goutet

4. Number of points of the Dwork hypersurfaces. In all this sec-
tion, n denotes an integer ≥ 3 and our aim is to compute the number of
points of Xψ and then organise it into an appropriate form to relate it to
the number of points of varieties of hypergeometric type considered in §3.

To compute the number of points of Xψ in terms of Gauss sums, one
can use a method close to the one A. Weil used in [11] for the diagonal case
ψ = 0; this is done for example in [9, Theorem 2, p. 13] and [10, §3]. After
recalling this computation in §4.2, we will organise the terms in the same
way as Candelas, de la Ossa and Rodríguez-Villegas did for the case n = 5
in [3, §9] and [4, §11], namely (see Theorem 4.10)

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +Nmirror +
∑

Ns.

In Section 5, we will explain how each Ns is related to a Nλ = |Hλ(Fq)| −
(q − 1)l−1qk−l from Section 3 (here, λ = 1/ψn).

4.1. Preliminaries. The aim of this subsection is to set some useful
notation. The groups Z/nZ, (Z/nZ)× and Sn act on each (s1, . . . , sn) ∈
(Z/nZ)n satisfying s1 + · · ·+ sn = 0 in the following way:

∀j ∈ Z/nZ, j · (s1, . . . , sn) = (s1 + j, . . . , sn + j);

∀k ∈ (Z/nZ)×, k × (s1, . . . , sn) = (ks1, . . . , ksn);
∀σ ∈ Sn,

σ(s1, . . . , sn) = (sσ−1(1), . . . , sσ−1(n)).

Definition 4.1. For s = (s1, . . . , sn) ∈ (Z/nZ)n with s1 + · · ·+ sn = 0,
we denote by

• [s] = [s1, . . . , sn] the class of (s1, . . . , sn) mod the action of Z/nZ;
• 〈s〉 = 〈s1, . . . , sn〉 the class of (s1, . . . , sn) mod the simultaneous actions

of Z/nZ and Sn;
• s the class of (s1, . . . , sn) mod the simultaneous actions of Z/nZ, Sn

and (Z/nZ)×;
• γs the number of permutations of (s1, . . . , sn).

Remarks 4.2.

• The number γs only depends on s, not on the choice of s.
• If all the si are equal, then γs = 1.
• If 〈s〉 = 〈0, 1, . . . , n− 1〉, then γs = n! but the number of permutations

of [s] is n!/n = (n− 1)! (the 1/n comes from the fact that adding the
same number to each coordinate amounts to a circular permutation).

The following lemma, which we will only use later (see Lemma 5.2),
shows that, when n is prime, the number γs of permutations of (s1, . . . , sn)
is almost always the same as the number of permutations of [s1, . . . , sn].
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Lemma 4.3. Assume that n is prime. If 〈s1, . . . , sn〉 6= 〈0, 1, . . . , n − 1〉,
then γs is equal to the number of permutations of [s1, . . . , sn].

Proof. If there exists j ∈ Z/nZ non-zero such that (s1+j, . . . , sn+j) is a
permutation of (s1, . . . , sn), then {s1, . . . , sn} is a non-empty subset of Z/nZ
stable under x 7→ x+ j and thus equal to Z/nZ as n is prime. Consequently,
〈s〉 = 〈0, 1, . . . , n− 1〉.

Remark 4.4. This proof shows that, when 〈s〉 6= 〈0, 1, . . . , n − 1〉, the
only j ∈ Z/nZ such that there exists σ ∈ Sn satisfying σs = s+ j is j = 0.

4.2. Formula for the number of points of Xψ. The aim of this sub-
section is to prove Theorem 4.5 below, stated in a slightly different form by
Koblitz in [9, §3]. From now on, we resume the notations and assumptions of
the introduction: Fq is a finite field, n an integer ≥ 3 such that q ≡ 1 mod n,
ψ ∈ Fq is a non-zero parameter (but we do not yet suppose that ψn 6= 1) and
Xψ is the hypersurface of Pn−1

Fq given by xn1 + · · ·+ xnn − nψx1 . . . xn = 0.

Theorem 4.5 (Koblitz). We have

|Xψ(Fq)| = 1 + q + · · ·+ qn−2

+
1

q − 1

∑
[s]

∑
η∈bF∗q

1
qδ

( n∏
i=1

G(ϕ, χ−siη−1)
)
G(ϕ, ηn)η

(
1

(−nψ)n

)
,

where δ = 0 if one of the χsiη is trivial and δ = 1 otherwise.

