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On a short spectral sum involving inner products
of a holomorphic cusp form and Maass forms
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Eeva Suvitie (Turku)

1. Introduction. We confine ourselves to cusp forms for the full mod-
ular group Γ = SL2(Z) operating through Möbius transformations on the
upper half-plane H = {z = x+ iy ∈ C | y > 0}. The standard fundamental
domain F for Γ is the region

{z = x+ iy ∈ H | |z| > 1, −1/2 < x < 1/2}

together with its boundary in the half-plane Re z ≤ 0. A holomorphic cusp
form F (z) : H → C of weight k ∈ Z with respect to Γ can be represented
by its Fourier series

F (z) =
∞∑
n=1

a(n)e(nz), e(α) = exp(2πiα).

We may assume that k is even and k ≥ 12, otherwise F (z) is trivial.
A non-holomorphic cusp form or an automorphic form u(z) = u(x+iy) :

H → C is a non-constant real-analytic Γ -invariant function in the upper
half-plane with the following properties:

(i) u(z) is square-integrable with respect to the hyperbolic measure
dµ(z) = dx dy/y2 over a fundamental domain of Γ .

(ii) u(z) is an eigenfunction of the non-euclidean Laplacian ∆ =
−y2(∂2/∂x2 +∂2/∂y2). The corresponding eigenvalue can be written
as 1/4 + κ2 with κ > 0.

The Fourier series expansion for u(z) is then of the form

u(z) = y1/2
∑
n 6=0

ρ(n)Kiκ(2π|n|y)e(nx)
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with Kν a Bessel function of imaginary argument. We may suppose that our
cusp forms are eigenfunctions of the Hecke operators T (n) for all positive
integers n and that u(x+iy) is even or odd as a function of x. Thus T (n)u =
t(n)u for certain real numbers t(n), which are called Hecke eigenvalues, and
u(−z) = ±u(z). Comparing Fourier coefficients on both sides, one may verify
that ρ(n) = ρ(1)t(n) and ρ(−n) = ±ρ(n) for all n ≥ 1. See [Mo3] for proofs
and for a general reference on non-holomorphic cusp forms.

Further, we define Petersson’s inner product

(f, g) =
�

F
f(z)g(z) dµ(z),

which is well-defined for two square-integrable Γ -invariant functions. Now
the Maass (wave) forms

uj(z) = y1/2
∑
n6=0

ρj(n)Kiκj (2π|n|y)e(nx)

constitute an orthonormal set of non-holomorphic cusp forms arranged so
that the corresponding parameters κj determined by the eigenvalues 1/4 +
κ2
j lie in an increasing order. We write tj(n) for the corresponding Hecke

eigenvalues.
An interesting feature of holomorphic and non-holomorphic cusp forms

is the analogy between their Fourier coefficients a(n) and ρ(n) and the clas-
sical divisor function d(n). The analogy reveals itself for example in the
Voronŏı type summation formulae, which are similar in each case (see [J1,
Theorem 1.7] and [Me, Theorem 2]). One fascinating occurrence of the di-
visor function is in the additive divisor problem, in which one investigates
the asymptotic behavior of the sum

D(x;m) =
∑
n≤x

d(n)d(n+m)

as x tends to infinity. Here d(n) is the number of divisors of n, and m is a
given positive integer. Y. Motohashi’s comprehensive paper [Mo1] gives an
in-depth study of this problem along with a discussion of its history.

In his papers [J2] and [J3], M. Jutila considers generalizations of the
additive divisor problem aiming at a unified approach to this sum along
with its analogues

A(x;m) =
∑
n≤x

a(n)a(n+m)

over the Fourier coefficients of a holomorphic cusp form and

T (x;m) =
∑
n≤x

t(n)t(n+m)
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over the Hecke eigenvalues corresponding to Fourier coefficients of a non-
holomorphic cusp form. Jutila studies these sums via the respective gener-
ating Dirichlet series aiming at analytic continuations of these series beyond
the region of absolute convergence with estimates of at most polynomial or-
der on vertical lines. The main complication turns out to be how to obtain
the following estimates:∑

κj≤K
|cj |2 exp(πκj)� K2k+ε and

∑
κj≤K

|c̃j |2 exp(πκj)� Kε,(1.1)

where

cj = (uj(z), yk|F (z)|2) and c̃j = (uj(z), |u(z)|2)(1.2)

are two Petersson’s inner products involving Maass forms uj and the holo-
morphic and non-holomorphic cusp forms F (z) and u(z), respectively. (See
[J2, Lemma 4].) The first of the above bounds was initially proved by
A. Good in [G2], the argument being specific to holomorphic cusp forms,
whereas Jutila developed a unified proof for both estimates in (1.1). Analo-
gous estimates for inner products were established independently by P. Sar-
nak in [Sar], where he considers individual inner products of a more general
type than those above, showing that |c̃j |2 exp(πκj) is of polynomial order
in κj , although the order is weaker than what follows from the bound above.

In order to gain a deeper insight into the first of the κj-sums in (1.1) and
into the order of a single inner product cj , we study this sum over a short
interval K ≤ κj ≤ K +K1/3 and achieve the main result of this paper:

Main Theorem 1.1. For all K ≥ 1, ε > 0,∑
K≤κj≤K+K1/3

|cj |2 exp(πκj)� K2k−2/3+ε.

Here the implied constant depends on k and ε.

This theorem along with its proof were included in our thesis [Su].
Note that the theorem is sharp up to the ε in the exponent; see Good

[G2, Remark 2 on p. 526] and A. Sankaranarayanan [San, Remark on p. 38].
Another of Jutila’s papers [J4] serves as a motivation for choosing the

cube root of K as the length of the sum, as he investigates the sum∑
|κj−K|≤K1/3

αjH
4
j

(
1
2

)
� K4/3+ε.

