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1. Introduction. Following two recent publications, we advert again
to the long held expectation that, if F (x0, . . . , xr) be a polynomial with
rational integral coefficients that assumes values of a certain shape for all
integral x0, . . . , xr (or at least for all sufficiently large values thereof), then it
is actually identically of this shape in appropriate circumstances. In the first
of these ([4]—designated by I in the sequel for convenience), to which we
refer the reader for some history of the matter and our mention of Schinzel’s
work [7], we proved that this expectation was fulfilled when F (x0, . . . , xr)
is a cubic that is always equal to a sum of two perfect cubes for integral
values of x0, . . . , xr. Knowing that we could reduce the proposition by an
algebraical process to the most interesting cases where r = 0, we began
with a polynomial F (x) and successfully treated the two situations where it
was assumed that F (n) for all large integers n was either (i) a sum of two
positive cubes or (ii) merely a sum of two (non-zero) cubes of either sign.
Indeed, in each case we ultimately gained an identity for F (x) that yielded a
representation of F (n) of the type postulated; moreover, that in the second
case was the basis of the identity for F (x0, . . . , xr) that was sought for the
general proposition. We then went on in the second paper [5] to consider
cubic polynomials F (x) that have the property that F (n) is always equal
for large n to a value assumed through integers u, v by an irreducible binary
cubic form

au3 + bu2v + cuv2 + dv3,

using a different method to reach similar but slightly weaker conclusions.
The purpose of the present communication is to extend the findings of

I to polynomials F (x0, . . . , xr) of odd prime degree q that are equal to the
sum of two perfect qth powers when x0, . . . , xr are integers. Although our
procedure has features in common with I and, in particular, still begins with
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the case r = 0, there are substantial departures from the previous method
because, amongst other things, there are more possibilities regarding F (x)
to eliminate and because there is a greater reliance on algebraical number
theory than before. It is only in the later stages that our exposition falls
into line with the earlier paper, at which point we rely heavily on I to avoid
needless repetition.

We have thus raised to an unconditional status an increased portion of
Schinzel’s theorem [7] about polynomials equal to the sum of two nth powers
that was obtained on his Conjecture C. And in making this statement, we
should add in accordance with later comment that our conclusions are still
valid if it be merely assumed that the degree of F do not exceed q. But to
remove this restriction to allow high degrees for given q would be to elevate
the problem to a level of difficulty we are currently unable to overcome.

2. Notation. Although the meaning of the notation should usually be
clear from the context in which it arises, the following guide may be helpful.

The letters x, x0, . . . , xr, ξ, η denote variables or indeterminates in poly-
nomials; a, b are stated rationals in §4 but otherwise integers; A,B,C, r, s are
integers, save when the last is a complex variable; d, d, e, g, j, h, k, l,m, n, ν
are integers that are usually positive; p is a positive prime number; for any
integer denoted by δ, say, δ̄ is a solution of δδ̄ ≡ 1,mod k, to a modulus k
whose definition is evident from the context.

The letter X is a positive variable to be regarded as tending to infinity, all
stated inequalities being true for sufficiently large values of X; c, c1, . . . are
positive constants depending at most on the polynomial F (x) of odd prime
degree q under consideration, as are constants implied by the O-notation.
The function σ−α(m) is the function

∑
d|m d

−α.

3. Preparations. The form ξq + ηq underlying our investigations is
equivalent through the substitution

ξ = r − s, η = s

to the form

(0) rg(r, s) = r(rq−1 − qrq−2s+ · · ·+ qsq−1),

in which r > 0 if ξq + ηq > 0; also, 0 < s < r when ξ, η are both positive
but either s < 0 or s > r when one of ξ, η is positive and the other negative.
Being equivalent to the cyclotomic form derived from the primitive qth roots
of unity, the form g(r, s) only primitively admits prime divisors that apart
from q are congruent to 1, mod q. Therefore the divisibility of rg(r, s) by a
prime p 6≡ 1, mod q, implies that p | r even when p = q, since all terms in
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g(r, s) save the first are multiples of q. Also, as

g(r, s) =
1
r
{(r − s)q + sq},

it should be noted that for positive integers N and r the equation g(r, s) = N
has at most one solution in an integer (indeed, any real number) s of any
sign for which s ≤ 1

2r, the other being r − s.
In the case where both ξ and η are positive we have

(1)
rq

2q−1
≤ (r − s)q + sq < rq,

the first inequality remaining true when s = η is negative (or equivalently
greater than r). Hence in considering the equation rg(r, s) = F (n) under
investigation when 0 < s < r and X0 < n ≤ X for large X, we find that

rq/2q−1 ≤ c1Xq and c2n
q ≤ rq

so that

(2) r ≤ c3X
and

(3) n ≤ c4r.
Also, even if s be negative, (2) is still valid, although then (3) must be re-
placed by a suitable variant when we consider qth powers of opposite signs.