Proof. For completeness, and because it would be just as long to deduce
our formula from Koblitz’, we will recall the proof given in [9, §3].

Let f(x) = xn1 + · · ·+ xnn − nψx1 . . . xn and set

νq(Xψ) = |{x ∈ Fnq | f(x) = 0}|, ν∗q (Xψ) = |{x ∈ (F∗q )n | f(x) = 0}|.
As x1 . . . xn is zero when one of the xi is zero, we have νq(Xψ)− ν∗q (Xψ) =
νq(X0)− ν∗q (X0), i.e.

νq(Xψ) = νq(X0) + ν∗q (Xψ)− ν∗q (X0).

The computation of νq(X0) is classical and goes back to A. Weil, so we will
not recall it (see [11] or [2, Theorem 10.4.2, p. 304]). By using (2.5) to express
everything in terms of Gauss sums and by the change of variable χi 7→ χ−1

i ,
we find that

(4.1) νq(X0) = qn−1 +
q − 1
q

∑
χni =1, χi 6=1
χ1...χn=1

( n∏
i=1

G(ϕ, χ−1
i )
)
.

We now need to compute ν∗q (Xψ) and ν∗q (X0). Both computations rely on the
same method, the only difference being that, when ψ = 0, the polynomial
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f(x) is a sum of n monomials instead of n + 1, which slightly changes the
result. We will only give the details for ν∗q (Xψ) when ψ 6= 0.

The orthogonality formula (2.2) for additive characters shows that

ν∗q (Xψ) =
1
q

∑
a∈Fq

∑
x∈(F∗q )n

ϕ(af(x))

=
(q − 1)n

q
+

1
q

∑
a∈F∗q

∑
x∈(F∗q )n

( n∏
i=1

ϕ(axni )
)
ϕ(−nψax1 . . . xn).

We now express each ϕ(. . .) in terms of Gauss sums thanks to (2.7):

ν∗q (Xψ) =
(q − 1)n

q

+
1
q

∑
η1,...,ηn+1∈bF∗q

(n+1∏
i=1

G(ϕ, η−1
i )
)( 1

q − 1

∑
a∈F∗q

(η1 . . . ηn+1)(a)
)

·
n∏
i=1

(
1

q − 1

∑
xi∈F∗q

(ηni ηn+1)(xi)
)
ηn+1(−nψ).

By orthogonality formulas, the sums over a and the xi are all non-zero (equal
to q − 1) if and only if

{
η1 . . . ηnηn+1 = 1,
∀i ∈ [[1;n]], ηni ηn+1 = 1,

i.e. ∃η ∈ F̂∗q ,


ηi = χiη,

χni = 1 and χ1 . . . χn = 1,
ηn+1 = η−n.

The character η defined in this way is not unique; indeed, if η′ and χ′i are
also solutions of the system, there exists χ satisfying χn = 1 such that
η′ = χ−1η and χ′i = χχi for all i. This means that if R is a representative
set of the n-uples (χ1, . . . , χn) of characters mod the (χ, . . . , χ) satisfying
χni = 1 and χ1 . . . χn = 1 with χn = 1, then the map (χ1, . . . , χn, η) 7→
(χ1η, . . . , χnη, η

−n) is one-to-one from R × F̂∗q onto the set of (n + 1)-uples
(η1, . . . , ηn+1) satisfying the preceding conditions. It follows that if χ is a
multiplicative character of order n,

ν∗q (Xψ) =
(q − 1)n

q
(4.2)

+
1
q

∑
[s]

∑
η∈bF∗q

( n∏
i=1

G(ϕ, χ−siη−1)
)
G(ϕ, ηn)η

(
1

(−nψ)n

)
.
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This ends the computation of ν∗q (Xψ). By a similar method, we find

(4.3) ν∗q (X0) =
(q − 1)n

q
+
q − 1
q

∑
χni =1

χ1...χn=1

n∏
i=1

G(ϕ, χ−1
i ).

From (4.1) and (4.3), we obtain

νq(X0)− ν∗q (X0) = qn−1 − (q − 1)n

q
− q − 1

q

∑
χni =1

χ1...χn=1
∃i, χi=1

n∏
i=1

G(ϕ, χ−1
i )

= qn−1 − (q − 1)n

q

− q − 1
q

∑
(χ1,...,χn)mod {(χ,...,χ)}

χni =1, χ1...χn=1
∃i, χi=1

∑
η∈bF∗q
ηn=1

n∏
i=1

G(ϕ, (χiη)−1).