Here Hj(s) is the Hecke L-function attached to the jth Maass form

Hj(s) =
∞∑
n=1

tj(n)n−s,(1.3)
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Re s > 1, and αj = |ρj |2/cosh(πκj) with ρj = ρj(1) a Fourier coefficient
of the corresponding Maass form. Hj(s) can be analytically continued to
an entire function in the complex plane s ∈ C. The reason underlying this
choice goes back to a paper by A. Ivić [Iv2], in which he proves that∑

|κj−K|≤1

αjH
3
j

(
1
2

)
� K1+ε,

and as a corollary it follows that

Hj

(
1
2

)
� κ

1/3+ε
j .

We present a proof of Main Theorem 1.1 based on papers by Good
[G1] and Jutila and Motohashi [JM1], emphasizing those points where our
argument deviates from these papers. In [G1], Good proves that the in-
ner product cj grows at most polynomially with respect to κj . He starts
with the definition of the inner product, writes the holomorphic cusp form
in question as a finite linear combination of Poincaré series and uses the
Rankin–Selberg method to arrive at a single sum over Fourier coefficients
ρj(m) and a(m). The result which Good thus obtains by direct estima-
tions is not sharp enough for our purposes, so instead we continue along
the lines of the approach used by Jutila and Motohashi. In [JM1] they treat
an analogous sum with the divisor function d(n) in place of the Fourier
coefficient of a holomorphic cusp form, applying a series of various trans-
formations and approximations to spectral and arithmetic objects. The key
points in Jutila and Motohashi’s proof for this sum are the use of a ver-
sion of the Kloosterman-spectral sum formula of R. W. Bruggeman and
N. V. Kuznetsov, the sum formula of Voronŏı, an explicit spectral decom-
position of the shifted convolution sum and the spectral large sieve. In our
case, some additional complications arise from the fact that Kloosterman
sums appear instead of Ramanujan sums.

Although holomorphic cusp forms can be represented as finite linear
combinations of Poincaré series, there is no analogous structure known for
the non-holomorphic case. It is our future challenge to prove, in an analo-
gous way to [Su, Chapter 3], a short interval estimate involving the inner
products c̃j , that is, ∑

K≤κj≤K+K1/3

|c̃j |2 exp(πκj)� K−2/3+ε,

which requires a different approach. J. Bernstein and A. Reznikov have
studied a more general case of the above in their papers [BR1] and [BR2].
They consider a product of two fixed Maass forms instead of the square of
a fixed non-holomorphic cusp form to obtain a non-trivial bound K−1/3+ε.
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In this paper, the following notation will be adopted: Generally we define

σα(n) =
∑
d|n

dα,

as usual. Then d(n) = σ0(n) for all n ∈ N. For any γ =
(
a b
c d

)
∈ Γ we use

the notation

j(γ, z) = cz + d.(1.4)

As mentioned below (1.3), αj = |ρj |2/cosh(πκj), ρj = ρj(1).
The Kloosterman sum is defined for the variables m,n ∈ Z, l ∈ Z+ by

the formula

S(m,n; l) =
l∑

q=1
(q,l)=1

e

(
mq + nq

l

)
, qq ≡ 1 (mod l).

The non-holomorphic Eisenstein series is

E(z, s) =
∑
γ∈A

(Im γ(z))s(1.5)

with z ∈ H and Re s > 1. Here A is a representative set of the right
cosets Γ∞γ in Γ , with Γ∞ = {z 7→ z + n | n ∈ Z} being the stabilizer
of the cusp in Γ . E(z, s) can be analytically continued to a meromorphic
function in the complex plane s ∈ C.

We define yet another inner product

c(t) = (E(z, 1/2 + it), yk|F (z)|2)(1.6)

involving the non-holomorphic Eisenstein series E(z, s) and the holomorphic
cusp form F (z).

We use the notation m ∼ M when M ≤ m < 2M and m � M when
AM ≤ m ≤ BM for some positive constants A and B. Vinogradov’s relation
f(z) � g(z) is another notation for f(z) = O(g(z)). Since the implied
constant in our Theorem 1.1 may depend on the weight k and the arbitrarily
small positive number ε, we shall often omit mentioning the dependence of
the implied constants on those variables. In the context of complex integrals,
the notation

	
(a) means integration along the vertical line where the real part

is a.
Further, we adopt Convention 2 from Jutila and Motohashi’s paper

[JM1]: Let X be a particular object that we need to bound and Y some
expression that comes up in the course of the proof. Suppose we have an
approximation Y = Y0 + Y1 +O(Z), in which Y0 is dominant, Y1 oscillates
in the same mode as Y0, and Z contributes negligibly to X . Then clearly it
suffices to treat only Y0 instead of Y and the notation Y ∼ Y0 indicates the
use of a procedure in which the treatment of Y1 is a repetition of that of Y0.
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Notice that the notation ∼ is being used to mean different things in
different places, but its meaning will be clear from the context. However,
for clarity, we denote by ≈ the asymptotic expansions, usually also denoted
by ∼.

We let ε stand generally for a small positive number, not necessarily the
same at each occurrence.

2. Some lemmas. We shall first gather some auxiliary results which
will be used during the course of the proof of the Main Theorem.

A frequent role is played by the asymptotic representation of the Gamma
function:

Lemma 2.1 (Stirling’s formula). The following asymptotic expansion
holds for the Γ -function:

Γ (z) ≈
√

2π exp((z − 1/2) log z − z)
(

1 +
1

12z
+

1
288z2

+ · · ·
)
,(2.1)

as z →∞ in the sector |arg z| ≤ π− δ, with δ > 0 an arbitrary constant. In
particular, in any fixed strip b ≤ σ ≤ c we have

|Γ (σ + it)| =
√

2π |t|σ−1/2e−|t|π/2(1 +O(|t|−1))

as |t| → ∞.

For a proof, see Olver [O, p. 294].
Moreover, we have an asymptotic expansion involving Bernoulli num-

bers B2n for the logarithm of the Γ -function:

logΓ (z) = (z − 1/2) log z − z +
1
2

log(2π)(2.2)

+
N∑
n=1

B2n

2n(2n− 1)z2n−1
+O

(
1

z2N+1

)
,

when |arg z| ≤ π − δ, with N an arbitrary positive integer and δ > 0 an
arbitrary constant. See [O, pp. 293–294].