To simplify some of the more analytical parts of the demonstrations we
shall use Selberg’s remarkable upper and lower bounds for the characteristic
function of an interval. Consulting Theorem A.4 in Vaaler’s work [8] and
first taking β = 1, α = 0 therein, we discover an upper bounding function
Γ (u) for the characteristic function of the interval [0, 1] with the property
that the transform

Γ̂ (t) =
∞�

−∞
Γ (u)e2πiut du

enjoys the features

(4) Γ̂ (t) =
{

2 if t = 0,
0 if |t| > 1,

and therefore

(5) |Γ̂ (t)| ≤ 2

always. Similarly, by taking β = 4, α = 2, we obtain a lower bound γ(u) for
the characteristic function of [2, 4], where

(6) γ̂(t) =
∞�

−∞
γ(u)e2πiut du =

{
1 if t = 0,
0 if |t| > 1,
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so that

(7) |γ̂(t)| ≤ 1

always.
Lemmata used in the first stage of work and also possibly afterwards

will be stated at once, while those only needed later will be appended at
the appropriate places. First, for any polynomial φ(x) with rational integral
coefficients whether irreducible or reducible, we let ρ∗(k) denote the number
of incongruent zeros, mod k, of φ(x) and then let

(8) S∗(h, k) =
∑

0<ν≤k
φ(ν)≡0,mod k

e2πihν/k,

where obviously

(9) |S∗(h, k)| ≤ ρ∗(k);

furthermore we shall agree to suppress the asterisks from the notation when
φ(x) is the polynomial F (x) under consideration.

In regard to the first arithmetical function we shall require results in the
elementary theory of congruences and also some known estimates that flow
from the prime ideal theorem and a classical principle due to Dedekind (for
the former, see Nagell [6, Chapter 3], and for the latter see Erdős [2]). These
are enunciated in

Lemma 1. The function ρ∗(k) is multiplicative. Also, if the polynomial
φ(x) defining ρ∗(k) be irreducible, then

(i) p(k1k2) = O{ρ∗(k1)ρ∗(k2)};
(ii)

∑
k≤y

ρ∗(k) = O(y);

(iii)
∑
p≤y

ρ∗(p) ∼ y/log y;

(iv)
∏
p≤y

(
1 +

ρ∗(p)
p

)
∼ c(f) log y (with c(f) > 0).

We also require the generalized version of part (ii) above that is stated in

Lemma 2. Let ∆ be a square-free product of primes exceeding the dis-
criminant of an irreducible polynomial φ(x). Then, for some small positive
constant δ, we have

∑
d≤y

d≡0,mod∆

ρ∗(d) =
Aρ∗(∆)ψ(∆)y

∆
+O{ρ∗(∆)y1−δ},
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where

ψ(∆) =
∏
p|∆

(
1 +

ρ∗(p)− 1
p

)−1

and A is a positive constant.
Also, without any conditions on ∆, we have∑

d≤y
d≡0,mod∆

ρ∗(d) = O

(
ρ∗(∆)y
∆

)
.

If

Φ1(s) =
∑
d

ρ∗(d)
ds

for σ > 1 in the first place and if ζα(s) be the zeta function of the corpus
Q(α) defined by a zero α of φ(x), then it is familiar by the principle of
Dedekind’s already mentioned that

Φ1(s) = ζα(s)H(s),

where H(s) is regular and bounded for σ > 1 − 2δ and H(1) 6= 0. Also, as
ρ(pα) = ρ(p) for α > 1 when p - ∆, the function Φ∆(s) defined as∑

d≡0,mod∆

ρ∗(d)
ds

(σ > 1)

equals
ρ(∆)
∆s

∏
p|∆

(
1− 1

ps

)−1 ∑
(d,∆)=1

ρ∗(d)
ds

by multiplicativity and Euler’s theorem, while

Φ1(s) =
∏
p|∆

{
1 +

ρ∗(p)
ps

(
1− 1

ps

)−1} ∑
(d,∆)=1

ρ∗(d)
ds

by a parallel argument. Since therefore

Φ∆(s) =
ρ(∆)
∆s

∏
p|∆

(
1 +

ρ∗(p)− 1
ps

)
Φ1(s)

=
ρ(∆)
∆s

∏
p|∆

(
1 +

ρ∗(p)− 1
ps

)
H(s)ζα(s)

for σ > 1 − 2δ, we infer the first part of the lemma by contour integration
and the properties of ζα(s).
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The second part is more elementary. Indeed, by parts (i) and (ii) of
Lemma 1, we have at once that∑

d≤y
d≡0,mod∆

ρ∗(d) =
∑
∆d′≤y

ρ∗(∆d′) = O
(
ρ∗(∆)

∑
d′≤y/∆

ρ(d′)
)

= O

(
ρ∗(∆)y
∆

)
.