Writing χi = χsi where χ is, as above, a character of order n, we transform
the first sum into a sum over the [s] such that si = 0 for some i; finally, we
combine the terms of this sum with those satisfying ηn = 1 in (4.2) above
for ν∗q (Xψ). As G(ϕ,1) = −1, we have, with δ as defined in the theorem,

νq(Xψ) = ν∗q (Xψ) + νq(X0)− ν∗q (X0)

= qn−1 +
∑
[s]

∑
η∈bF∗q

1
qδ

( n∏
i=1

G(ϕ, χ−siη−1)
)
G(ϕ, ηn)η

(
1

(−nψ)n

)
.

By counting the number of zeros in the projective space instead of the affine
space, we obtain the announced formula.

4.3. Reorganisation of the terms. We keep the assumptions and
notations of §4.2 and suppose that n is odd. The aim of this subsection is
to write the formula obtained for |Xψ(Fq)| in Theorem 4.5 in terms of some
coefficients β(s1,...,sn),χ,η which we now define.

Definition 4.6. Let (s1, . . . , sn) ∈ (Z/nZ)n with s1 + · · · + sn = 0. If
χ is a multiplicative character of F∗q of order n and if η is a character of F∗q ,
we set

(4.4) β(s1,...,sn),χ,η = q(n+1)/2−z−δ G(ϕ, η)G(ϕ, χη) . . . G(ϕ, χn−1η)
G(ϕ, χs1η) . . . G(ϕ, χsnη)

,

where z denotes the number of trivial characters in the finite sequence
(χs1η, . . . , χsnη) and where δ = 0 if z 6= 0 and δ = 1 if z = 0 (this is
the same δ as in Theorem 4.5).
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Proposition 4.7. With the above assumptions,

1
qδ

( n∏
i=1

G(ϕ, χ−siη−1)
)
G(ϕ, ηn)η

(
1

(−nψ)n

)
= β(s1,...,sn),χ,η η

(
1
ψn

)
.

Proof. Invoking the reflection formula (2.3), we obtain
n∏
i=1

G(ϕ, χ−siη−1) = qn−z
η(−1)n

G(ϕ, χs1η) . . . G(ϕ, χsnη)
,

and, using the multiplication formula (2.4), we get, as n is odd,

G(ϕ, ηn) =
η(n)n

q(n−1)/2
G(ϕ, η)G(ϕ, χη) . . . G(ϕ, χn−1η).

From these two formulas, we deduce the result at once.

The coefficients β defined above satisfy the following three compatibility
relations with respect to the actions of the groups Z/nZ, Sn and (Z/nZ)×.

Lemma 4.8. With the above notations and assumptions,

∀σ ∈ Sn, β(sσ(1),...,sσ(n)),χ,η = β(s1,...,sn),χ,η;(4.5)

∀j ∈ Z, β(s1+j,...,sn+j),χ,η = β(s1,...,sn),χ,χjη;(4.6)

∀k ∈ (Z/nZ)×, β(ks1,...,ksn),χ,η = β(s1,...,sn),χk,η.(4.7)

Proof. Formula (4.5) results immediately from the definition of β. As for
(4.6) and (4.7), we note that the product G(ϕ, η)G(ϕ, χη) . . . G(ϕ, χn−1η)
in (4.4) stays the same if we change η into χjη, or χ into χk with k prime
to n.

Proposition 4.9. Under the above assumptions, the following quantities
only depend on 〈s〉 (as well as on the choice of χ) and of s respectively and
not on the choice of the representative (s1, . . . , sn):

N〈s〉,χ =
1

q − 1

∑
η∈bF∗q

β(s1,...,sn),χ,η η

(
1
ψn

)
, Ns = γs

∑
〈s′〉∈s

N〈s′〉,χ.

Proof. For N[s],χ, we just use (4.6) and the fact that η 7→ χjη is a one-
to-one map of F̂∗q onto itself when j ∈ Z/nZ. For Ns, we use (4.7) and the
fact that χ 7→ χk is a one-to-one map of {χ ∈ F̂∗q | χn = 1} onto itself if
k ∈ (Z/nZ)×.

We deduce the following result.

Theorem 4.10. Under the preceding assumptions, we have

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +
∑
s

Ns.
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Remark 4.11. As we will see in §4.4 below, N0 = Nmirror and, when Xψ

is non-singular (i.e. when ψn 6= 1), N(0,1,2,...,n−1) = 0.

4.4. Identification of some of the factors. We keep the assumptions
and notations of §4.3. Let us recall that Yψ denotes the “singular mirror”
of Xψ, as specified in the introduction, and we write Nmirror = |Yψ(Fq)| −
(1 + q + · · ·+ qn−2).