For the Kloosterman sum we have the Weil bound

S(m,n; l)� d(l)(m,n, l)1/2l1/2,(2.3)

see Estermann [Es, p. 86].
For the Kloosterman zeta-function we have the following spectral formula

due to Kuznetsov (see [K, Lemma on p. 375]), originating from Selberg’s
paper [Se2]:
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Lemma 2.2. For m,n ≥ 1 and Re s > 3/4,

(2.4) (2π
√
mn)2s−1

∞∑
l=1

l−2sS(m,n; l)

=
1
2

sin(πs)
∞∑
j=1

ρj(m)ρj(n)
cosh(πκj)

Γ (s− 1/2 + iκj)Γ (s− 1/2− iκj)

+
1

2π
sin(πs)

∞�

−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2

Γ (s− 1/2 + ir)Γ (s− 1/2− ir) dr

+
∞∑
k=1

(2k − 1)qm,n(k)
Γ (k − 1 + s)
Γ (k + 1− s)

− 1
2π
δm,n

Γ (s)
Γ (1− s)

with

qm,n(k) =
∞∑
l=1

1
l
S(m,n; l)J2k−1

(
4π
√
mn

l

)
,

and Jν the Bessel function of the first kind of order ν. Here

qm,n(k)� (mn)ε

uniformly in k.

For a proof of equation (2.4), see Lemma 2.5 in [Mo3]. The estimate for
qm,n(k) follows easily from Lemma 2.3 in [Mo3] and Deligne’s Theorem 8.2
of [D].

Moreover, we have the following estimate:

Lemma 2.3. Let M,L ≥ 1 and let n0 be a fixed positive integer. Let
g(l) ∈ C2 be a weight function with the property

supp g ⊆ [AL,BL]

for some positive constants A,B, and let

g(ν) � L−ν for 0 ≤ ν ≤ 2.

Let

S =
∑
m�M

∣∣∣ ∑
AL≤l≤BL

g(l)S(m,n0; l)
∣∣∣2.

Then S �ML2+ε.

Proof. Clearly it suffices to prove that S �ML2+ε when M ≤ m ≤ 2M .
We use the notation am =

∑
AL≤l≤BL χmg(l)S(m,n0; l) with

χm =
{

1 if M ≤ m ≤ 2M,

0 otherwise,
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so that we can write S in the form

S =
∑

M/2≤m≤3M/2

g1(m)|am|2

with g1 a suitable C2-function compactly supported on the interval [M/2,
3M/2], and g

(ν)
1 �ν M

−ν for each 0 ≤ ν ≤ 2. Then

S =
∑

M/2≤m≤3M/2
N/2≤n≤3N/2

χmamξn
∑

AL≤l≤BL
g1(m)g2(n)g(l)S(m,n; l)

with g2 a suitable C2-function compactly supported on an appropriate in-
terval [N/2, 3N/2], N ≥ 1, and g

(ν)
2 � 1 for each 0 ≤ ν ≤ 2, g2(n0) = 1

and

ξn =
{

1, n = n0,

0, n 6= n0.

By Theorem 4 in [Iw1],

S � L1+εM1/2S1/2,

and hence S �ML2+ε.

Next we give some results related to cusp forms. First we have an im-
portant tool arising from spectral theory:

Lemma 2.4 (The spectral large sieve). For K ≥ 1, 1 ≤ ∆ ≤ K, M ≥ 1
and any complex numbers am we have∑

K≤κj≤K+∆

αj

∣∣∣ ∑
m≤M

amtj(m)
∣∣∣2 � (K∆+M)(KM)ε

∑
m≤M

|am|2.

For a proof, see Theorem 1.1 in [J5] or Theorem 3.3 in [Mo3].
For the κj-sum with a single m we have an exact leading term in∑

κj≤K

|ρj(m)|2

cosh(πκj)
=
K2

π2
+O(K logK +mεK +m1/2+ε),(2.5)

as ε > 0, K ≥ 2, m ≥ 1. For a proof, see Kuznetsov [K, Theorem 6]. As a
consequence, for all ε > 0 and m ≥ 1 we have

ρj(m)� exp
(
π

2
κj

)
(κ1/2
j (log κj)1/2 +mεκ

1/2
j +m1/4+ε).

By choosing m = 1 in (2.5) we have the following result: For all K ≥ 2,∑
κj≤K

αj � K2.
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Moreover, we have the following estimate for a single αj : For all ε > 0,

αj � κεj ;

see Hoffstein and Lockhart [HL, Corollary 0.3].
Lastly, for the number of spectral parameters κj in a certain range we

have (see Hejhal [He, p. 511])

N [0 ≤ κj ≤ K] =
1
12
K2 +O(K logK).

The next lemma is a continuous analogue of the spectral large sieve. (See
also Iwaniec [Iw1, Theorem 3].)

Lemma 2.5. For K real, ∆,M ≥ 1 and any complex numbers am we
have

K+∆�

K

∣∣∣ ∑
m∼M

amσ2ir(m)m−ir
∣∣∣2 dr � (∆M1/2 +M)M ε

∑
m∼M

|am|2

� (∆2 +M)M ε
∑
m∼M

|am|2.

Note that the bounds are uniform in K.