As in I, we shall use properties of the sum S∗(h, k) that are extensions of
some of those of ρ∗(k) expressed in Lemma 1. Being similar to those stated
in I and in particular Lemma 2 therein (1), these are stated without proof in

Lemma 3. The sum S∗(h, k) is multiplicative in the sense that, if (k1, k2)
= 1 and k1k1 ≡ 1,mod k2, k2k2 ≡ 1,mod k1, then

S∗(h, k1k2) = S∗(hk2, k1)S∗(hk1, k2).

If φ(x) be irreducible and of degree q, then for any positive integers d
and h, ∑

k≤y
(k,d)=1

|S∗(hd, k)| = O

(
yσ−1/4(h)

logδ1 y

)
,

where δ1 is a small positive number that depends on q.

Later on we shall introduce a variant of the second half of this lemma
in which φ(x) need not be irreducible and in which the numbers k in the
summation are of a special type.

4. Adoption of Hypothesis P—the reducibility of F (x). Exam-
ining first the case where both qth powers are positive, we are ready to
consider the implications of

Hypothesis P. F (x) is a polynomial of degree q having the property that
F (n) is equal to a sum of two positive perfect qth powers for all sufficiently
large integers n and thus for all n exceeding some number X0.

We shall shew under the hypothesis that F (x) is reducible and then that
it contains a linear factor. Although it might seem at first sight that the
method used to deduce the latter fact would establish the former one as
well, the nature of the algebraic fields underlying our situation invalidates
such a programme. It is therefore necessary to bring in another method to
secure the first property before going on to demonstrate the existence of a
linear factor.

(1) We take the opportunity to point out that a factor (log log x)c5 was inadvertently
excluded from the estimate (3) in I. This, however, did not vitiate the application of the
estimate.
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To shew that F (x) is not irreducible we assume the opposite and deduce a
contradiction. Here we shun the method of I, which indeed is still applicable,
in favour of a slightly simpler one that does not depend on the arithmetical
properties of g(r, s). In the new procedure, for reasons that will become
apparent, we do not apply the hypothesis for all n exceeding X0 but only to
a suitable subset of them that we now define within the following framework.

Introducing a sufficiently small positive constant δ2 to determine the
parameter

(10) ζ = ζ(X) =
1
2
δ2 log logX

by means of which is defined the set of primes p satisfying

(11) c6 < p ≤ ζ
for a suitably large positive constant c6, we let d1 denote, generally, a square-
free product (possibly 1) of such primes so that

(12) d1 ≤
∏

c6<p≤ζ
p ≤ exp

(∑
p≤ζ

log p
)

= eθ(ζ) < e2ζ = logδ2 X.

Next define ω∗(M) = ω∗ζ (M) to be the number of distinct prime factors p
of a non-zero integer M that are of type (11). Then we shall only apply
Hypothesis P to the set S1 = S1(X) of numbers n between X0 and X for
which

(13) ω∗{F (n)} ≤ 3
2

log log ζ,

the cardinality C(X) of the excluded numbers n up to X being not more
than

1

2
3
2

log log ζ

∑
n≤X

2ω
∗{F (n)} =

1

2
3
2

log log ζ

∑
n≤X

∑
d1|F (n)

1.

Hence, since (12) certainly means that d1 ≤ X,

C(X) ≤ 1

2
3
2

log log ζ

∑
d1

∑
n≤X

F (n)≡0,mod d1

1 ≤ 2X

2
3
2

log log ζ

∑
d1

ρ(d1)
d1

≤ 2X

2
3
2

log log ζ

∏
p≤ζ

(
1 +

ρ(p)
p

)
= O(X log1− 3

2
log 2 ζ) <

1
4
X −X0

in view of Lemma 1, the assumed irreducibility of F (x), and the inequality
1− 3

2 log 2 < 0. Thus the cardinality of S1 exceeds 3
4X.

On the other hand, by Hypothesis P, this cardinality does not exceed
the number Υ (X) of solutions in r, s and n of the equation

(14) rg(r, s) = F (n)
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that are subject to the conditions (13), 0 < s ≤ 1
2r, X0 < n ≤ X, and

therefore also to the constraints on s, r and n contained in (2) and (3). Also,
writing (14) as

(15) rm = F (n)

and noting from the initial comment in §3 that no value of m is presented
more than once when r and n are given, we see that Υ (X) does not exceed
the number Υ1(X) of solutions of (15) conforming to (2) and (3) for which

ω∗(rm) ≤ 3
2

log log ζ

and for which therefore either

(16) ω∗(r) ≤ 3
4

log log ζ

or

(17) ω∗∗(m) =
∑

c6<p≤ζ
p|m; p-r

1 ≤ 3
4

log log ζ.