Theorem 4.12 (Wan). N0 = Nmirror.

Proof. See [10, §4]; note that the result is not known when q 6≡ 1 mod n,
unless n is prime (see [6]).

Recall that, in this section, the only assumption on ψ is that ψ 6= 0.

Lemma 4.13. We have

N〈0,1,2,...,n−1〉,χ =
{

0 if ψn 6= 1,
q(n−1)/2 if ψn = 1,

and so the term N(0,1,2,...,n−1) =(n− 1)!N〈0,1,2,...,n−1〉,χ does not contribute to
the zeta function ZXψ/Fq(t) when ψ

n 6=1, and contributes (1−q(n−1)/2t)−(n−1)!

when ψn = 1.

Proof. When 〈s1, . . . , sn〉 = 〈0, 1, . . . , n− 1〉, we have

G(ϕ, χs1η) . . . G(ϕ, χsnη) = G(ϕ, η)G(ϕ, χη) . . . G(ϕ, χn−1η).

Moreover, the number z of trivial characters in the sequence (η, χη, . . . ,
χn−1η) is equal to 1− δ with the notations of Definition 4.6, and thus

β(0,1,...,n−1),χ,η = q(n−1)/2.

Consequently,

N〈0,1,2,...,n−2,n−1〉,χ =
q(n−1)/2

q − 1

∑
η∈bF∗q

η

(
1
ψn

)
,

and we conclude by using an orthogonality formula.

Remark 4.14. A similar result was given by Candelas, de la Ossa and
Rodríguez-Villegas when q = p and n = 5 (see [3, §9.3]).

5. Link between the number of points. In all this section, we will
assume that n is a prime ≥ 5 and q ≡ 1 mod n. We will only add the
assumption that ψn = 1 in Theorem 5.10.

The aim of this section is to show (in §5.4) formula (1.1) of the intro-
duction. More precisely, we shall show, in Theorem 5.7, that each Ns (with
s 6= 0) (2) appearing in Theorem 4.10 is equal, up to a multiplicative integer

(2) Note that there is no s 6= 0 when n = 3; this explains the assumption that n ≥ 5.
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constant and a power of q, to a term of the form

(5.1) Nλ =
∑
χn=1
χ 6=1

Nλ,χ =
∑
χn=1
χ 6=1

1
q − 1

∑
η∈bF∗q

Nλ,χ,η η(λ),

where λ = 1/ψn and Nλ,χ,η is given by Corollary 3.2.
The crucial point is, starting from a given s, to find the relevant integers

αi and βj . For that, we define in §5.2 integers vi and wi from which we then
define αi and βj in §5.3. But before this, we start with a divisibility result
useful for the main result.

5.1. A divisibility result. The aim of this subsection is to show that
the integer γs (from Definition 4.1) is divisible by

Ks = |{k ∈ (Z/nZ)× | [ks1, . . . , ksn] is a permutation of [s1, . . . , sn]}|.
This result is crucial in Theorem 5.7 to ensure that the quotient γs/Ks is an
integer. Note that Ks only depends on s, not on the choice of s.

Definition 5.1. Given s ∈ (Z/nZ)n such that s1 + · · · + sn = 0, we
consider the following subgroups of Sn:

S′s = {σ ∈ Sn | σs = s},
Ss = {σ ∈ Sn | [σs] = [s]},
Ss = {σ ∈ Sn | [σs] ∈ (Z/nZ)× · [s]}.

With these notations, [Sn : S′s] is the number γs of permutations of
(s1, . . . , sn), whereas [Sn : Ss] is the number of permutations of [s1, . . . , sn].

Lemma 5.2. When s 6= 0, the integer Ks divides [Sn : Ss]. Hence, when
additionally 〈s〉 6= 〈0, 1, . . . , n− 1〉, Ks divides γs = [Sn : S′s] = [Sn : Ss].

Proof. We remark that

Ks =
|Ss|
|Ss|
· |{k ∈ (Z/nZ)× | [ks] = [s]}|.

As [s] 6= [0, . . . , 0], we have |{k ∈ (Z/nZ)× | [ks] = [s]}| = 1 and so [Sn : Ss]
= [Sn : Ss] · Ks. When furthermore 〈s〉 6= 〈0, 1, . . . , n − 1〉, we have γs =
[Sn : Ss] by Lemma 4.3, hence the result.