Proof. We start from the inequality
K+∆�

K

∣∣∣ ∑
m∼M

amσ2ir(m)m−ir
∣∣∣2 dr ≤ ∞�

−∞

∣∣∣ ∑
m∼M

∑
d|m

amm
−ird2ir

∣∣∣2u(r) dr

with u a suitable smooth weight function compactly supported on an interval
of length � ∆ and u(ν) �ν ∆

−ν for each ν ≥ 0. By writing m = dn and
using a dyadic partition of the resulting d-sum we see that∣∣∣ ∑

m∼M

∑
d|m

amm
−ird2ir

∣∣∣2 =
∣∣∣∣ ∑
1≤d<2M

∑
n∼M/d

adn

(
d

n

)ir∣∣∣∣2

� log2M

∣∣∣∣∑
d∼D

∑
n∼M/d

adn

(
d

n

)ir∣∣∣∣2
for an appropriate D in the range 1/2 < D ≤M . Hence the integral is

� log2M

∞�

−∞

∑
d1n1∼M
d1∼D

∑
d2n2∼M
d2∼D

ad1n1ad2n2

(
d1

n1

)ir(d2

n2

)−ir
u(r) dr

� log2M
∑
d1,n1

∑
d2,n2

(|ad1n1 |2 + |ad2n2 |2)
∣∣∣∣ ∞�
−∞

(
d1n2

n1d2

)ir
u(r) dr

∣∣∣∣.
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We next study the last integral, using the abbreviation

A =
d1n2

n1d2
.

Now trivially
∞�

−∞
Airu(r) dr � ∆

and by integration by parts
∞�

−∞
Airu(r) dr =

(−1)ν

(i logA)ν

∞�

−∞
Airu(ν)(r) dr �ν ∆M

−νε

if |A− 1| �M ε/∆. Then the sum involving terms for which this condition
holds has the desired bound. Therefore, by symmetry, it is sufficient to
consider the sum

log2M
∑
d1,n1
d2,n2

|ad1n1 |2∆,

where the condition of summation is
d1n2

n1d2
= 1 +O

(
M ε

∆

)
,

that is,
d1

n1
=
d2

n2
+O

(
DM ε

N∆

)
with N = M/D. Further, by symmetry, we may assume that N � M1/2.
Now if we fix d1/n1, then there are� N possibilities for n2, and, for each n2,
� 1 +DM ε/∆ possibilities for d2. Finally we have the upper bound

� log2M
∑
m∼M

d(m)|am|2∆N
(

1 +
DM ε

∆

)
� (∆N +M)M ε

∑
m∼M

|am|2

� (∆M1/2 +M)M ε
∑
m∼M

|am|2 � (∆2 +M)M ε
∑
m∼M

|am|2.

Well-known estimates for all Fourier coefficients of a holomorphic cusp
form state that

|a(n)|2 � nk−1+ε,
∑
n≤N
|a(n)|2 = ANk +O(Nk−2/5)

with A a positive constant. For a proof of the first estimate, see Deligne [D,
Theorem 8.2], and for the second one, see Rankin [R, Theorem 1] or Selberg
[Se1, p. 49].

Analogously to Maass forms with the spectral parameter κ we have the
following estimate due to Iwaniec [Iw2, Lemma 1]: For all ε > 0 and N ≥ 1
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we have ∑
n≤N

t2(n)� κεN.

In [J2, Lemma 3], Jutila has shown that for all K ≥ 1,
K�

−K
|c(u)|2 exp(π|u|) du� K2k+ε

with c(u) defined in (1.6). The result is not the best known, but suffices for
our purposes.

Next we have a formula for the spectral decomposition of the shifted
convolution sum over the Fourier coefficients of a holomorphic cusp form,
due to Motohashi, [Mo2].

Lemma 2.6. Let f be a positive integer and W a smooth function of
compact support on (0,∞). Then

(2.6)
∞∑
l=1

a(l)a(l + f)W
(
l

f

)

= iπ(4π)k−1f−1/2+k

( ∞∑
j=1

ρjtj(f)cjΦk(κj ;W )

+
1

2
√
π

∞�

−∞

σ2ir(f)c(r)
(πf)irΓ (1/2− ir)ζ(1− 2ir)

Φk(r;W ) dr
)

with cj as in (1.2) and c(r) as in (1.6) the inner products attached to the
holomorphic cusp form in question, and

Φk(r;W ) =
1

sinh(πr)
Γ (1/2 + ir)

Γ (k − 1/2− ir)Γ (1 + 2ir)

×
∞�

0

y1/2−k−irW (y)(y(y + 1))k−1F (k − 1/2 + ir, 1/2 + ir; 1 + 2ir;−1/y) dy

+ (r 7→ −r).
Here F ( · , · ; · ; ·) is the hypergeometric function and (r 7→ −r) stands for an
expression similar to the preceding one, but with r replaced by −r.

This follows easily from Jutila and Motohashi’s result [JM2, Lemma 4].
We notice that in [JM2], the lemma has been formulated under the assump-
tion that F (z) is a Hecke eigenform. This is, however, not essential. Note
that a(l)a(l+f) in the above lemma can be replaced by a(l)a(l + f). Further,
if the support of W tends to infinity, then

F (k − 1/2 + ir, 1/2 + ir; 1 + 2ir;−1/y) ∼
(

1 +
√

1 + y−1

2

)1−2k−2ir
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by the quadratic transformation formula for the hypergeometric function
from Lebedev [L, eq. (9.6.12)].

Lastly, the following identity is a refined version of the Kloosterman-
spectral sum formula of Bruggeman and Kuznetsov:

Lemma 2.7. Let h(r) be an even and regular function in the strip |Im r|
< 1/4 + ε, and there |h(r)| � (1 + |r|)−2−ε. Put

ĥ(x) =
2i
π

∞�

−∞

rh(r)
cosh(πr)

J2ir(x) dr =
2i
π

∞�

0

rh(r)
cosh(πr)

(J2ir(x)− J−2ir(x)) dr,

with Jν again the Bessel function of the first kind of order ν. Then
∞∑
j=1

αjtj(m)tj(n)h(κj) = − 1
π

∞�

−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2

h(r) dr

+
δm,n
π2

∞�

−∞
r tanh(πr)h(r) dr +

∞∑
l=1

1
l
S(m,n; l)ĥ

(
4π
√
mn

l

)
,

where δm,n is the Kronecker delta.

For a proof, see [Mo3, §2.6].