Consequently, splitting Υ (X) into sums Υ2(X), Υ3(X) that represent the
contributions due to r,m, n for which (16), (17) hold, respectively, we have

(18) Υ (X) ≤ Υ1(X) ≤ Υ2(X) + Υ3(X),

to utilize which we agree that the symbol d2 shall represent a square-free
product of primes p satisfying the conditions c6 < p ≤ ζ, p - r so that

(19) (d2, r) = 1.

Since ∑
n≤c4r

F (n)≡0,mod r

1 = O{ρ(r)},

we have

(20) Υ2(X) = O
(
a

3
4

log log ζ
∑
r≤c3X

a−ω
∗(r)ρ(r)

)
= O

(
a

3
4

log log ζ
∑

1

)
, say,

on choosing a suitable constant a > 1. Next, having set

(21) b = 1− 1
a
< 1

and having noted that
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(22) a−ω
∗(r) =

∏
c6≤p≤ζ
p|r

(1− b) =
∑
d1|r

µ(d1)bω(d1),

we infer from Lemmata 1 and 2 that∑
1

=
∑
r≤c3X

ρ(r)
∑
d1|r

µ(d1)bω(d1) =
∑
d1

µ(d1)bω(d1
∑
r≤c3X

r≡0,mod d1

ρ(r)

= c3AX
∑
d1

µ(d1)bω(d1)ρ(d1)ψ(d1)
d1

+O
(
X1−δ

∑
d1

ρ(d1)
)

= c7X
∏

c6<p≤ζ

{
1− bρ(p)

p

(
1 +

ρ(p)− 1
p

)−1}
+O(X1−δ logδ2 X)

in virtue of (12). Here the product is∏
c6<p≤ζ

{
1− bρ(p)

p
+O

(
1
p2

)}
= O

{ ∏
c6<p≤ζ

(
1− bρ(p)

p

)}

= O

{ ∏
c6<p≤ζ

(
1 +

ρ(p)
p

)−b}
= O{log−b ζ}

by Lemma 1, whence (20) leads to

Υ2(X) = O(X log
3
4

log a+a−1−1 ζ),

in which log ζ appears with exponent

(23)
3
4

log
4
3
− 1

4
< 0

if a = 4/3. Consequently

(24) Υ2(X) = o(X).

To treat Υ3(X) is harder because for the first time here we have to
consider congruential conditions on numbers in a range of length X where
the moduli of the congruences are considerably larger than X. We must
therefore take account of the uniform distribution of the roots of congruences
through the use of Lemma 2, which is most expeditiously introduced into
the method by means of the functions Γ (u) discussed in §3.

First, from the definition of Υ3(X) and the analogue

a−ω
∗∗(m) =

∑
d2

µ(d2)bω(d2) (a = 4/3)
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of (22),

Υ3(X) =
∑
r≤c3X

∑
rm=F (n)
n≤c4r

ω∗∗(m)≤ 3
4

log log ζ

1(25)

≤ a
3
4

log log ζ
∑
r≤c3X

∑
rm=F (n)

Γ

(
n

c4r

)∑
d2|m

µ(d2)bω(d2)

= a
3
4

log log ζ
∑
r≤c3X

∑
d2

µ(d2)bω(d2)
∑

F (n)≡0,mod rd2

Γ

(
n

c4r

)
= a

3
4

log log ζ
∑
r≤c3X

µ(d2)bω(d2)
∑

r,d2
, say.

Next ∑
r,d2

=
∑

F (ν)≡0,mod rd2
0<ν≤rd2

∑
n≡ν,mod rd2

Γ

(
n

c4r

)
,

the inner sum in which equals

∑
l

Γ

(
ν + lrd2

c4r

)
=
∞�

−∞
Γ

(
ν + rd2u

c4r

)
du

+
∑
h

′ ∞�

−∞
Γ

(
ν + rd2u

c4r

)
e2πihu du

=
c4Γ̂ (0)
d2

+
c4
d2

∑
h

′
Γ̂

(
c4h

d2

)
e−2πihν/rd2

by the Poisson summation formula and the substitution

w =
ν

c4r
+
d2u

c4
.

Hence, by the definition of S(h, k) in (8) and then by (4) and (5),

∑
r,d2

=
c4Γ̂ (0)ρ(rd2)

d2
+
c4
d2

∑
h

′
Γ̂

(
c4h

d2

)
S(−h, rd2)

=
2c4ρ(rd2)

d2
+O

(
1
d2

∑
0<h≤d2/c4

|S(h, rd2)|
)
,
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which equation when inserted in (25) yields

Υ3(X) ≤ a
3
4

log log ζ

{
2c4

∑
r≤c3X

ρ(r)
∑
d2

µ(d2)ρ(d2)bω(d2)

d2
(26)

+O

(∑
d2

1
d2

∑
0<h≤d2/c4

∑
r≤c3X

|S(h, rd2)|
)}

= a
3
4

log log ζ
{

2c4
∑

2
+O

(∑
3

)}
, say.