5.2. Transformation of the β coefficients. In order to relate Ns to a
certain N1/ψn in §5.3, we must first change the formula giving β(s1,...,sn),χ,η.

Notations. Let (s1, . . . , sn) ∈ (Z/nZ)n with s1 + · · ·+ sn = 0. For each
b ∈ Z/nZ, define k(b) = |{i | si = b}|. We have∑

b∈Z/nZ

k(b)b = 0 and
∑

b∈Z/nZ

k(b) = n.

We also set n′ = |{b ∈ Z/nZ | k(b) 6= 0}| and m = n− n′.
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Remarks 5.3.

(a) The integer n′ satisfies 1 ≤ n′ ≤ n and we have n′ = 1 if and only if
[s] = [0, . . . , 0], while n′ = n if and only if 〈s〉 = 〈0, 1, . . . , n− 1〉.

(b) As n is prime, n′ 6= 2. Indeed, if k1b1 + k2b2 = 0 with k1, k2 ≥ 1 and
k1 + k2 = n, then k1 6≡ 0 mod n and k1(b1 − b2) = 0, hence b1 = b2.

(c) As n is odd, n′ 6= n−1. Indeed, let s1, . . . , sn−1 be distinct elements
of Z/nZ and denote by sn the element of Z/nZ not appearing in this
sequence; as n is odd, we have s1 + · · ·+ sn = 0, and so 2s1 + · · ·+
sn−1 = s1 − sn 6= 0.

(d) Thus, if 〈s〉 6= 〈0, 1, . . . , n−1〉, then m ≥ 2, and if moreover [s] 6= [0],
then 2 ≤ m ≤ n− 3.

Theorem 5.4. With the preceding notations,

β(s1,...,sn),χ,η = q(n−1)/2−ν
∏
b∈Z/nZ, k(b)=0G(ϕ, χbη)∏
b∈Z/nZ, k(b)6=0G(ϕ, χbη)k(b)−1

,

where ν = 0 unless there exists b such that χbη = 1 and k(b) 6= 0, in which
case ν = k(b)− 1.

Proof. From the definition of β(s1,...,sn),χ,η (Definition 4.6), we have

β(s1,...,sn),χ,η = q(n+1)/2−z−δ
∏
b∈Z/nZG(ϕ, χbη)∏
b∈Z/nZG(ϕ, χbη)k(b)

= q(n+1)/2−z−δ
∏
k(b)=0G(ϕ, χbη)∏
k(b)6=0G(ϕ, χbη)k(b)−1

.

We now have to show that z+δ = 1+ν. Recall that z is the number of trivial
characters in the finite sequence (χs1η, . . . , χsnη) and that δ = 0 if z 6= 0 and
δ = 1 if z = 0. When z = 0, we have δ = 1 and ν = 0, hence z + δ = 1 + ν.
When z 6= 0, there exists a unique b ∈ Z/nZ such that η = χ−b; we thus
have z = k(b), δ = 0 and ν = k(b)− 1, hence z + δ = 1 + ν.

Remark 5.5. Let (v1, . . . , vm) be an enumeration of the b ∈ Z/nZ such
that k(b) = 0 and let (w1, . . . , wm) be an enumeration of the b ∈ Z/nZ
such that k(b) ≥ 2, each repeated with multiplicity k(b)− 1. The formula of
Theorem 5.4 can be rewritten as

(5.2) β(s1,...,sn),χ,η = q(n−1)/2−ν G(ϕ, χv1η) . . . G(ϕ, χvmη)
G(ϕ, χw1η) . . . G(ϕ, χwmη)

,

where ν is the number of trivial characters appearing in the denominator.

Lemma 5.6. With the notations of the preceding remark,

v1 + · · ·+ vm ≡ w1 + · · ·+ wm mod n.
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Proof. This identity can be rewritten as∑
k(b)=0

b =
∑
k(b)≥1

(k(b)− 1)b, i.e.
∑
b

b =
∑
b

k(b)b.

We conclude by noting that
∑

b∈Z/nZ k(b)b = 0 and that, because n is odd,∑
b∈Z/nZ b = 0.

5.3. Link with the hypergeometric varieties. We now establish the
link between Xψ and the varieties of hypergeometric type from §3.

Theorem 5.7. Let s be distinct from the class of (0, 1, . . . , n − 1) and
of (0, . . . , 0). If s is a representative of s, assume that there exist sequences
(v1, . . . , vm) and (w1, . . . , wm) of elements of Z/nZ as in Remark 5.5 and an
even integer m′ ≤ m− 2 such that

∀i ∈ [[1;m′/2]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.

