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1. Introduction. Let K be a local field, that is, a complete discrete
valuation field with finite residue class field κK of q = pf elements. For tech-
nical reasons, throughout the paper we shall assume that the multiplicative
group µµµp(Ksep) of all pth roots of unity in Ksep satisfies µµµp(Ksep) ⊂ K. Fix
a Lubin–Tate splitting ϕ over K. That is, we fix an extension ϕ of the Frobe-
nius automorphism of Knr to Ksep (for details, cf. [Ko-dS]). In a sequence
of papers [Ik-Se-1, Ik-Se-2, Ik-Se-3], following the idea of Fesenko developed
in [Fes-1, Fes-2, Fes-3], we have constructed the non-abelian local reciprocity
map ΦΦΦ(ϕ)

K for K, which is an isomorphism from the absolute Galois group
GK of K onto a certain topological group ∇(ϕ)

K which depends on the choice
of the Lubin–Tate splitting ϕ.

The aim of the present paper is to study the ramification-theoretic prop-
erties of the map ΦΦΦ(ϕ)

K . We prove (in Theorems 4.15 and 4.16) that ΦΦΦ(ϕ)
K is

compatible with the refined higher ramification “filtration” of the absolute
Galois group GK of K (cf. 4.1) and the refined “filtration” of ∇(ϕ)

K (cf. 4.2).
The organization of the paper is as follows. In Section 2, we collect the

necessary results from the theory of local fields. In Section 3, we briefly
review the main results of [Ik-Se-2] on the generalized Fesenko reciprocity
map, and then sketch the construction of the non-abelian local reciprocity
mapΦΦΦ(ϕ)

K following [Ik-Se-3]. In the last section, we first introduce the refined
filtrations on GK and on ∇(ϕ)

K and then prove the main results of the paper,
which are stated as Theorems 4.15 and 4.16.
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2. Preliminaries on local fields. In this section, we shall briefly re-
view the necessary background material from the theory of local fields.

2.1. Local fields. Throughout this work, K will denote a local field,
that is, a complete discrete valuation field with finite residue class field
OK/pK =: κK of qK = q = pf elements with p a prime number, where
OK denotes the ring of integers in K with the unique maximal ideal pK .
Let νννK denote the corresponding normalized valuation on K (normalized
by νννK(K×) = Z). As usual, the unit group of K is denoted by UK and the
ith higher unit group of K by U iK , where 0 ≤ i ∈ Z.

Let Ksep denote a fixed separable closure of K, and Knr the maximal
unramified extension of K inside Ksep. The unique extension of νννK to Ksep

will be denoted by ν̃νν, and for any sub-extension L/K of Ksep/K, the normal-
ized form of the valuation ν̃νν|L on L will be denoted by νννL. The completion
of Knr with respect to the valuation νννKnr will be denoted by K̃. For any
separable extension L/K, we put L̃ := LK̃.

Let GK denote the absolute Galois group Gal(Ksep/K). The topological
generator of Gal(Knr/K), which is the Frobenius automorphism of K, is
denoted by ϕK = ϕ (if there is no risk of confusion). Any extension of
the automorphism ϕ : Knr → Knr to Ksep is called a Lubin–Tate splitting
over K and is again denoted by ϕ.

We further assume that the multiplicative group µµµp(Ksep) of pth roots
of unity in Ksep satisfies

(2.1) µµµp(Ksep) ⊂ K.

2.2. Local Artin reciprocity map. Let Gab
K denote the maximal

abelian Hausdorff quotient group GK/G
′
K of the topological group GK ,

where G′K denotes the closure of the first commutator subgroup [GK , GK ]
of GK .

Recall that abelian local class field theory for the local field K establishes
a unique natural algebraic and topological isomorphism

ArtK : Gab
K
∼−→ K̂×,

called the local Artin reciprocity map of K, where the topological group K̂×
denotes the pro-finite completion of the multiplicative group K×, satisfying
certain properties. In particular, for an abelian extension L/K, and for every
integer 0 ≤ i ∈ Z and real number ν ∈ (i− 1, i],

x ∈ U iKNL ⇔ Art−1
L/K(x) ∈ Gal(L/K)ν ,

where x ∈ K̂×. Here, NL denotes the closed subgroup of K̂× defined to be
the intersection NL =

⋂
E NE/KÊ×, where E runs over all finite extensions

of K inside L.
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In what follows, we shall briefly review the higher ramification subgroups
in the upper numbering of the absolute Galois group GK of K.

2.3. A brief review of ramification theory. The main reference that
we follow closely here is [Ik-Se-1].

For a finite separable extension L/K, and for any σ ∈ HomK(L,Ksep),
introduce

iL/K(σ) := min
x∈OL

{νννL(σ(x)− x)},

put
γt := #{σ ∈ HomK(L,Ksep) : iL/K(σ) ≥ t+ 1}

for −1 ≤ t ∈ R, and define the function ϕL/K : R≥−1 → R≥−1, the Hasse–
Herbrand transition function of the extension L/K, by

ϕL/K(u) :=


u�

0

γt
γ0
dt, 0 ≤ u ∈ R,

u, −1 ≤ u ≤ 0.
It is well-known that ϕL/K : R≥−1 → R≥−1 is a continuous, increasing,
piecewise linear function, and it establishes a homeomorphism R≥−1

≈−→
R≥−1. Let ψL/K : R≥−1 → R≥−1 be its inverse.

Assume that L is a finite Galois extension over K with Galois group
Gal(L/K) =: G. The normal subgroup Gu of G defined by

Gu = {σ ∈ G : iL/K(σ) ≥ u+ 1}
for −1 ≤ u ∈ R is called the uth ramification group of G in the lower
numbering, and has order γu. Note the inclusion Gu′ ⊆ Gu for every pair
−1 ≤ u, u′ ∈ R satisfying u ≤ u′. The family {Gu}u∈R≥−1

induces a filtration
on G, called the lower ramification filtration of G. A break in this filtration
is defined to be any number u ∈ R≥−1 satisfying Gu 6= Gu+ε for every
0 < ε ∈ R. The function ψL/K = ϕ−1

L/K : R≥−1 → R≥−1 induces the upper
ramification filtration {Gv}v∈R≥−1

on G by setting

Gv := GψL/K(v),

or equivalently, by setting

GϕL/K(u) = Gu,

for −1 ≤ v, u ∈ R; here Gv is called the vth upper ramification group of G.
A break in the upper filtration {Gv}v∈R≥−1

of G is defined to be any number
v ∈ R≥−1 satisfying Gv 6= Gv+ε for every 0 < ε ∈ R.

Remark 2.1. We list the basic properties of lower and upper ramifica-
tion filtrations on G. In what follows, F/K denotes a sub-extension of L/K
and H denotes the Galois group Gal(L/F ).
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(i) The lower numbering on G passes to the subgroup H of G in the
sense that

Hu = H ∩Gu for −1 ≤ u ∈ R.

(ii) If H / G, then the upper numbering on G passes to the quotient
G/H:

(G/H)v = GvH/H for −1 ≤ v ∈ R.