3. Proof of the Main Theorem. In [G1, Lemma 2], Good first rep-
resents cj as a finite linear combination of terms of the form

γn,n′(j) =
�

F
yk−2Pn(z, k)Pn′(z, k)uj(z) dx dy

with n, n′ ∈ Z+ and

Pn(z, k) =
∑
γ∈A

j(γ, z)−ke(nγ(z)), z ∈ H, n, k ∈ N

the Poincaré series, j(γ, z) as in (1.4) and A as in (1.5). He then ends up
with equation (4.9) in his paper which states that

γn,n′(j) =
(
π

2

)1/2

Γ (k − sj)Γ (k − sj)
∑
m>−n
m 6=0

ρj(m)a(m+ n)(3.1)

× (2π|m|)−k+1/2

(
4n2 + 4nm

m2

)(1−k)/2
P1−k
sj−1

(
2n+m

|m|

)
with sj = 1/2 + iκj , a(l) the lth Fourier coefficient of the Poincaré series
Pn′(z, k) and Pµν the Legendre function of the first kind.

We estimate the Γ -functions in (3.1) by Stirling’s formula and notice
that for the proof of our Main Theorem 1.1 it suffices to prove that for all
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fixed n ∈ Z+,

(3.2)
∑

K≤κj≤K+K1/3

αj

∣∣∣∣ ∑
m>−n
m6=0

tj(m)a(m+ n)|m|−1/2(
√
n(n+m))1−k

× P1−k
sj−1

(
2n+m

|m|

)∣∣∣∣2 � K−2k+3+1/3+ε.

Good carries on to represent the Legendre function in terms of the hy-
pergeometric function and derives asymptotic expansions (4.18) and (4.19)
which yield

P1−k
sj−1

(
2n+m

|m|

)
∼ 1

(k − 1)!

(
n

n+m

)(k−1)/2

if m� K2+ε, and

P1−k
sj−1

(
2n+m

|m|

)
∼

√
|m|

2
√
π(n(n+m))1/4

{
Γ (−iκj)

Γ (k − 1/2− iκj)

× exp
(
−iκj log

(
m+ 2n+ 2

√
n(n+m)

|m|

))
+

Γ (iκj)
Γ (k − 1/2 + iκj)

exp
(
iκj log

(
m+ 2n+ 2

√
n(n+m)

|m|

))}
if −n+ 1 ≤ m� K2−ε, m 6= 0.

If we are in the “transitional area” K2−ε � m � K2+ε, then these
asymptotic expansions do not apply, and we use the following formula:

P1−k
s−1 (x) =

π−1/221−k(x2 − 1)(k−1)/2

Γ (k − 1/2)

π�

0

(x+ (x2 − 1)1/2 cos t)s−k(sin t)2k−2 dt,

which holds for all k > 1/2 and x > 1 (see [EMOT, eq. (6) on p. 155]).
Therefore we have

P1−k
sj−1

(
2n+m

|m|

)
= π−1/2(Γ (k − 1/2))−1

(
n(n+m)

m2

)(k−1)/2

×
1�

−1

(1− u2)k−3/2

(
m+ 2n+ 2u

√
n(n+m)

m

)1/2−k+iκj

du,

when K2−ε � m � K2+ε. Now by Taylor’s approximation we are able to
separate the variables κj and m as(

m+ 2n+ 2u
√
n(n+m)

m

)iκj

∼
(
m+ 2n+ 2u

√
n(n+m)

m

)iK
.
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Finally

P1−k
sj−1

(
2n+m

|m|

)
∼
(

n

n+m

)(k−1)/2

χ(m)

with χ a smooth function satisfying the condition χ(ν)(m) �ν (mK−ε)−ν

for all ν ≥ 0.
While Good now proceeds with estimations by absolute values, we trans-

form our problem to a form similar to that treated in [JM1] and [JM2]. We
first insert a smooth weight function φ(m) into the m-sum in (3.2) and then
decompose the resulting double sum into five parts over −n + 1 ≤ m �
K2/3+ε, K2/3+ε � m � K4/3, K4/3 � m � K2−ε, K2−ε � m � K3 and
m� K3. The first and the last case can be settled easily by estimating the
m-sum trivially.

To deal with the second case K2/3+ε � m � K4/3, we write κj =
K + (κj −K) and conclude by use of Taylor’s approximation that

exp(±iκj logA(m,n)) ∼ exp(±iK logA(m,n))
with

A(m,n) =
(

1 +
2n
m

+ 2

√
n(n+m)
m

)−1

.

Thus the variables κj and m can be separated in the exponential term and
by the spectral large sieve we come to the desired conclusion.

We next concentrate on proving the requested estimate for the third case
K4/3 � m� K2−ε, which turns out to be the most difficult one, and then
comment briefly on the fourth case K2−ε � m � K3 at the end of this
paper.

By following the same argument as in the second case it suffices to prove
that for all fixed n ∈ Z+ and K4/3 �M � K2−ε,∑

K≤κj≤K+G

αj

∣∣∣ ∞∑
m=1

φ(m)tj(m)a(m+ n)(n+m)1/4−k/2

× exp(±iK logA(m,n))
∣∣∣2 � K2+1/3+ε

with G = K1/3+ε, A(m,n) as above, and φ a suitable smooth weight function
compactly supported on the interval [3M/4, 2M ], and φ(ν) �ν M

−ν for each
ν ≥ 0. Note that we introduce the notation G in order to make the analogy
between our case and that in the papers by Jutila and Motohashi even more
visible.

In what follows, we shall concentrate on the case +iK and prove that

S =
∑

K≤κj≤K+G

αj

∣∣∣ ∞∑
m=1

φ(m)tj(m)a(m+ n)(n+m)1/4−k/2

× exp(−iK logA(m,n)−1)
∣∣∣2
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is � K2+1/3+ε, noting that the case for −iK follows easily by complex
conjugation and some minor modifications.