We consider the affine variety H1/ψn of dimension 2m−m′ − 3 given by
yn = xv11 . . . xvmm x

vm′+1−wm′+1

m+1 . . . x
vm−2−wm−2

2m−m′−2 (1− x1)w1−v1

. . . (1− xm−1)wm−1−vm−1(1− xm − · · · − x2m−m′−2)vm−1−wm−1 ,

x1 . . . xm = ψn.

(In this formula, we replace the exponents by their representatives in [[1;n]].)
It is a variety of the form considered in Corollary 3.2 and we have, using the
notations of §3,

Ns =
γs
Ks

q(n+1)/2−(2m−m′)/2N1/ψn where γs/Ks ∈ N by Lemma 5.2.

Proof. As s is distinct from the class of (0, 1, . . . , n−1), we havem≥2 (see
Remark 5.3(d)). The variety we consider is the one introduced in Theorem 3.1
with l = m, k = 2m−m′ − 2 and

α1 = v1, . . . , αm = vm;
αm+1 = vm′+1 − wm′+1, . . . , α2m−m′−2 = vm−2 − wm−2;
β1 = w1 − v1, . . . , βm−1 = wm−1 − vm−1, βm = vm−1 − wm−1.

According to the pairing assumption on the vi and wi and to Lemma 5.6,
we have

vm′+1 + · · ·+ vm = wm′+1 + · · ·+ wm in Z/nZ,
and thus αm + αm+1 + · · ·+ α2m−m′−2 + βm ≡ wm mod n. Moreover,

α1 + β1 ≡ w1 mod n, . . . , αm−1 + βm−1 ≡ wm−1 mod n;
β1 + β2 ≡ 0 mod n, . . . , βm′−1 + βm′ ≡ 0 mod n;
αm+1 + βm′+1 ≡ 0 mod n, . . . , α2m−m′−2 + βm−2 ≡ 0 mod n;
βm−1 + βm ≡ 0 mod n.
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The last three lines show that we have complete pairing (in the sense of
Corollary 3.2) of the sequence (β1, . . . , βm, αm+1, . . . , α2m−m′−2); these ele-
ments are 6≡ 0 mod n as vi 6≡ wi mod n, and so

N1/ψn,χ,η = q(2m−m
′−2)/2−ν G(ϕ, χv1η) . . . G(ϕ, χvmη)

G(ϕ, χw1η) . . . G(ϕ, χwmη)
.

Hence, by comparing with (5.2), we obtain

β(s1,...,sn),χ,η = q(n+1)/2−(2m−m′)/2N1/ψn,χ,η.

Multiplying this equality by 1
q−1η(1/ψ

n) and summing over η ∈ F̂∗q , we get

N〈s〉,χ = q(n+1)/2−(2m−m′)/2N1/ψn,χ.

We now sum the preceding formula over k ∈ [[1;n−1]] with χ replaced by χk.
Noting that N〈s〉,χk = N〈ks〉,χ (see (4.7)), we obtain

n−1∑
k=1

N〈ks〉,χ = q
n+1

2
− 2m−m′

2 N1/ψn .

The left hand side is equal to Ks
∑
〈s′〉∈sN〈s′〉,χ = (Ks/γs)Ns. As [s] 6= [0],

Lemma 5.2 shows that γs/Ks is an integer. The result is hence proved.

Remark 5.8. When m′ = m− 2, we have vm−1 − wm−1 = wm − vm by
Lemma 5.6 and the equation of the variety simplifies greatly:

H1/ψn :
{
yn = xv11 . . . xvmm (1− x1)w1−v1 . . . (1− xm)wm−vm ,
x1 . . . xm = ψn.

5.4. Conclusion. We are now capable of showing formula (1.1) of the
introduction. We begin with a result giving a lower bound on the number of
pairings, which will enable us to show that the dimension of the hypergeo-
metric varieties is always ≤ n− 4.

Proposition 5.9. Let s be distinct from the class of (0, 1, . . . , n − 1)
and of (0, . . . , 0) and let s be a representative of s. We can choose sequences
(v1, . . . , vm) and (w1, . . . , wm) satisfying the assumptions of Remark 5.5 such
that we have the pairing

∀i ∈ [[1; (2m− n+ 1)/2]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.