(iii) The Hasse–Herbrand function and its inverse satisfy the transitive
law

ϕL/K = ϕF/K ◦ ϕL/F and ψL/K = ψL/F ◦ ψF/K .
If L/K is an infinite Galois extension with Galois group Gal(L/K) = G,
which is a topological group under the respective Krull topology, define the
upper ramification filtration {Gv}v∈R≥−1

on G by the projective limit

(2.2) Gv := lim←−
K⊆F⊂L

Gal(F/K)v

over the transition morphisms tF
′

F (v) : Gal(F ′/K)v → Gal(F/K)v, which
are essentially the restriction morphisms from F ′ to F , defined naturally by
the diagram

(2.3)

Gal(F/K)v Gal(F ′/K)v
tF
′

F (v)
oo

can.

yyrrrrrrrrrrrrrrrrrrrrr

Gal(F ′/K)vGal(F ′/F )/Gal(F ′/F )

isomorphism

introduced in (ii)

eeKKKKKKKKKKKKKKKKKKKKK

induced from (ii), as K ⊆ F ⊆ F ′ ⊂ L runs over all finite Galois extensions
F and F ′ over K inside L. The topological subgroup Gv of G is called the vth
ramification group of G in the upper numbering. Note the inclusion Gv

′ ⊆ Gv
for every pair −1 ≤ v, v′ ∈ R satisfying v ≤ v′ via the commutativity of the
square

(2.4)

Gal(F/K)v Gal(F ′/K)v
tF
′

F (v)
oo

Gal(F/K)v
′

inc.

OO

Gal(F ′/K)v
′tF

′
F (v′)

oo

inc.

OO

for every chain K ⊆ F ⊆ F ′ ⊂ L of finite Galois extensions F and F ′ over
K inside L. Observe that:

(iv) G−1 = G and G0 is the inertia subgroup of G.
(v)

⋂
v∈R≥−1

Gv = 〈1G〉.
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(vi) Gv is a closed subgroup of G, with respect to the Krull topology,
for −1 ≤ v ∈ R.

In this setting, a number −1 ≤ v ∈ R is said to be a break in the upper
ramification filtration {Gv}v∈R≥−1

of G, if v is a break in the upper filtration
of some finite quotient G/H for some H /G. Let BL/K denote the set of all
numbers v ∈ R≥−1 which occur as breaks in the upper ramification filtration
of G. Then:

(vii) (Hasse–Arf theorem) BKab/K ⊆ Z ∩ R≥−1.
(viii) BKsep/K ⊆ Q ∩ R≥−1.

2.4. APF-extensions. As in the previous section, let {GvK}v∈R≥−1
de-

note the upper ramification filtration of the absolute Galois group GK of K,
and let Rv denote the fixed field (Ksep)G

v
K of the vth upper ramification

subgroup GvK of GK in Ksep for −1 ≤ v ∈ R.

Definition 2.2. An extension L/K is called an APF-extension (APF is
a shortening for “arithmétiquement profinie”) if one of the following equiv-
alent conditions is satisfied:

(i) GvKGL is open in GK for every −1 ≤ v ∈ R,
(ii) (GK : GvKGL) <∞ for every −1 ≤ v ∈ R,
(iii) L ∩Rv is a finite extension over K for every −1 ≤ v ∈ R.

Note that if L/K is an APF-extension, then [κL : κK ] <∞.
Now, let L/K be an APF-extension. Set G0

L = GL ∩G0
K , and define

(2.5) ψL/K(v) =


v�

0

(G0
K : G0

LG
x
K) dx, 0 ≤ v ∈ R,

v, −1 ≤ v ≤ 0.
Then the map v 7→ ψL/K(v) for v ∈ R≥−1, which is well-defined for the
APF-extension L/K, defines a continuous, strictly increasing and piecewise
linear bijection ψL/K : R≥−1 → R≥−1.

We denote the inverse of ψL/K by ϕL/K . Thus, if L/K is a (not necessar-
ily finite) Galois APF-extension, then we can define the higher ramification
subgroups in the lower numbering Gal(L/K)u of Gal(L/K), for −1 ≤ u ∈ R,
by setting

Gal(L/K)u := Gal(L/K)ϕL/K(u).

Remark 2.3. Note that:

(i) In case L/K is a finite separable extension, which is clearly an APF-
extension by Definition 2.2, the function ψL/K : R≥−1 → R≥−1

coincides with the inverse of the Hasse–Herbrand transition function
of L/K introduced in the previous section.
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(ii) If L/K is a finite separable extension and L′/L is an APF-extension,
then L′/K is an APF-extension, and the transitivity rules for the
functions ψL′/K , ϕL′/K : R≥−1 → R≥−1 hold:

ψL′/K = ψL′/L ◦ ψL/K , ϕL′/K = ϕL/K ◦ ϕL′/L.

3. Non-abelian local reciprocity map. In this section, we shall re-
view the theory developed in [Ik-Se-2, Ik-Se-3]. Fix a Lubin–Tate splitting
ϕ over K.

3.1. Generalized Fesenko reciprocity map. For an infinite APF-
Galois extension L/K with residue class degree [κL : κK ] = d and with K ⊂
L ⊂ Kϕd , denote the field of norms corresponding to L/K by X(L/K) and
the completion of the maximal unramified extension X(L/K)nr of X(L/K)
by X̃(L/K) (for details, [Fe-Vo], [Fo-Wi-1, Fo-Wi-2] and [Win]), and set
L0 = L ∩Knr. There exists a bijective 1-cocycle

(3.1) ΦΦΦ
(ϕ)
L/K : Gal(L/K)→ K×/NL0/KL

×
0 × U

�eX(L/K)
/YL/L0

,

called the generalized Fesenko reciprocity map for the extension L/K, de-
fined by the composition

(3.2)

Gal(L/K)
φφφ

(ϕ)
L/K

//

ΦΦΦ
(ϕ)
L/K

&&

K×/NL0/KL
×
0 × U�eX(L/K)

/UX(L/K)

(id
K×/NL0/K

L×0
,cL/L0

)

��

K×/NL0/KL
×
0 × U�eX(L/K)

/YL/L0

Here,

(3.3) φφφ
(ϕ)
L/K : Gal(L/K)→ K×/NL0/KL

×
0 × U

�eX(L/K)
/UX(L/K)

is an injective 1-cocycle called, following [Ik-Se-2], the generalized arrow
defined for the extension L/K, and defined by

(3.4) φφφ
(ϕ)
L/K(σ) = (πmKNL0/KL

×
0 , φ

(ϕd)
L/L0

(ϕ−mσ)),

for every σ ∈ Gal(L/K), where 0 ≤ m ∈ Z is the integer satisfying σ|L0 =
ϕm|L0 ∈ Gal(L0/K) and ϕ−mσ ∈ Gal(L/L0), and for any τ ∈ Gal(L/L0),
the value φ(ϕd)