To attend to
∑

2 we observe that the inner sum within it equals∏
p-r

c6<p≤ζ

(
1− bρ(p)

p

)
=

∏
c6<p≤ζ

(
1− bρ(p)

p

) ∏
p|r

c6<p≤ζ

(
1− bρ(p)

p

)−1

= O

{ ∏
c6<p≤ζ

(
1 +

ρ(p)
p

)−b∏
p|r

(
1 +

bq

p

)}
= O{σ−1/2(r) log−b ζ}

because of Lemma 1. Therefore, using the second part of Lemma 2, we
conclude that ∑

2
= O

(
1

logb ζ

∑
r≤c3X

ρ(r)
∑
d|r

1
d1/2

)
(27)

= O

(
1

logb ζ

∑
d≤c3X

1
d1/2

∑
r≤c3X

r≡0,mod d

ρ(r)
)

= O

(
X

logb ζ

∑
d≤c3X

ρ(d)
d3/2

)
= O(X log−b ζ).

Also, since the summand in the inner sum of
∑

3 is

|S(hr, d2)| |S(hd2, r)| ≤ ρ(d2)|S(hd2, r)|

by (9), (19), and the first part of Lemma 3, an application of the second
part of that lemma shews that∑

3
≤
∑
d1

ρ(d1)
d1

∑
0<h≤d1/c4

∑
r≤c3X

(r,d1)=1

|S(hd1, r)|

= O

(
X

logδ1 X

∑
d1

ρ(d1)
d1

∑
0<h≤d1/c4

σ−1/4(h)
)
,
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whence, by (12) and Lemma 1, we get∑
3

= O

(
X

logδ1 X

∑
d1

ρ(d1)
)

= O

(
X

logδ1 X

∑
d≤logδ2 X

ρ(d)
)

(28)

= O(X logδ2−δ1 X) = O(X log−b ζ)

because δ2 < δ1 when δ2 in (12) is small enough.
Finally, from (26), (27), (28), (21), and (23) we deduce that

Υ3(X) = O(X log
3
4

log a+a−1−1 ζ) = o(X)

and then from (18) and (24) that

Υ (X) = o(X).

Being contradictory to our earlier assertion that Υ (X) > 3
4X, this statement

demonstrates that F (X) cannot be irreducible when Hypothesis P is in
place.

5. F (x) has a linear factor—first part. We still assume that the
polynomial F (x) adheres to Hypothesis P. Having shewn on this that F (X)
cannot be irreducible, we now shall demonstrate that F (x) cannot lack a
linear factor by once more assuming the opposite and deducing it is impos-
sible. The method is very different from the former one, and despite initial
appearances, could not have been applied to establish the reducibility of
F (x).

Our assumption and the fact that q is a prime number mean that the
reducible polynomial F (x) has a factorization

(29) aF a1
1 (x) . . . F ajj (x)

containing a positive integer a and at least two distinct irreducible polyno-
mials F1(x), . . . , Fj(x) with integral coefficients and degrees greater than 1
and less than q − 1. From this factorization, according to a procedure to
be described later, we shall select a polynomial designated by the symbol
f(x) that is one of the factors Fi(x) or a product of two such factors when
every choice of the former type is unsatisfactory. But, having agreed to let
P denote, generally, a square-free product of primes that are not congruent
to 1, mod q, and that exceed c6, we let M(X,P ) be the number of integers
n between 1

2X and X for which f(n) is divisible by P and consider the sum

Ψ(X) =
∑

A1X<P≤2A1X

M(X,P )

for a sufficiently large positive constant A1. This is then subjected to an
initial development by way of the Poisson summation formula in order to
reveal its dependence on entities whose treatment demands an appropriate
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choice of the polynomial f(x) above. These are in fact examples of ρ∗(k)
and the sum S∗(h, k) when k is taken to be type of P and the polynomial
φ(x) defining them is f(x).

Following closely the treatment of the sum
∑

r,d in (25) but with the
lower bound γ(4n/X) in place of Γ (n/c4r), we see that

M(X,P ) ≥
∑

f(n)≡0,modP

γ

(
4n
X

)
=

∑
f(ν)≡0,modP

0<ν≤P

∑
n≡ν,modP

γ

(
4n
X

)
,

where the inner sum equals
∞�

−∞
γ

(
4ν + 4Pu

X

)
du+

∑
h

′ ∞�

−∞
γ

(
4ν + 4Pu

X

)
e2πihu du

=
X

4P
γ̂(0) +

X

4P

∑
h

′
γ̂

(
hX

4P

)
e−2πihν/P .

Hence, by (6) and (7),

M(X,P ) ≥ Xγ̂(0)ρ∗(P )
4P

+
X

4P

∑
h

′
γ̂

(
hX

4P

)
S∗(−h, P )

=
Xρ∗(P )

4P
+O

(
X

P

∑
0<h≤4P/X

|S∗(h, P )|
)

and thus

Ψ(X) ≥ 1
8A1

∑
A1X<P≤2A1X

ρ∗(P ) +O
( ∑

0<h≤8A1

∑
P≤2A1X

|S∗(h, P )|
)

(30)

=
1

8A1
Ψ1(X) +O

( ∑
0<h≤8A1

Ψ2(X,h)
)
, say.