We next simplify the exponential factor

exp(−iK logA(m,n)−1)

by noticing that

log
(

1 +
2n
m

+ 2

√
n(n+m)
m

)
= 2
(
n

m

)1/2

− 1
3

(
n

m

)3/2

+ · · ·+O(K−P )

with P an arbitrarily large positive constant. Hence

exp(−iK logA(m,n)−1) ∼ exp
(
−2iK

√
n

m

)
giving

S ∼
∑

K≤κj≤K+G

αj

∣∣∣∣ ∞∑
m=1

φ(m)tj(m)a(m+ n)(n+m)1/4−k/2

× exp
(
−2iK

√
n

m

)∣∣∣∣2.
We now have a sum similar to Jutila and Motohashi’s sum (4.1) in [JM1],

only there is an exponential factor instead of the factor m−it with some fixed
t and a(m+ n) in place of d(m). We proceed following their argument from
the beginning of their Chapter 4, p. 82, inserting factors h(κj) with

h(r) = K−2

(
r2 +

1
4

)[
exp
(
−
(
r −K
G

)2)
+ exp

(
−
(
r +K

G

)2)]
to the κj-sum and squaring out the m-sum to obtain the upper bound
∞∑
j=1

αj

∞∑
m1=1

∞∑
m2=1

φ(m1)φ(m2)tj(m1)tj(m2)a(m1 + n)a(m2 + n)

× (n+m1)1/4−k/2(n+m2)1/4−k/2 exp
(
−2iK

√
n

m1

)
exp
(

2iK
√

n

m2

)
h(κj).

We then apply Lemma 2.7 and arrive at the sum

(3.3) S1 =
∞∑

m1=1

∞∑
m2=1

φ(m1)φ(m2)a(m1 + n)a(m2 + n)

× (n+m1)1/4−k/2(n+m2)1/4−k/2 exp
(
−2iK

√
n

m1

)
exp
(

2iK
√

n

m2

)
×
∞∑
l=1

φ1(l)
l

S(m1,m2; l)ĥ
(

4π
√
m1m2

l

)
,

which corresponds to formula (4.2) in [JM1]. Here φ1 is a suitable smooth
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weight function compactly supported on the interval [3L/4, 2L] where

L� M logK
KG

,

and φ
(ν)
1 �ν L

−ν for each ν ≥ 0. The treatment of the first and the second
term and the truncation of the l-sum in the Kloosterman-spectral sum for-
mula can be carried out as in [JM1, pp. 74–76]. Now it is enough to prove
that

S1 � K2+1/3+ε.

Next we find the Mellin transformM( · ; s) for the function e−iyw(y) with
w a real-valued smooth weight function compactly supported on the interval
[T/2, 6T ] with T ≥ 1, w(y) = 1 on the interval [T, 5T ] and w(ν) �ν T

−ν for
each ν ≥ 0. By the saddle-point method,

M(e−iyw(y); s) ∼
√

2π w(t)tσ−1/2+ite−it−πi/4

with s = σ + it, σ in a bounded interval. Substituting this into the Mellin
inversion formula for e−iyw(y) and moving the path of integration to c =
−1/2 we get

e−iyw(y) =
1

2πi

�

(c)

M(e−iyw(y); s)y−s ds(3.4)

∼ 1√
2π
e−πi/4

6T�

T/2

w(t)t−1+ite−ity1/2−it dt.

We use the notations 2K
√
n/m = y and

T =
K
√
n√

M
,

and transform our exponential terms in (3.3) by formula (3.4). We then
use the same reasoning as in [JM1] (writing out the Kloosterman sums and
applying trigonometric approximations for the Bessel functions arising from
the definition of ĥ) and finally get an analogous expression to Jutila and
Motohashi’s sum (4.9):

S2 =
∞∑

m1=1

φ(m1)a(m1 + n)(n+m1)1/4−k/2m−1/2+it1
1

∞∑
l=1

φ1(l)√
l

×
l∑

q=1
(q,l)=1

e

(
qm1

l

) ∞∑
m2=1

φ(m2)a(m2 + n)(n+m2)1/4−k/2m−1/2−it2
2

× e
(
q(m2 + n)

l

)
e

(
−qn
l

)
exp
(
δ1iω

(
r,

4π
√
m1m2

l

))
,
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and it suffices to prove that

3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2e−2it1+2it2(2K)−2it1+2it2

× n−it1+it2S2 dt1 dt2 � Kε.

Here δ1 = ±1, qq ≡ 1 (mod l), |r −K| ≤ G logK and

ω(r, x) = x

(
1− 2

(
r

x

)2)
.

Note that we have t1 and t2 instead of one t in [JM1]. Notice also that we
replaced t by 2t in (3.4) in order to make the analogy even more visible.

Next we apply the sum formula of Voronŏı, which can be found, for
example, in Jutila’s monograph [J1, Theorem 1.7], to the inner-most sum
over m2. Note that we may write the function

Jk−1

(
4π
√
m2(y + n)
l

)
,

which appears in this formula, asymptotically in terms of functions

1√
2π
l1/2(m2(y + n))−1/4 exp

(
δ2i

4π
√
m2(y + n)
l

)
exp(−δ2iπ(k − 1)/2),

δ2 = ±1 (see Lebedev [L, eq. (5.11.6)]). Here y is the variable of integration
arising from the sum formula. Furthermore we proceed as in the paper by
Jutila and Motohashi, arriving at the sum

(3.5) S3 =
∑
f�f0

∞∑
l=1

φ1(l)S(f, n; l)
l

∞∑
m=1

φ(m)a(m+ n)a(m+ f)

× (n+m)1/4−k/2m−1/2+it1(m+ f)1/4−k/2
∞�

0

φ(y)(y + n)−1/2y−1/2−it2

× exp
(
δ1iω

(
r,

4π
√
my

l

)
− δ1i

4π
√

(m+ f)(y + n)
l

)
dy

with
f0 � L2T 2.

This corresponds to the sum S−3 in [JM1]. Now it suffices to prove that

3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2e−2it1+2it2(2K)−2it1+2it2

× n−it1+it2S3 dt1 dt2 � Kε.
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Notice that since now t2 � T , we get the order of magnitude of f by a saddle-
point analysis of the y-integral, and we find that the sum corresponding to
S+

3 in [JM1] is negligibly small. Notice also that, in our case, the Klooster-
man sum S(f, n; l) appears instead of the Ramanujan sum cl(f) = S(f, 0; l).