L/L0
(τ) of the arrow defined for the extension L/L0 at τ is de-

fined by [Fes-1, Fes-2, Fes-3] and [Ik-Se-1]. Namely, φ(ϕd)
L/L0

(τ) = Uτ .UX(L/L0)

provided that Uτ ∈ U�eX(L/K)
, which is unique modulo UX(L/L0), solves the

equation U1−ϕd = Πτ−1
ϕd;L/L0

, where Πϕd;L/L0
is the canonical prime element



Ramification theory 379

of the local field X(L/L0) defined in Lemmas 1.2 and 1.3 of [Ik-Se-2]. For the
definition of the group U�eX(L/K)

and its subgroups UX(L/L0) and YL/L0
satisfy-

ing the inclusion UX(L/L0) ⊆ YL/L0
we refer the reader to [Fes-1, Fes-2, Fes-3]

and [Ik-Se-1]. In the commutative triangle (3.2), the arrow

(3.5) cL/L0
: U�eX(L/K)

/UX(L/K) → U�eX(L/K)
/YL/L0

is the canonical map defined by the inclusion UX(L/L0) ⊆ YL/L0
. Recall

that (cf. [Fes-1, Fes-2, Fes-3] and [Ik-Se-1]) the composition cL/L0
◦ φ(ϕd)

L/L0
=

Φ
(ϕd)
L/L0

: Gal(L/L0)→ U�eX(L/K)
/YL/L0

is the Fesenko reciprocity map for the

extension L/L0. Thus, for σ ∈ Gal(L/K), the value ΦΦΦ(ϕ)
L/K(σ) is defined by

(3.6) ΦΦΦ
(ϕ)
L/K(σ) = (πmKNL0/KL

×
0 , Φ

(ϕd)
L/L0

(ϕ−mσ)),

where 0 ≤ m ∈ Z satisfies σ|L0 = ϕm|L0 ∈ Gal(L0/K) and ϕ−mσ ∈
Gal(L/L0).

Define a composition law ∗ on im(φφφ(ϕ)
L/K) by

(3.7) (a, U) ∗ (b, V ) = (a, U).(b, V )(φφφ
(ϕ)
L/K

)−1((a,U))

for every a = a.NL0/KL
×
0 , b = b.NL0/KL

×
0 ∈ K×/NL0/KL

×
0 with a, b ∈

K× and U = U.UX(L/K), V = V.UX(L/K) ∈ U�eX(L/K)
/UX(L/K) with U, V ∈

U�eX(L/K)
, where the action of Gal(L/K) on im(φφφ(ϕ)

L/K) is defined by (b, V )σ =

(b, V ϕ−mσ). Then K×/NL0/KL
×
0 × U�eX(L/K)

/UX(L/K) is a topological group

under ∗, and φφφ(ϕ)
L/K induces an isomorphism of topological groups

(3.8) φφφ
(ϕ)
L/K : Gal(L/K) ∼−→ im(φφφ(ϕ)

L/K),

where the topological group structure on im(φφφ(ϕ)
L/K) is defined with respect

to the binary operation ∗ defined by (3.7). Likewise, define a composition
law, again denoted by ∗, on K×/NL0/KL

×
0 × U�eX(L/K)

/YL/L0
by

(3.9) (a, U) ∗ (b, V ) = (a, U).(b, V )(ΦΦΦ
(ϕ)
L/K

)−1((a,U))

for every a = a.NL0/KL
×
0 , b = b.NL0/KL

×
0 ∈ K×/NL0/KL

×
0 with a, b ∈ K×

and U = U.YL/L0
, V = V.YL/L0

∈ U�eX(L/K)
/YL/L0

with U, V ∈ U�eX(L/K)
,

where the action of Gal(L/K) on K×/NL0/KL
×
0 ×U�eX(L/K)

/YL/L0
is defined

by (b, V )σ = (b, V ϕ−mσ). Then K×/NL0/KL
×
0 ×U�eX(L/K)

/YL/L0
is a topolog-
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ical group under ∗, and ΦΦΦ(ϕ)
L/K induces an isomorphism of topological groups

(3.10) ΦΦΦ
(ϕ)
L/K : Gal(L/K) ∼−→ K×/NL0/KL

×
0 × U

�eX(L/K)
/YL/L0

,

where the topological group structure on K×/NL0/KL
×
0 ×U�eX(L/K)

/YL/L0
is

defined with respect to the binary operation ∗ defined by (3.9).
The mappings φφφ(ϕ)

L/K and ΦΦΦ(ϕ)
L/K have the following basic properties.

(i) For an infinite Galois sub-extension M/K of L/K such that [κM : κK ]
= d′ and K ⊂M ⊂ Kϕd′ for some d′ | d, the square

(3.11)

Gal(L/K)
φφφ

(ϕ)
L/K

//

resM

��

K×/NL0/KL
×
0 × U�eX(L/K)

/UX(L/K)

(eCFT
L0/M0

, eNColeman
L/M

)

��

Gal(M/K)
φφφ

(ϕ)
M/K

// K×/NM0/KM
×
0 × U�eX(M/K)

/UX(M/K)

is commutative, where the right vertical arrow is defined by

(3.12) (eCFT
L0/M0

, ÑColeman
L/M ) : (a, U) 7→ (eCFT

L0/M0
(a), ÑColeman

L/M (U))

for every (a, U) ∈ K×/NL0/KL
×
0 × U�eX(L/K)

/UX(L/K). Here,

ÑColeman
L/M : U�eX(L/K)

/UX(L/K) → U�eX(M/K)
/UX(M/K)

is the Coleman norm map from L to M defined by equations (2.22) and
(2.23) of [Ik-Se-2]. Likewise, the square

(3.13)

Gal(L/K)
ΦΦΦ

(ϕ)
L/K

//

resM

��

K×/NL0/KL
×
0 × U�eX(L/K)

/YL/L0

(eCFT
L0/M0

, eNColeman
L/M

)

��

Gal(M/K)
ΦΦΦ

(ϕ)
M/K

// K×/NM0/KM
×
0 × U�eX(M/K)

/YM/M0

is commutative, where the right vertical arrow is defined by

(3.14) (eCFT
L0/M0

, ÑColeman
L/M ) : (a, U) 7→ (eCFT

L0/M0
(a), ÑColeman

L/M (U))

for (a, U) ∈ K×/NL0/KL
×
0 ×U�eX(L/K)

/YL/L0
. Here, ÑColeman

L/M : U�eX(L/K)
/YL/L0

→ U�eX(M/K)
/YM/M0

is the Coleman norm map from L to M defined by

Lemma 2.21 together with equations (2.47) and (2.48) of [Ik-Se-2]. Moreover,
the arrow eCFT

L0/M0
: K×/NL0/KL

×
0 → K×/NM0/KM

×
0 appearing in both

commutative diagrams is the natural inclusion defined via the existence
theorem of local class field theory.
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(ii) For each 0 ≤ i ∈ R, introduce the subgroups (U�eX(L/K)
)i of the field

X̃(L/K) by (U�eX(L/K)
)i = U�eX(L/K)

∩ U ieX(L/K)
. For each 0 ≤ n ∈ Z, as in

equation (5.42) of [Ik-Se-1], let

(3.15) QnL/L0
= cL/L0

((U�eX(L/K)
)nUX(L/K)/UX(L/K) ∩ im(φ(ϕd)

L/L0
)),

which is a subgroup of (U�eX(L/K)
)nYL/L0

/YL/L0
. Here, the canonical homo-

morphism cL/L0
introduced in (3.5) is defined by equation (5.35) of [Ik-Se-1].