Proof. Let (v1, . . . , vm) and (w1, . . . , wm) be as in Remark 5.5. By The-
orem 1.2 of [1, p. 126], it is possible to permute (w1, . . . , wm) so that the
vi−wi are pairwise distinct. Define V to be the subset {vi−wi} of Z/nZ (it
has m elements) and µ to be the number of opposite pairs contained in V .
Then

2µ = |V ∩ (−V )| = 2m− |V ∪ (−V )| ≥ 2m− (n− 1).

As 2µ is the maximal number of pairings, this ends the proof.
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Theorem 5.10. If ψn 6= 1, we can write

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +Nmirror

+ q(n−3)/2N1 + q(n−5)/2N3 + · · ·+ qNn−4,

where each Nd is a sum of terms of the form |Hλ(Fq)| − (q − 1)l−1qd+1−l

where αi and βj are obtained from each s as described in §5.3 and where
each Hλ ⊂ Ad+2 is a variety of hypergeometric type of odd dimension equal
to d with 1 ≤ d ≤ n− 4 (here, λ = 1/ψn) as considered in §3.1.

Proof. We saw in Theorem 4.10 that if ψ 6= 0 and q ≡ 1 mod n, we could
write

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +N0 +
∑
s 6=0

Ns.

In Theorem 4.12, we recalled Wan’s result that N0 = Nmirror and in Lemma
4.13, we showed that the term corresponding to (0, 1, . . . , n − 1) was zero
when ψn 6= 1.

Now consider s distinct from the class of (0, . . . , 0) and of (0, 1, . . . , n−1).
Letm′ be the greatest even integer ≤ m−2 such that there exist (v1, . . . , vm)
and (w1, . . . , wm) as in Remark 5.5 satisfying

∀i ∈ [[1;m′/2]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.

By Proposition 5.9, we have m′ ≥ 2m−n+ 1 (note that, by Remark 5.3(d),
m+ 3 ≤ n, hence m− 2 ≥ 2m− n+ 1). The dimension d = 2m−m′ − 3 of
the corresponding variety of hypergeometric type considered in Theorem 5.7
thus satisfies 1 ≤ d ≤ n− 4.

Moreover, we have q(n+1)/2−(2m−m′)/2 = q(n−d−2)/2, and so, as d varies
between 1 and n − 4, these powers of q take the values q(n−3)/2, . . . , q re-
spectively and all these values are obtained; indeed, if we consider an integer
m such that 2 ≤ m = d + 1 ≤ n − 3 and define s =

(
0, . . . , 0, 1, n − 1,

2, n − 2, . . . , n−m−1
2 , n − n−m−1

2

)
, then w = (0, . . . , 0) and v =

(
n−m+1

2 ,

n− n−m+1
2 , . . . , n−1

2 , n+1
2

)
each consist ofm elements and we havem′ = m−2

with the notations of Theorem 5.7.

6. Examples. To illustrate the methods just presented, let us detail
explicitly the cases n = 5 and n = 7; these examples are given in terms of
the hypersurfaces of hypergeometric type from §3.2.

Example 6.1 (n = 5). Let us recover the results announced by Can-
delas, de la Ossa and Rodríguez-Villegas in [4] in the non-singular and
non-diagonal case (see [5] for a complete treatment of the n = 5 case).
We are interested in the factorisation of the zeta function of the quintic
Mψ : x5

1 + · · ·+ x5
5− 5ψx1 . . . x5 = 0 when ψ 6= 0 and ψ5 6= 1. We list all the
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classes (s1, . . . , s5) 6= (0, 0, 0, 0, 0), (0, 1, 2, 3, 4) (following the notations from
§§4.1, 5.1, 5.2 and 5.3):

s γs Ks m m′ d

(0, 0, 0, 1, 4) 20 2 2 0 1
(0, 0, 1, 1, 3) 30 2 2 0 1

Using the method described above, we obtain the following table (the
hypergeometric hypersurfaces are all of the form y5 = xv1(1 − x)v2

(
1 −

1
ψ5x

)5−v2).
s v1 v2 w1 w2 Equation

(0, 0, 0, 1, 4) 2 3 0 0 y5 = x2(1− x)3(1− 1
ψ5 x)

2

(0, 0, 1, 1, 3) 2 4 0 1 y5 = x2(1− x)4(1− 1
ψ5 x)

We find the same equations as those given in [4, §11.1]:

Aψ : y5 = x2(1− x)3
(

1− 1
ψ5

x

)2

,

Bψ : y5 = x2(1− x)4
(

1− 1
ψ5

x

)
.

We set NAψ = |Aψ(Fq)| − q and NBψ = |Bψ(Fq)| − q (these are numbers of
affine points). We have, when ψ 6= 0, ψ5 6= 1 and q ≡ 1 mod 5,

|Mψ(Fq)| = 1 + q + q2 + q3 +Nmirror + 10qNAψ + 15qNBψ .