Now in order to make the analogy to [JM1] more visible we substitute
f = f̃ + n and m = m̃− n into (3.5) to obtain

S3 ∼
∑
f̃�f0

∞∑
l=1

φ1(l)S(f̃ + n, n; l)
l

∞∑
m̃=1

φ̃(m̃)a(m̃)a(m̃+ f̃)

× m̃−1/4−k/2+it1(m̃+ f̃)1/4−k/2
∞�

0

φ(y)y−1−it2

× exp
(
δ1i

(
4π
√
m̃y

l
− r2l

2π
√
m̃y
−

4π
√

(m̃+ f̃)y

l

))
dy

with φ̃(m̃) = φ(m̃− n) a smooth weight function similar to φ. For the sake
of simplicity, we replace m̃ and f̃ by m and f again and continue to follow
the steps in [JM1] arriving at

(3.6) S4 = (4π)2it2
∞∑
f=1

φ2(f)
fk−i(t1+t2)

∞∑
l=1

φ1(l)S(f + n, n; l)
l1+2it2

×
∞∑
m=1

a(m)a(m+ f)X
(
m

f

)
.

Here φ2 is a characteristic function of the interval [F, 2F ] with F � L2T 2.
Moreover,

X(u) = u−k+i(t1−t2)
∞�

0

v−1−2it2ξ(f, l, u, v) exp(−δ1iY ) dv

with

ξ(f, l, u, v) = φ̃(fu)φ
(

(lv)2u
16π2f

)
and Y =

1
2
v +

2r2

uv
.

Now
u �M/F and v � F/L.

Again it is enough to prove that
3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2e−2it1+2it2(2K)−2it1+2it2

× n−it1+it2S4 dt1 dt2 � Kε.
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Further we use Lemma 2.6 and spectrally decompose the shifted con-
volution in (3.6) (cf. Lemma 5 in [JM1]) and follow the estimation of the
term Sd in the case of the lower range in [JM1, pp. 92–93]. We concentrate
in the further text on the first term on the right hand side of (2.6) and the
factor Φk(κj ;W ) without the term (κj 7→ −κj), the treatment of the other
cases being similar or easier. We arrive at

(3.7) S5 = (4π)2it2
∞∑
f=1

φ2(f)
f1/2−i(t1+t2)

∞∑
l=1

φ1(l)S(f + n, n; l)
l1+2it2

∑
κj�LT 2

ρjtj(f)cj

× 1
sinh(πκj)

Γ (1/2 + iκj)
Γ (k − 1/2− iκj)Γ (1 + 2iκj)

Ξ1(f, l, κj , δ1)

with

Ξ1(f, l, κj , δ1) =
∞�

0

∞�

0

ξ(f, l, u, v) exp(−δ1iY )u−3/2−i(κj−t1+t2)v−1−2it2 du dv

corresponding to expressions (5.21) (without the absolute values) and (5.22)
in [JM1]. The condition for κj follows by a saddle-point argument. Finally
it suffices to prove that
3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2e−2it1+2it2(2K)−2it1+2it2

× n−it1+it2S5 dt1 dt2 � Kε.

Again we use the Mellin inversion to obtain

Ξ1(f, l, κj , δ1) =
δ1i

π241+it2r1+2i(κj−t1+t2)

�

(0)

�

(0)

(φ̃)∗(s1)φ∗(s2)f−s1+s2

×
(

2π
l

)2s2

r−2s1−2s2 exp(−δ1iπ(s1 + iκj − it1))

×Γ (1/2 + s1− s2 + i(κj − t1− t2))Γ (1/2 + s1 + s2 + i(κj − t1 + t2)) ds1 ds2

with (φ̃)∗ and φ∗ the Mellin transforms of the respective functions. This
corresponds to formula (5.24) in [JM1].

Next we represent the weight function φ1(l) by its Mellin inversion

1
2πi

�

(1/2+ε)

φ∗1(s3)l−s3 ds3

and transform the l-sum spectrally by Lemma 2.2. We shall concentrate on
estimating the first term on the right hand side of (2.4) and comment briefly
on the remaining terms later. To avoid confusion with the summation over
the variable κj in (3.7), we denote the new variable of summation by κj′ .
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By Stirling’s formula, we notice that we may assume that κj′ � TKε.
Further we may truncate the integrals over si to the intervals Im si = γi
� Kε, since the functions (φ̃)∗, φ∗ and φ∗1 are of rapid decay in γi, i = 1, 2, 3,
respectively. Lastly, we move the s3-integration to the line (ε). Finally, after
applying Cauchy’s inequality to the κj-sum, and Jutila’s first estimate in
(1.1) for a long interval, it remains to show that

sup
γ1,γ2,γ3�Kε

(LT 2)1/2

×
( ∑
κj�LT 2

αj

∣∣∣∣∑
f

φ2(f)f−1/2−iγ1+iγ2(f + n)−iγ2−ε/2−iγ3/2tj(f)

×
∑
κj′

ρj′(f + n)ρj′(n)
cosh(πκj′)

3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2

× e−2it1+2it2

(
2K
√
f

r
√
f + n

)2it2( r
√
f

2K
√
n

)2it1

× Γ (1/2 + i(γ1 − γ2 + κj − t1 − t2))Γ (1/2 + i(γ1 + γ2 + κj − t1 + t2))
× Γ (ε/2 + i(t2 + γ2 + γ3/2 + κj′))Γ (ε/2 + i(t2 + γ2 + γ3/2− κj′))

× exp(δ1π(γ1 + κj − t1)) exp(δ3π(t2 + γ2 + γ3/2)) dt1 dt2

∣∣∣∣2)1/2

is � K1+ε. The constant δ3 is ±1. Now we write Γ (s) = exp(logΓ (s)),
use Taylor’s approximation and derive an estimate of the νth derivative of
logΓ (s) from the asymptotic expansion (2.2). Differentiation on both sides ν
times can be justified by the use of Cauchy’s integral formula. We therefore
conclude that

Γ (1/2 + i(γ1 − γ2 + κj − t1 − t2))Γ (1/2 + i(γ1 + γ2 + κj − t1 + t2))
∼ Γ 2(1/2 + i(γ1 + κj − t1)),

so we are able to separate the t1- and t2-integrals from each other. Further
we divide the κj-sum into subsums of interval length LT and fix a variable
κ in each of these intervals, so that we always have

κj − κ
κ

� 1
T
.