Now, the ramification theorem for the generalized arrow φφφ
(ϕ)
L/K yields, for

0 ≤ n ∈ Z, the inclusion

(3.16) φφφ
(ϕ)
L/K(Gal(L/K)ψL/K◦ϕL/L0

(n) −Gal(L/K)ψL/K◦ϕL/L0
(n+1))

⊆ 〈1K×/NL0/K
L×0
〉 × ((U�eX(L/K)

)nUX(L/K)/UX(L/K)

− (U�eX(L/K)
)n+1UX(L/K)/UX(L/K)),

and the ramification theorem for the generalized Fesenko reciprocity map
ΦΦΦ

(ϕ)
L/K gives, for 0 ≤ n ∈ Z, the inclusion

(3.17) ΦΦΦ
(ϕ)
L/K(Gal(L/K)ψL/K◦ϕL/L0

(n) −Gal(L/K)ψL/K◦ϕL/L0
(n+1))

⊆ 〈1K×/NL0/K
L×0
〉 × ((U�eX(L/K)

)nYL/L0
/YL/L0

−Qn+1
L/L0

),

where, for 0 ≤ u ∈ R, Gal(L/K)u denotes the uth ramification subgroup
in the lower numbering of the Galois group Gal(L/K) corresponding to the
infinite APF-Galois extension L/K.

Remark 3.1. In fact, ramification theorems for φφφ(ϕ)
L/K and ΦΦΦ(ϕ)

L/K stated
in (3.16) and (3.17) can be simplified as follows. For 0 ≤ n ∈ Z, as ϕL/K(n) =
ϕL0/K ◦ ϕL/L0

(n) and L0 = L ∩ Knr, it follows that ϕL/K(n) = ϕL/L0
(n).

Therefore, (3.16) can be reformulated as

(3.18) φφφ
(ϕ)
L/K(Gal(L/K)n −Gal(L/K)n+1) ⊆ 〈1K×/NL0/K

L×0
〉

× ((U�eX(L/K)
)nUX(L/K)/UX(L/K) − (U�eX(L/K)

)n+1UX(L/K)/UX(L/K)),

and (3.17) can be reformulated as

(3.19) ΦΦΦ
(ϕ)
L/K(Gal(L/K)n −Gal(L/K)n+1)

⊆ 〈1K×/NL0/K
L×0
〉 × ((U�eX(L/K)

)nYL/L0
/YL/L0

−Qn+1
L/L0

).

Finally, the following remark is in order.

Remark 3.2. We do not need assumption (2.1) on the local field K to
define the generalized arrow φφφ

(ϕ)
L/K by (3.4). For details, cf. [Ik-Se-2].
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3.2. Construction of the non-abelian local reciprocity map. For
each 1 ≤ d ∈ Z, let Kϕd denote the fixed field of ϕd ∈ GK . Observe that
Ksep = KnrKϕd and Knr

d = Knr ∩ Kϕd , where Knr
d denotes the unique

unramified extension over K of degree d. Now, for each 1 ≤ n, d ∈ Z,
let Γ (n)

d := Γ
(n)
d (K,ϕ) be a Galois extension over K, which is the unique

maximal n-abelian extension (1) of Knr
d in Kϕd . Note that

(3.20)
⋃

1≤d∈Z
Γ

(n)
d = (Knr)n-ab,

where (Knr)n-ab denotes the “n-abelian closure” of Knr in Ksep. Thus, it
also follows that

(3.21)
⋃

1≤n∈Z

⋃
1≤d∈Z

Γ
(n)
d = Ksep.

Moreover, for each pair (n, d) of positive integers, Γ (n)
d is an APF-extension

over K.
Now, the absolute Galois group GK of the local field K is the projective

limit
GK = lim←−

(n,d)

Gal(Γ (n)
d /K)

over the restriction morphisms

r
(n,d)
(n′,d′) : Gal(Γ (n)

d /K)→ Gal(Γ (n′)
d′ /K)

for (n, d), (n′, d′) ∈ Z≥1 × Z≥1 satisfying n′ ≤ n and d′ | d (which is equiv-
alent to Γ

(n′)
d′ ⊆ Γ

(n)
d ). Note that, for each 1 ≤ n, d ∈ Z, the APF-Galois

extension Γ (n)
d over K has the residue class degree d. Therefore, the general-

ized Fesenko theory developed in [Ik-Se-2] can be applied to the extensions
of the form Γ

(n)
d /K, which would enable us to construct the generalized

arrow φφφ
(ϕ)

Γ
(n)
d /K

and the generalized Fesenko reciprocity map ΦΦΦ(ϕ)

Γ
(n)
d /K

, for ev-

ery pair (n, d) ∈ Z≥1 × Z≥1. Then using property (i) for the collections
{φφφ(ϕ)

Γ
(n)
d /K

}(n,d)∈Z≥1×Z≥1
and {ΦΦΦ(ϕ)

Γ
(n)
d /K

}(n,d)∈Z≥1×Z≥1
, and passing to the pro-

jective limits, we get the generalized arrow φφφ
(ϕ)
K for the local field K and the

non-abelian local reciprocity map ΦΦΦ(ϕ)
K for the local field K respectively.

To be more precise, we first introduce the following notation to sim-
plify the discussion. In what follows, L/K denotes an infinite APF-Galois
extension such that [κL : κK ] = d and K ⊂ L ⊂ Kϕd .

(1) Recall that by an n-abelian extension over a field F , we mean a Galois extension
E/F whose Galois group Gal(E/F ) has a trivial nth commutator subgroup Gal(E/F )(n).
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Notation 3.3. For an infinite Galois sub-extension M/K of L/K such
that [κM : κK ] = d′ and K ⊂M ⊂ Kϕd′ provided that d′ | d, we let

(i) CoL/M denote the map (eCFT
L0/M0

, ÑColeman
L/M ) defined by (3.11) and (3.12),

(ii) CL/M denote the map (eCFT
L0/M0

, ÑColeman
L/M ) defined by (3.13) and (3.14).

Recall that

CoL/M : K×/NL0/KL
×
0 × U

�eX(L/K)
/UX(L/K)

→ K×/NM0/KM
×
0 × U

�eX(M/K)
/UX(M/K)

and

CL/M : K×/NL0/KL
×
0 ×U

�eX(L/K)
/YL/L0

→ K×/NM0/KM
×
0 ×U

�eX(M/K)
/YM/M0

are homomorphisms of the underlying abelian groups. Moreover, for the
valued fields L and M as above, let F/K be an infinite Galois sub-extension
of M/K satisfying K ⊂ F ⊂ Kϕd′′ with [κF : κK ] = d′′ where d′′ | d′. If we
set F0 = F ∩Knr, the following equalities hold:

(i) CoL/M = id and CL/M = id, if L = M .
(ii) CoL/F = CoM/F ◦ C

o
L/M and CL/F = CM/F ◦ CL/M .