The restricted nature of the numbers P inhibits the development of this
equation because of consequential algebraic difficulties that will be addressed
in the next section.

6. F (x) has a linear factor—the algebraical background and the
estimation of Ψ1(X). In considering ρ∗(P ) we first concentrate on the case
where the polynomial f(x) chosen is irreducible and of degree d (2), then de-
ducing from what we find the results needed in the contrary instance where
f(x) is a product of two distinct factors. This study begins with the investi-
gation of ρ∗(p) for p 6≡ 1, mod q, or, equally well, of ρ∗(p) for p ≡ 1, mod q,

(2) This and other symbols below are placed in Roman font to avoid confusion with
earlier ones expressed in italics.
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since the behaviour of ρ∗(p) over all primes p is known from classical the-
orems (see, for example, our Lemma 1). Therefore it is not surprising that
we begin by introducing a field G = Q(β) generated by a zero β of f(x),
and the cyclotomic field Z = Q( q

√
1) of degree q − 1, since the condition

p ≡ 1, mod q, is tantamount to there being exactly q − 1 zeros, mod p, of
the corresponding cyclotomic polynomial. But difficulties arise because G
and Z are not necessarily linearly disjoint, that is, the degree of the com-
bination W = Wβ of G and Z is not necessarily d(q − 1). However, in the
present instance where Z is Galoisian, such difficulties are abated because
the degree [W : G] is independent of the zero β chosen and is equal to e(q−1)
for some divisor e of d, where for convenience we write

(31) d = eg.

To build on this situation, letting α1 = α, α2, . . . , αq−1 be the conjugates
over Q of a primitive qth root of unity and β1 = β, β2, . . . , βd the conjugates
over Q of β, we choose a rational integer c with the properties

• cβ is an algebraic integer,
• αi1 + cβj1 6= αi2 + cβj2 if (αi1 , βj1) 6= (αi2 , βj2)

and, as in the usual proof of the simplicity of algebraic extensions, form the
algebraic integer

θ = α+ cβ

that has the property that Wβ = Q(α, β) = Q(θ). Then, the degree of θ
over Q being e(q − 1), the conjugates of θ over Q are of the form αi + cβj
for e(q − 1) distinct pairs (i, j). Next, if possible, choose a pair αk, βl that
does not appear in the above representation of the conjugates of θ and form
the number θ(2) = αk + cβl, whose conjugates over Q are unequal to those
of θ and are in number e(q − 1) as Q(θ(2)) = Wβl . Finally, forming θ(3) in
like manner if necessary and continuing the process until the pairs (αi, βj)
are exhausted, we deduce that the polynomial

Φ(x) =
∏

1≤i≤q−1
1≤j≤d

(x− αi − cβj)

is equal to ∏
1≤ι≤g

mι(x),

where mι(x) is the monic polynomial with rational integral coefficients that
is the product ∏

1≤u≤e(q−1)

(x− θ(ι)
u )

taken over all the conjugates θ(ι)
u . Here we note that the polynomials mι(x)

are relatively prime to each other and have no repeated factors.
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To apply this information to meet our current wants, we consider the
reduction, mod p,

Φ(x) =
∏

1≤ι≤g

m̄ι(x)

of the identity for Φ(x) when p > c6. First, if u1, . . . , uq−1 and v1, . . . , vd be
the zeros, in Fp or an extension Fpγ thereof, of the polynomials (xq−1)/(x−1)
and f(x), respectively, the reduction Φ(x) is seen to equal∏

1≤i≤q−1
1≤j≤d

(x− ui − cvj)

by consideration of symmetric functions and the integrity of cβ. Also, by
use of resultants and discriminants, the polynomials m̄ι(x) have no common
zeros and have no repeated factors. Moreover, a zero ui + cvj belongs to Fp
if and only if ui and vj do, since otherwise it would be a multiple zero, as is
seen by taking conjugates of ui, vj appropriately.

Let now ρ†ι(p) be the number of incongruent solutions of

mι(x) ≡ 0, mod p

and ρ††(p) the number of incongruent solutions of

(xq − 1)/(x− 1) ≡ 0, mod p.

Then, for p > c6,

ρ††(p)ρ∗(p) = ρ†1(p) + · · ·+ ρ†g(p),

or in other words,

(32)
1

q − 1
(ρ†1(p) + · · ·+ ρ†g(p)) =

{
ρ∗(p) if p ≡ 1, mod q,

0 if p 6≡ 1, mod q,

which relation provides the formula for ρ∗(p) we sought under the restriction
p ≡ 1, mod q.