Now we multiply the t1-integral by the factor

exp(−2iκj log κj + 2iκj)

and conclude by (2.1) and repeated use of Taylor’s approximation that

Γ 2(1/2 + i(γ1 + κj − t1))e−2iκj log κj+2iκj ∼ 2πe2i(γ1−t1) log κje−π(γ1+κj−t1)

∼ 2πe2i(γ1−t1) log κe−π(γ1+κj−t1).
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Therefore we may ignore the dependence of the t1-integral on κj and use
the spectral large sieve for the κj-sum. We then apply either the second
derivative test (see e.g. Ivić [Iv1, Lemma 2.2]) or trivial estimation to the
t1- and t2-integrals and finally end our proof of this case.

The second term on the right hand side of (2.4) is treated similarly, this
case being even easier, and the last term obviously equals zero in our case.
In the third term we denote the variable of summation by k′ to distinguish
it from the weight k. We first treat the part of the k′-sum where k′ �
TKε. We move the s3-integral into the k′-sum shifting the integration to
the line −P with P a suitably large constant, and then apply the functional
equation Γ (z+ 1) = zΓ (z) to the Γ -function in the denominator. By trivial
estimations we see that this part of the k′-sum is negligibly small. For the
part where k′ � TKε we move the s3-integral to the imaginary axis and
end up estimating

sup
γ1,γ2,γ3�Kε

(LT 2)1/2
( ∑
κj�LT 2

αj

∣∣∣∣∑
f

φ2(f)f−1/2−iγ1+iγ2(f+n)−iγ2−iγ3/2tj(f)

×
∑

k′�TKε

(2k′ − 1)qf+n,n(k′)
3T�

T/4

3T�

T/4

w(2t1)w(2t2)(2t1)−1+2it1(2t2)−1−2it2

× e−2it1+2it2

(
2K
√
f

r
√
f + n

)2it2( r
√
f

2K
√
n

)2it1

× Γ (1/2 + i(γ1 − γ2 + κj − t1 − t2))Γ (1/2 + i(γ1 + γ2 + κj − t1 + t2))

× Γ (k′ − 1/2 + i(t2 + γ2 + γ3/2))
Γ (k′ + 1/2− i(t2 + γ2 + γ3/2))

exp(δ1π(γ1 + κj − t1)) dt1 dt2

∣∣∣∣2)1/2

.

The ti-integrals can be treated as before. For the t2-integral, we write Γ (s) =
exp(logΓ (s)) and notice that for s = σ + it,

d2

dt2
Im logΓ (s) = Im

d2

dt2
logΓ (s) =

−t
|s|2

+O(|s|−2)

by the asymptotic expansion for d2

ds2
logΓ (s) obtained from (2.2).

Finally, the case K2−ε � m� K3 can essentially be treated in the same
way as the case K4/3 � m � K2−ε above, without the exponential term
and therefore without the ti-integrals. Now it suffices to prove that

S =
∑

K≤κj≤K+G

αj

∣∣∣∣ ∞∑
m=1

φ̃(m)tj(m)a(m+ n)(n+m)1/4−k/2

×m−1/4

(
m

M

)−1/4(n+m

M

)3/4−k/2∣∣∣∣2M1−k
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is� K−2k+3+1/3+ε. Here φ̃ is a smooth weight function compactly supported
on the interval [3M/4, 2M ], and φ(ν) �ν (MK−ε)−ν for each ν ≥ 0. Further
we may embed the term(

m

M

)−1/4(n+m

M

)3/4−k/2
� 1

into φ̃ having a similar situation to the case K4/3 � M � K2−ε with the
exception that now φ̃(ν) �ν (MK−ε)−ν . However, this does not cause any
new difficulties. See also [JM1, p. 83], where Jutila and Motohashi have
φ(ν) �ν (M log−4K)−ν .

We proceed as above, until we reach S3 and estimate trivially the case
L� Kε+MK−2+ε using the bound (2.3). This time we insert a smooth φ2

instead of a characteristic function. Finally, as we reach the point where we
represented the weight function φ1 by its Mellin inversion, to estimate the
remaining l-sum we use this time Lemma 2.3 and conclude with the desired
result.
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13 (2001), 453–468.

http://dx.doi.org/10.1007/BF02684373
http://dx.doi.org/10.1112/S0025579300002187
http://dx.doi.org/10.1016/0022-314X(81)90028-7
http://dx.doi.org/10.1007/BF01451932
http://dx.doi.org/10.2307/2118543


A short spectral sum involving cusp forms 417

[Iw1] H. Iwaniec, Mean values for Fourier coefficients of cusp forms and sums of
Kloosterman sums, in: Journées Arithmétiques, 1980 (Exeter, 1980), J. V. Ar-
mitage (ed.), London Math. Soc. Lecture Note Ser. 56, Cambridge Univ. Press,
Cambridge, 1982, 306–321.

[Iw2] —, The spectral growth of automorphic L-functions, J. Reine Angew. Math.
428 (1992), 139–159.

[J1] M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Tata Inst.
Fund. Res. Lectures Math. Phys. 80, Springer, Berlin, 1987.

[J2] —, The additive divisor problem and its analogs for Fourier coefficients of cusp
forms. I, Math. Z. 223 (1996), 435–461.

[J3] —, The additive divisor problem and its analogs for Fourier coefficients of cusp
forms. II, ibid. 225 (1997), 625–637.

[J4] —, The fourth moment of central values of Hecke series, in: Number Theory.
Proc. Turku Sympos. on Number Theory in Memory of Kustaa Inkeri (Turku,
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