It follows that the systems

(3.22) {K×/NKnr
d /K

Knr
d
× × U�eX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

; Co
Γ

(n)
d /Γ

(n′)
d′
}n′≤n
d′|d

and

(3.23) {K×/NKnr
d /K

Knr
d
× × U�eX(Γ

(n)
d /K)

/Y
Γ

(n)
d /Knr

d

; C
Γ

(n)
d /Γ

(n′)
d′
}n′≤n
d′|d

are projective. Let

∇(ϕ),o
K = ∇oK = lim←−

(n,d)

K×/NKnr
d /K

Knr
d
× × U�eX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

(3.24)

= Ẑ× lim←−
(n,d)

U�eX(Γ
(n)
d /K)

/UX(Γ
(n)
d /K)

and

∇(ϕ)
K = ∇K = lim←−

(n,d)

K×/NKnr
d /K

Knr
d
× × U�eX(Γ

(n)
d /K)

/Y
Γ

(n)
d /Knr

d

(3.25)

= Ẑ× lim←−
(n,d)

U�eX(Γ
(n)
d /K)

/Y
Γ

(n)
d /Knr

d

be the projective limits of the systems (3.22) and (3.23) respectively. The
limits ∇(ϕ),o

K and ∇(ϕ)
K , or ∇oK and ∇K respectively if there is no risk of

confusion, depend on the choice of a Lubin–Tate splitting ϕ over K.
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Note that ∇oK and ∇K have natural topological GK-module structures,
where the GK-action on ∇oK and on ∇K is defined by

(3.26) ((ad,n, Ud,n))σd,n = ((ad,n, Ud,n)
σ|
Γ

(n)
d )d,n

for every coherent sequence ((ad,n, Ud,n))d,n from ∇oK or from ∇K , and for
every σ ∈ GK = lim←−

(n,d)

Gal(Γ (n)
d /K).

For any two pairs (n, d) and (n′, d′) satisfying n′ ≤ n and d′ | d, the square

(3.27)

U�eX(Γ
(n)
d /K)

/UX(Γ
(n)
d /K)

c
Γ

(n)
d

/Knr
d //

eNColeman

Γ
(n)
d

/Γ
(n′)
d′ ��

U�eX(Γ
(n)
d /K)

/Y
Γ

(n)
d /Knr

deNColeman

Γ
(n)
d

/Γ
(n′)
d′��

U�eX(Γ
(n′)
d′ /K)

/U
X(Γ

(n′)
d′ /K)

c
Γ

(n′)
d′

/Knr
d′ // U�eX(Γ

(n′)
d′ /K)

/Y
Γ

(n′)
d′ /Knr

d′

is commutative. Therefore, the topological GK-modules ∇oK and ∇K are
related to each other by a topological GK-module homomorphism

(3.28) cK := lim←−
(n,d)

(idK×/NKnr
d
/KK

nr
d
× , c

Γ
(n)
d /Knr

d

) : ∇oK → ∇K

defined by the commutativity of the diagram (3.27).
Therefore, there exists an injective map

(3.29) φφφ
(ϕ)
K = lim←−

(n,d)

φφφ
(ϕ)

Γ
(n)
d /K

: GK −→ ∇oK

defined by

(3.30) φφφ
(ϕ)
K ((σd,n)d,n) = (φφφ(ϕ)

Γ
(n)
d /K

(σd,n))d,n

for every coherent sequence (σd,n)d,n ∈ lim←−
(n,d)

Gal(Γ (n)
d /K) = GK , and a bi-

jective map

(3.31) ΦΦΦ
(ϕ)
K = lim←−

(n,d)

ΦΦΦ
(ϕ)

Γ
(n)
d /K

: GK −→ ∇K

defined by

(3.32) ΦΦΦ
(ϕ)
K ((σd,n)d,n) = (ΦΦΦ(ϕ)

Γ
(n)
d /K

(σd,n))d,n

for every coherent sequence (σd,n)d,n ∈ lim←−
(n,d)

Gal(Γ (n)
d /K) = GK . Moreover,

the injective mapping φφφ(ϕ)
K : GK → ∇oK is a 1-cocycle, that is, for σ, τ ∈ GK

with respective coherent sequences (σd,n)d,n, (τd,n)d,n ∈ lim←−
(n,d)

Gal(Γ (n)
d /K),

(3.33) φφφ
(ϕ)
K (στ) = φφφ

(ϕ)
K (σ)φφφ(ϕ)

K (τ)σ.
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Also the bijective mapping ΦΦΦ(ϕ)
K : GK → ∇K is a 1-cocycle, i.e., for σ, τ ∈GK

with respective coherent sequences (σd,n)d,n, (τd,n)d,n ∈ lim←−
(n,d)

Gal(Γ (n)
d /K),

(3.34) ΦΦΦ
(ϕ)
K (στ) = ΦΦΦ

(ϕ)
K (σ)ΦΦΦ(ϕ)

K (τ)σ.

Definition 3.4. The injective 1-cocycle φφφ(ϕ)
K : GK → ∇oK is called the

generalized arrow for K, and the bijective 1-cocycle ΦΦΦ(ϕ)
K : GK → ∇K is

called the non-abelian local reciprocity map of K.

The 1-cocycles φφφ(ϕ)
K and ΦΦΦ(ϕ)

K are related to each other by

(3.35) ΦΦΦ
(ϕ)
K = cK ◦φφφ(ϕ)

K .

4. Ramification theory. Now, by Theorems 2.7 and 2.20 of [Ik-Se-2]
(cf. also Remark 3.1 in Section 3), the ramification theorems for the general-
ized arrow φφφ

Γ
(n)
d /K

and for the generalized Fesenko reciprocity map ΦΦΦ(ϕ)

Γ
(n)
d /K

give, for 0 ≤ w ∈ Z, the inclusions

(4.1) φφφ
(ϕ)

Γ
(n)
d /K

(Gal(Γ (n)
d /K)w −Gal(Γ (n)

d /K)w+1)

⊆ 〈1K×/NKnr
d
/KK

nr
d
×〉 × ((U�eX(Γ

(n)
d /K)

)wUX(Γ
(n)
d /K)

/UX(Γ
(n)
d /K)

− (U�eX(Γ
(n)
d /K)

)w+1UX(Γ
(n)
d /K)

/UX(Γ
(n)
d /K)

),

and

(4.2) ΦΦΦ
(ϕ)

Γ
(n)
d /K

(Gal(Γ (n)
d /K)w −Gal(Γ (n)

d /K)w+1)

⊆ 〈1K×/NKnr
d
/KK

nr
d
×〉 × ((U�eX(Γ

(n)
d /K)

)wY
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

−Qw+1

Γ
(n)
d /Knr

d

),

where Gal(Γ (n)
d /K)w denotes the wth higher ramification subgroup in the

lower numbering of the Galois group Gal(Γ (n)
d /K) corresponding to the

infinite APF-Galois extension Γ
(n)
d /K.