In associating this information with the Dedekind zeta functions it is
helpful to let the symbol Hi(s) denote a function of s that for σ > 1 − 2δ
is both regular and bounded above and below in magnitude by a positive
constant and is real when s is real. To estimate the sum Ψ1(X) in the first
case where f(x) is irreducible, we form the function

Z(s) =
∑
P

ρ∗(P )
P s

=
∏

p 6≡1,mod q
p>c6

(
1 +

ρ∗(p)
ps

)
(33)

=
∏
p>c6

(
1+

ρ∗(p)
ps

)/ ∏
ρ≡1,mod q
p>c6

(
1+

ρ∗(p)
ps

)
= ZI(s)/ZII(s), say,
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for σ > 1 in the first place. Here, by the methods underlying the proof of
Lemma 2 and the connection between ρ∗(p) and the number of linear prime
ideals over Q(β) dividing p, we easily find that

(34) ZI(s) = ζβ(s)H1(s) (s > 1− 2δ),

where ζβ(s) is the zeta function of the corpus Q(β). Next, by (32),

ZII(s) =
∏
p>c6

{
1 +

1
q − 1

(
ρ†1(p) + · · ·+ ρ†g(p)

ps

)}

=
∏

1≤ι≤g

∏
p>c6

(
1 +

1
q − 1

ρ†ι(p)
ps

)
H2(s)

=
∏

1≤ι≤g

∏
p>c6

(
1 +

ρ†ι(p)
ps

)1/(q−1)

H3(s).

Then compare

1 +
ρ†ι(p)
ps

with the corresponding part of the Euler product for the zeta function ζθ(ι)(s)
that consists of the factors related to the linear prime ideal divisors of p over
Q(θ(ι)), concluding that

(35) ZII(s) =
( ∏

1≤ι≤g

ζθ(ι)(s)
)1/(q−1)

H4(s)

provided that the analytic continuation of the fractional power into the (cut)
domain σ ≤ 1 be appropriately defined.

We deduce from (33)–(35) that the principal part of Z(s) in the neigh-
bourhood of s = 1 is

(36)
A2

(s− 1)1−g/(q−1)

and find by a contour integral method (see, for example, Wilson [9]) that∑
P≤y

ρ∗(P ) ∼ A3y

logg/(q−1) y
,

since g/(q − 1) < 1 by (31) because g ≤ d < q − 1. Thus in the first case

(37) Ψ1(x) >
A4A1X

logg/(q−1)X
.

In the other case the polynomial f(x) is a product of two polynomials
f1(x), f2(x) each of which, being of the type considered under the primary
heading, we associate through its subscript i with the notation di, ei, gi, ρ∗i (p)
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for the entities previously described by d, e, g, ρ∗(p). Now, with the present
meaning of ρ(p), we have

(38) ρ∗(p) = ρ∗1(p) + ρ∗2(p)

because the non-zero resultant of f1(x) and f2(x) is indivisible by p for
p > c6, where the function Z(s) defined in the first line of (33) becomes∏
p 6≡1,mod q
p>c6

(
1 +

ρ∗1(p) + ρ∗2(p)
ps

)
=

∏
p 6≡1,mod q
p>c6

(
1 +

ρ∗1(p)
ps

)(
1 +

ρ∗2(p)
ps

)
H5(s)

= Z1(s)Z2(s)H6(s), say.

Hence, if we apply (36) to the two functions Z1(s),Z2(s), we infer that the
principal part of Z(s) in the neighbourhood of s = 1 is

A5

(s− 1)2−(g1+g2)/(q−1)

and get

(39) Ψ1(X) > A6A1X log1−(g1+g2)/(q−1)X

in the second instance.
Finally, combining (37) and (39) for convenience by setting

(40) E =
{−g/(q − 1) when f(x) chosen irreducible,

1− (g1 + g2)/(q − 1) when f(x) a product of two factors,

we summarize our findings through the inequality

(41) Ψ1(X) > A7X logE X.

7. F (x) has a linear factor—the sum Ψ2(x, h). We go on to the
second element Ψ2(X,h) of (30), in which we remember that h is bounded.
Although there are difficulties in its treatment that necessitate our choosing
the polynomial f(x) very carefully, by way of compensation the fact that we
now seek upper instead of lower bounds means we no longer have need of
functions of type Z(s) and their analytic properties. Since, as in most of §6,
the prime p will always be subject to an inequality p > c6 to ensure the truth
of all assertions made, this condition will be assumed to hold throughout this
section without its being explicitly stated. In particular, this ruling applies
to prime variables of summation and multiplication, it also being clear that
the densities of sets of primes are not affected by the inclusion or exclusion
of a finite number of their elements.