Example 6.2 (n = 7). We use the preceding results to find the factori-
sation of the zeta function of the septic Sψ : x7

1 + · · ·+ x7
7 − 7ψx1 . . . x7 = 0.

We list the (s1, . . . , s7) 6= (0, . . . , 0), (0, 1, 2, 3, 4, 5, 6) (following the notations
from §§4.1, 5.1, 5.2 and 5.3):

s γs Ks m m′ d

(0, 0, 0, 1, 2, 5, 6) 840 2 2 0 1
(0, 0, 1, 1, 3, 4, 5) 1260 2 2 0 1
(0, 0, 1, 1, 2, 4, 6) 1260 2 2 0 1

(0, 0, 0, 0, 1, 2, 4) 210 3 3 0 3
(0, 0, 0, 1, 1, 2, 3) 420 1 3 0 3
(0, 0, 1, 1, 3, 3, 6) 630 3 3 0 3

(0, 0, 0, 0, 0, 1, 6) 42 2 4 2 3
(0, 0, 0, 0, 1, 1, 5) 105 1 4 2 3
(0, 0, 0, 1, 1, 1, 4) 140 2 4 2 3
(0, 0, 0, 1, 1, 6, 6) 210 2 4 2 3



260 P. Goutet

The result is that, when ψ 6= 0, ψ7 6= 1 and q ≡ 1 mod 7, the number of
points takes the form

|Sψ(Fq)| = 1 + q + q2 + q3 + q4 + q5 +Nmirror + q2N1 + qN3,

where the terms corresponding to curves of A2 can be written as
N1 = 420Nc1 + 630Nc2 + 630Nc3 ,

and those corresponding to threefold hypersurfaces of A4 can be written as
N3 = 70Nt1 + 420Nt2 + 210Nt3 + 21Nt′1

+ 105Nt′2
+ 70Nt′3

+ 105Nt′4
,

where the various terms are defined in the following table (the corresponding
points are counted in the affine space).

Equation of the hypersurface Number of points

y7 = x3(1− x)4(1− 1
ψ7 x)

3 q +Nc1

y7 = x2(1− x)6(1− 1
ψ7 x) q +Nc2

y7 = x3(1− x)5(1− 1
ψ7 x)

2 q +Nc3

y7 = x3
1x

5
2x

3
3(1− x1)

4(1− x2 − x3)
6(1− 1

ψ7 x1x2) q3 +Nt1

y7 = x4
1x

5
2x

4
3(1− x1)

3(1− x2 − x3)
6(1− 1

ψ7 x1x2) q3 +Nt2

y7 = x2
1x

4
2x

4
3(1− x1)

6(1− x2 − x3)
5(1− 1

ψ7 x1x2)
2 q3 +Nt3

y7 = x2
1x

5
2x

3
3(1− x1)

5(1− x2)
2(1− x3)

4(1− 1
ψ7 x1x2x3)

3 q3 +Nt′1
y7 = x3

1x
3
2x

2
3(1− x1)

4(1− x2)
4(1− x3)

6(1− 1
ψ7 x1x2x3) q3 +Nt′2

y7 = x3
1x

5
2x

2
3(1− x1)

4(1− x2)
3(1− x3)

6(1− 1
ψ7 x1x2x3) q3 +Nt′3

y7 = x3
1x

5
2x

2
3(1− x1)

4(1− x2)
3(1− x3)

4(1− 1
ψ7 x1x2x3)

3 q3 +Nt′4

Let us justify for example the equation corresponding to [0, 0, 0, 0, 0, 1, 6].
We have {v1, v2, v3, v4} = {2, 3, 4, 5} and w1 = w2 = w3 = w4 = 0. Take, for
example, v1 = 2, v2 = 5, v3 = 3 and v4 = 4 so that w1 − v1 = −(w2 − v2)
and w3 − v3 = −(w4 − v4). For this choice, we have m = 4, m′ = m− 2 = 2
and the equation we obtain is

y7 = x2
1x

5
2x

3
3(1− x1)5(1− x2)2(1− x3)4

(
1− 1

ψ7
x1x2x3

)3

.

This is the equation corresponding to Nt′1
. The other equations follow in a

similar way.
Remark 6.3. Using the same method, we could treat the cases n =

11, n = 13, etc. The only difficulty is practical, as the number of classes
(s1, . . . , sn) grows quickly with n.
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