The aim of this section is to state and prove ramification theorems for the
generalized arrow φφφ

(ϕ)
K : GK → ∇oK and for the non-abelian local reciprocity

map ΦΦΦ(ϕ)
K : GK → ∇K .

4.1. Higher ramification subgroups of GK in the upper number-
ing. To simplify the discussion, we introduce the following notation.

Notation 4.1. For every 1 ≤ d, n ∈ Z, the Galois group Gal(Γ (n)
d /K)

is denoted by G(d, n). Moreover, for any −1 ≤ w ∈ R, G(d, n)w denotes the
wth ramification subgroup of G(d, n) in the upper numbering.
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Proposition 4.2. For (n′, d′), (n, d) ∈ Z≥1×Z≥1 satisfying n′ ≤ n and
d′ | d, and for 0 ≤ w ∈ Z,

(4.3) ψ
Γ

(n′)
d′ /Knr

d′
(w) ≤ ψ

Γ
(n)
d /Knr

d

(w).

Proof. As Γ (n′)
d′ and Γ (n)

d are APF-extensions over the field K, for every
−1 < x ∈ R, setting G0

Γ
(n′)
d′

= G0
K ∩GΓ (n′)

d′
and G0

Γ
(n)
d

= G0
K ∩GΓ (n)

d

, we have

(G0
K : GxKG

0

Γ
(n′)
d′

) < ∞ and (G0
K : GxKG

0

Γ
(n)
d

) < ∞ (cf. [Fo-Wi-1, Fo-Wi-2,

Win]). Now, if n′ ≤ n and d′ | d, then Γ
(n′)
d′ ⊆ Γ

(n)
d . Therefore,

(G0
K : GxKG

0

Γ
(n′)
d′

) ≤ (G0
K : GxKG

0

Γ
(n)
d

) <∞,

as G
Γ

(n)
d

⊆ G
Γ

(n′)
d′

. Hence, for 0 ≤ w ∈ Z,

ψ
Γ

(n′)
d′ /K

(w) =
w�

0

(G0
K : GxKG

0

Γ
(n′)
d′

) dx ≤
w�

0

(G0
K : GxKG

0

Γ
(n)
d

) dx = ψ
Γ

(n)
d /K

(w).

Now, the desired inequality follows, because

ψ
Γ

(n′)
d′ /K

(w) = ψ
Γ

(n′)
d′ /Knr

d′
◦ ψKnr

d′ /K
(w) = ψ

Γ
(n′)
d′ /Knr

d′
(w)

and likewise

ψ
Γ

(n)
d /K

(w) = ψ
Γ

(n)
d /Knr

d

◦ ψKnr
d /K

(w) = ψ
Γ

(n)
d /Knr

d

(w).

Remark 4.3. Note that Proposition 4.2 is more generally true in the
following setting. Let L be an infinite APF-Galois extension over K satis-
fying K ⊂ L ⊂ Kϕd with [κL : κK ] = d, and M/K be an infinite Galois
sub-extension of L/K satisfying K ⊂M ⊂ Kϕd′ with [κM : κK ] = d′, where
d′ | d. Then, for 0 ≤ w ∈ Z,

ψM/M0
(w) ≤ ψL/L0

(w),

where L0 = L ∩Knr and M0 = M ∩Knr. The proof follows the same lines.

It is well-known that, for a fixed −1 ≤ w ∈ R, the projective limit

(4.4) GwK := lim←−
(n,d)

G(d, n)w

over the restriction morphisms

r
(n,d)
(n′,d′) : G(d, n)w → G(d′, n′)w

for (n, d), (n′, d′) ∈ Z≥1×Z≥1 satisfying n′ ≤ n and d′ | d defines a subgroup
GwK of the absolute Galois group GK , and we have the following definition.

Definition 4.4. For −1 ≤ w ∈ R, the group GwK is called the wth higher
ramification subgroup of GK in the upper numbering.
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However, it turns out that we need a finer upper ramification “filtration”
of GK . Let w := (w(n,d)) be a net in R≥−1 always assumed to be indexed
over the directed set Z≥1 × Z≥1, where (n′, d′) � (n, d) if n′ ≤ n and d′ | d
for (n, d), (n′, d′) ∈ Z≥1×Z≥1. Furthermore, assume that the net w in R≥−1

is increasing, that is, w(n′,d′) ≤ w(n,d) if (n′, d′) � (n, d). In case w = (w(n,d))
in R≥−1 is constant, that is, w(n,d) = c for every (n, d) ∈ Z≥1×Z≥1, the net
w will be simply denoted by c.

Note that, for an increasing net w in R≥−1, the projective limit

(4.5) G
w
K := lim←−

(n,d)

G(d, n)w(n,d)

over the restriction morphisms

r
(n,d)
(n′,d′) : G(d, n)w(n,d) → G(d′, n′)w(n,d) ↪→ G(d′, n′)w(n′,d′)

for (n, d), (n′, d′) ∈ Z≥1×Z≥1 satisfying n′ ≤ n and d′ | d defines a subgroup
G
w
K of the absolute Galois group GK , and we have the following definition.

Definition 4.5. For an increasing net w in R≥−1, the group G
w
K is

called the wth higher ramification subgroup of GK in the upper numbering.

Definition 4.6. Let w = (w(n,d)) be an increasing net in R≥−1. The
net w′ in R≥−1 defined by

(4.6) w′(n,d) = ϕ
Γ

(n)
d /Knr

d

(ψ
Γ

(n)
d /Knr

d

(w(n,d)) + 1),

for every pair (n, d), which is clearly an increasing net in R≥−1, is called the
successor of w.

Note that, for any increasing net w in R≥−1, we have the inclusion

(4.7) G
w′

K ⊆ G
w
K ,

because G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1 ⊆ G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d)) for every pair

(n, d). The proof of the following lemma is clear.

Lemma 4.7. For any increasing net w in R≥−1 and for σ = (σd,n)d,n ∈
lim←−
(n,d)

G(d, n)w(n,d) = G
w
K , the following two conditions are equivalent.

(i) σ ∈ GwK −G
w′

K .
(ii) σd,n ∈ G(d, n)ψ

Γ
(n)
d

/Knr
d

(w(n,d)) − G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1 for some

(n, d) ∈ Z≥1 × Z≥1.

4.2. The groups ∇o,wK and ∇wK for an increasing net w in R≥−1.
The following proposition is central to what follows.

Proposition 4.8. Let L be an infinite APF-Galois extension over K
satisfying K ⊂ L ⊂ Kϕd with [κL : κK ] = d, and M/K be an infinite Galois
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sub-extension of L/K satisfying K ⊂M ⊂ Kϕd′ with [κM : κK ] = d′, where
d′ | d. Then

(4.8) ÑL/M ◦ 〈ϕ〉L/M ((U�eX(L/K)
)w) ⊆ (U�eX(M/K)

)w

for every 0 ≤ w ∈ Z.

Proof. For 0 ≤ w ∈ Z, let α = (α eEi)0≤i∈Z ∈ (U�eX(L/K)
)w. That is, the

norm coherent sequence α = (α eEi)0≤i∈Z ∈ U�eX(L/K)
satisfies

νeX(L/K)
((α eEi)0≤i∈Z − 1eX(L/K)

) = ν eK(α eK − 1) ≥ w,

where the equality follows from the definition of addition on X̃(L/K) and
the valuation veX(L/K)

on X̃(L/K). Thus, by the definition of the mapping

ÑL/M ◦ 〈ϕ〉L/M : X(L/K)× → X(M/K)×, it follows that

νeX(M/K)
(ÑL/M ◦ 〈ϕ〉L/M ((α eEi)0≤i∈Z)− 1eX(M/K)

)

= ν eK(α(1+ϕd
′
+···+ϕd′(f(L/M)−1))2eK − 1) = ν eK(αf(L/M)2eK − 1),

as α = (α eEi)0≤i∈Z ∈ U�eX(L/K)
and the K̃-coordinate of α satisfies α eK ∈ UL0 ,

where L0 = L ∩Knr. Thus,

νeX(M/K)
(ÑL/M ◦ 〈ϕ〉L/M ((α eEi)0≤i∈Z)− 1eX(M/K)

)

= ν eK(α eK − 1) + ν eK
( ∑

0≤`�f(L/M)2

α`eK
)
≥ w,

which shows that ÑL/M ◦ 〈ϕ〉L/M ((α eEi)0≤i∈Z) ∈ UweX(M/K)
. Combining this

with the property (ii) of equation (2.21) in [Ik-Se-2] yields the assertion.

Notation 4.9. Let L be an infinite APF-Galois extension over K sat-
isfying K ⊂ L ⊂ Kϕd with [κL : κK ] = d. For 0 ≤ w ∈ R, let

(∇(ϕ),o
L/K )w = ∇o,wL/K = K×/NL0/KL

×
0 × (U�eX(L/K)

)wUX(L/K)/UX(L/K),(4.9)

(∇(ϕ)
L/K)w = ∇wL/K = K×/NL0/KL

×
0 × (U�eX(L/K)

)wYL/L0
/YL/L0

.(4.10)

Therefore, by Remark 4.3, for the local fields L and M as in Proposition
4.8, and for 0 ≤ wL/K , wM/K ∈ R satisfying wM/K ≤ wL/K , the map CoL/M
introduced in Notation 3.3(i) restricts to

CoL/M : ∇o,ψL/L0
(wL/K)

L/K → ∇o,ψM/M0
(wM/K)

M/K ,

and the map CL/M introduced in Notation 3.3(ii) restricts to

CL/M : ∇ψL/L0
(wL/K)

L/K → ∇ψM/M0
(wM/K)

M/K .

Thus, the following corollary follows directly.
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Corollary 4.10. For an increasing net w = (w(n,d)) in R≥0, the sys-
tems

(4.11)
{
∇
o,ψ

Γ
(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /K

; Co
Γ

(n)
d /Γ

(n′)
d′

}
n′≤n
d′|d

and

(4.12)
{
∇
ψ
Γ

(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /K

; C
Γ

(n)
d /Γ

(n′)
d′

}
n′≤n
d′|d

are projective.

Proof. Follows from the projectivity of the systems (3.22) and (3.23),
and from Proposition 4.8 combined with Proposition 4.2.

For any increasing net w in R≥0, let

(4.13) (∇(ϕ),o
K )w := ∇o,wK = lim←−

(n,d)

∇
o,ψ

Γ
(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /K

= Ẑ× lim←−
(n,d)

(U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

and

(4.14) (∇(ϕ)
K )w := ∇wK = lim←−

(n,d)

∇
ψ
Γ

(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /K

= Ẑ× lim←−
(n,d)

(U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
Y
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

be the projective limits of the systems (4.11) and (4.12) respectively. These
limits (∇(ϕ),o

K )w and (∇(ϕ)
K )w, or ∇o,wK and ∇wK if there is no risk of confusion,

depend on the choice of a Lubin–Tate splitting ϕ over K.

Lemma 4.11. For (n, d), (n′, d′) satisfying n′ ≤ n, d′ | d, and for 0 ≤
w(n,d), w(n′,d′) ∈ R satisfying w(n′,d′) ≤ w(n,d) and 0 ≤ ψ

Γ
(n)
d /K

(w(n,d)),

ψ
Γ

(n′)
d′ /K

(w(n′,d′)) ∈ Z, the squares

(4.15)

G(d, n)w(n,d)

φφφ
(ϕ)

Γ
(n)
d

/K
//

r
(n,d)

(n′,d′)

��

A
(U)
(n,d)

Co
Γ

(n)
d

/Γ
(n′)
d′

��

G(d′, n′)w(n′,d′)

φφφ
(ϕ)

Γ
(n′)
d′

/K
// A

(U)
(n′,d′)
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and

(4.16)

G(d, n)w(n,d)

ΦΦΦ
(ϕ)

Γ
(n)
d

/K
//

r
(n,d)

(n′,d′)
��

A
(Y )
(n,d)

C
Γ

(n)
d

/Γ
(n′)
d′

��

G(d, n)w(n′,d′)

ΦΦΦ
(ϕ)

Γ
(n′)
d′

/K
// A

(Y )
(n′,d′)

are commutative, where for (n, d) ∈ Z≥1×Z≥1 and 0 ≤ w(n,d) ∈ R satisfying
0 ≤ ψ

Γ
(n)
d /K

(w(n,d)) ∈ Z,

A
(U)
(n,d) := 〈1K×/NKnr

d
/KK

nr
d
×〉×(U�eX(Γ

(n)
d /K)

)
ψ
Γ

(n)
d

/K
(w(n,d))

UX(Γ
(n)
d /K)

/UX(Γ
(n)
d /K)

,

A
(Y )
(n,d) := 〈1K×/NKnr

d
/KK

nr
d
×〉×(U�eX(Γ

(n)
d /K)

)
ψ
Γ

(n)
d

/K
(w(n,d))

Y
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

.

Proof. Follows from Proposition 4.2, and the basic property (iii) of ram-
ification theory of φφφ(ϕ)

L/K and ΦΦΦ
(ϕ)
L/K together with the basic property (i) of

φφφ
(ϕ)
L/K and ΦΦΦ(ϕ)

L/K stated in Section 3.

For any increasing net w = (w(n,d)) in R≥0, let 1∇o,wK denote the kernel of
the projection Pr1 : ∇o,wK → Ẑ, and 1∇wK denote the kernel of the projection
Pr1 : ∇wK → Ẑ. An immediate consequence of Lemma 4.11 is

Corollary 4.12. Let w be any increasing net in R≥0 and σ ∈ G
w
K .

Then:

(i) φφφ(ϕ)
K (σ) ∈ 1∇o,wK .

(ii) ΦΦΦ(ϕ)
K (σ) ∈ 1∇wK .

Now, for an increasing net w = (w(n,d)) in R≥0, introduce

(4.17) Q
w
K = cK(1∇o,wK ∩ im(φφφ(ϕ)

K )),

where cK : ∇oK → ∇K is the canonical map defined by (3.28). Note that
cK(1∇o,wK ) = 1∇wK by the commutativity of the square (3.27) and by Propo-
sitions 4.2 and 4.8.

Lemma 4.13. For an increasing net w = (w(n,d)) in R≥0,

(4.18)
{
Q
ψ
Γ

(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /Knr

d

;NColeman

Γ
(n)
d /Γ

(n′)
d′

}
n′≤n
d′|d

is a projective system and its projective limit is

(4.19) Q
w
K = 〈1bZ〉 × lim←−

(n,d)

Q
ψ
Γ

(n)
d

/Knr
d

(w(n,d))

Γ
(n)
d /Knr

d

.
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Proof. The projectivity of (4.18) follows from the projectivity of the
system {im(φφφ(ϕ)

Γ
(n)
d /K

), Co
Γ

(n)
d /Γ

(n′)
d′
}n′≤n
d′|d

combined with Proposition 4.8 and

(3.27). Moreover, the equality (4.19) follows from (3.28) and (3.27).

In the lemma below, whose proof is clear, w′ denotes the successor of w.

Lemma 4.14. (i) For any increasing net w = (w(n,d)) in R≥−1 and for
an element u = (ud,n)d,n = ((1K×/NKnr

d
/KK

nr
d
× , Ud,n))d,n of

1∇o,wK = 〈1bZ〉 × lim←−
(n,d)

(U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

,

we have: u ∈ 1∇o,wK − 1∇o,w
′

K if and only if

ud,n = (1K×/NKnr
d
/KK

nr
d
× , Ud,n) ∈ 〈1K×/NKnr

d
/KK

nr
d
×〉

× ((U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

− (U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

)

for some (n, d) ∈ Z≥1 × Z≥1.

(ii) For any increasing net w = (w(n,d)) in R≥−1 and for an element
u = (ud,n)d,n = ((1K×/NKnr

d
/KK

nr
d
× , Ud,n))d,n of

1∇wK = 〈1bZ〉 × lim←−
(n,d)

(U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
Y
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

,

we have: u ∈ 1∇wK −Q
w′

K if and only if

ud,n = (1K×/NKnr
d
/KK

nr
d
× , Ud,n) ∈ 〈1K×/NKnr

d
/KK

nr
d
×〉

× ((U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
Y
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

−Q
ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1

Γ
(n)
d /Knr

d

)

for some (n, d) ∈ Z≥1 × Z≥1.

4.3. Main theorems. We can now state and prove the main theorem,
that is, the ramification theorem for the non-abelian local reciprocity map
ΦΦΦ

(ϕ)
K . In order to do so, we first prove the ramification theorem for the gen-

eralized arrow φφφ
(ϕ)
K : GK → ∇oK .

Theorem 4.15 (Ramification theorem for φφφ(ϕ)
K ). For any increasing net

w = (w(n,d)) in R≥−1 satisfying 0 ≤ ψ
Γ

(n)
d /Knr

d

(w(n,d)) ∈ Z for every (n, d)
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in Z≥1 × Z≥1, we have the inclusion

(4.20) φφφ
(ϕ)
K (GwK −G

w′

K ) ⊆ 1∇o,wK − 1∇o,w
′

K .

Proof. Let w be as in the assumptions. Let

σ = (σd,n)d,n ∈ lim←−
(n,d)

G(d, n)w(n,d) = G
w
K .

Clearly, by Corollary 4.12(i), φφφ(ϕ)
K (σ) ∈ 1∇o,wK . By Lemma 4.7, the condition

σ ∈ GwK − G
w′

K is equivalent to the existence of a pair (n, d) ∈ Z≥1 × Z≥1

satisfying σd,n ∈ G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d)) − G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1. There-

fore, by the ramification theorem for the generalized arrow φφφ
(ϕ)

Γ
(n)
d /K

, stated

in (4.1),

φφφ
(ϕ)

Γ
(n)
d /K

(σd,n) ∈ 〈1K×/NKnr
d
/KK

nr
d
×〉

× ((U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

− (U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1
UX(Γ

(n)
d /K)

/UX(Γ
(n)
d /K)

),

which proves, by Lemma 4.14(i), that

φφφ
(ϕ)
K (σ) ∈ 1∇o,wK − 1∇o,w

′

K .

Theorem 4.16 (Ramification theorem for ΦΦΦ(ϕ)
K ). For any increasing net

w = (w(n,d)) in R≥−1 satisfying 0 ≤ ψ
Γ

(n)
d /Knr

d

(w(n,d)) ∈ Z for every (n, d) ∈
Z≥1 × Z≥1, we have the inclusion

(4.21) ΦΦΦ
(ϕ)
K (GwK −G

w′

K ) ⊆ 1∇wK −Q
w′

K .

Proof. Let w be as above. Let σ = (σd,n)d,n ∈ lim←−
(n,d)

G(d, n)w(n,d) = G
w
K .

Clearly, by Corollary 4.12(ii), ΦΦΦ(ϕ)
K (σ) ∈ 1∇wK . By Lemma 4.7, the condition

σ ∈ GwK − G
w′

K is equivalent to the existence of a pair (n, d) ∈ Z≥1 × Z≥1

satisfying σd,n ∈ G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d)) − G(d, n)ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1. There-

fore, by the ramification theorem for the generalized Fesenko reciprocity
map ΦΦΦ(ϕ)

Γ
(n)
d /K

, stated in (4.2),

ΦΦΦ
(ϕ)

Γ
(n)
d /K

(σd,n) ∈ 〈1K×/NKnr
d
/KK

nr
d
×〉

× ((U�eX(Γ
(n)
d /K)

)
ψ
Γ

(n)
d

/Knr
d

(w(n,d))
Y
Γ

(n)
d /Knr

d

/Y
Γ

(n)
d /Knr

d

−Q
ψ
Γ

(n)
d

/Knr
d

(w(n,d))+1

Γ
(n)
d /Knr

d

),
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which proves, by Lemma 4.14(ii), that

ΦΦΦ
(ϕ)
K (σ) ∈ 1∇wK −Q

w′

K .
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ported by the TÜBİTAK grant 107T728.

References

[Fes-1] I. B. Fesenko, Local reciprocity cycles, in: Invitation to Higher Local Fields,
I. B. Fesenko and M. Kurihara (eds.), Geom. Topol. Monogr. 3, Coventry,
2000, 293–298.

[Fes-2] —, Nonabelian local reciprocity maps, in: Class Field Theory—Its Centenary
and Prospect (Tokyo, 1998), K. Miyake (ed.), Adv. Stud. Pure Math. 30,
Math. Soc. Japan, 2001, 63–78.

[Fes-3] —, On the image of noncommutative local reciprocity map, Homology Homo-
topy Appl. 7 (2005), 53–62.

[Fe-Vo] I. B. Fesenko and S. V. Vostokov, Local Fields and Their Extensions, 2nd ed.,
Transl. Math. Monogr. 121, Amer. Math. Soc., Providence, RI, 2002.

[Fo-Wi-1] J.-M. Fontaine et J.-P. Wintenberger, Le “corps des normes” de certaines
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