First, we need an upper bound for a certain product over primes p in-
congruent to 1, mod q, that parallels the bound (41). In the first case where
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f(x) is irreducible, we restate (32), as

ρ∗(p)− 1
q − 1

(ρ†1(p) + · · ·+ ρ†g(p)) =
{
ρ∗(p) if p 6≡ 1, mod q,

0 if p ≡ 1, mod q,

in order to shew that∏
p≤y

p 6≡1,mod q

(
1+

ρ∗(p)
p

)
=
∏
p≤y

{
1 +

ρ∗(p)
p
− 1
q − 1

(
ρ†1(p) + · · ·+ ρ†g(p)

p

)}

= O

{∏
p≤y

(
1+

ρ∗(p)
p

) ∏
1≤ι≤g

∏
p≤y

(
1+

ρ†ι(p)
p

)−1/(q−1)}
.

Hence, if we use Lemma 1(iii) and the notation (40), we deduce in the first
case that

(42)
∏
p≤y

p 6≡1,mod q

(
1 +

ρ∗(p)
p

)
= O(log1−g/(q−1) y) = O(log1+E y),

which equation remains true in the second case because (38) shews that its
left side then equals

O

{ ∏
p≤y

p 6≡1,mod q

(
1 +

ρ1(p)
p

) ∏
p≤y

p 6≡1,mod q

(
1 +

ρ∗2(p)
p

)}
= O(log2−(g1+g2)/(q−1) y).

Soon we shall encounter certain sets S of primes p that are said to have
positive lower density B. These conform to the asymptotic relation

(43) lim
y→∞

log y
y

∑
p≤y
p∈S

1 = B (B > 0),

from which, by way of the sum ∑
p≤y
p∈S

1
p

and partial summation, it follows that

(44)
∏
p≤y
p∈S

(
1 +

1
p

)
> logB0 y

for any positive number B0 < B and y > y0(B0). This inequality is of course
still valid if S have a density B corresponding to the replacement of the
lower limit in (43) by a limit.

To apply the method behind the second part of Lemma 3 to the sums
S∗(h, P ) in Ψ2(X,h) we need to shew that ρ∗(p) is greater than 1 for an
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adequate lower density of primes p for which p 6≡ 1, mod q. This presents
some difficulty and is the reason for the complicated way in which the poly-
nomial has to be chosen.

We first suppose that at least one of the irreducible factors g(x) in
(29)—namely, one of the Fi(x)—has splitting field S of degree ∆ between 2
and d! such that

(45) Z 6⊂ S.
Then the number ρ∗(p) of zeros of g(x),mod p, takes its maximal value d if
and only if p split into a product of ∆ linear prime ideals over S, the density
of such p being 1/∆ by the prime ideal theorem applied to S (3) (see, for
example, the comments in the proof of Lemma 6 in [3]). If, in addition, such
a prime be congruent to 1, mod q, then p splits totally in Z and therefore
in the normal field V that is the least field containing S and Z. Since the
degree ∇ of V exceeds ∆ in virtue of (45) and since the density of the last
category of primes is 1/∇, we deduce that the density of primes p for which
ρ∗(p) = d and p 6≡ 1, mod q, is

1
∆
− 1
∇
> 0,

and we succeed in our quest in this instance by taking f(x) to be g(x).
We may therefore suppose that

(46) Z ⊂ S
for each choice of an irreducible g(x). By Chebotarev’s theorem the primes
p for which ρ∗(p) > 1 have a density whatever polynomial g(x) be chosen.
If for some g(x) this density be not less than a number q1 slightly greater
than 1/(q − 1), then the primes p for which ρ∗(p) > 1 and p 6≡ 1, mod q,
have a lower density not less than

q1 −
1

q − 1
> 0,

and again we get what we desire.
On the other hand, if the last assumption fail, then for each g(x), the

number of whose zeros, mod p, is denoted temporarily by ρ′(p), we have∑
p≤y

ρ′(p) ∼ y

log y

by Lemma 1(iii) and therefore

(47)
∑
p≤y

ρ′(p)≥1

1 +
∑
p≤y

ρ′(p)≥2

{ρ′(p)− 1} ∼ y

log y
.

(3) Or by Chebotarev’s theorem.
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Next, the case Z = S in (46) being excluded because deg g(x) ≤ q − 2, the
degree of S over Q is not less than 2(q − 1) and the density of p for which
ρ′(p) = d is at most 1/{2(q − 1)}. Hence the second sum in (47) is at most

(d− 2)
∑
p≤y

ρ′(p)≥2

1 +
∑
p≤y

ρ′(p)=d

1 <
{

(d− 2)q1 +
1

2(q − 1)
+ o(1)

}
y

log y

as y → ∞, wherefore the lower density of primes p for which ρ′(p) ≥ 1 is
not less than

1−
(

d− 3
2

)
1

q − 1
− δ3

for a small positive number δ3. This applies to two choices of g(x) that
we designate f1(x), f2(x) in accordance with earlier notation, the polyno-
mial f(x) being f1(x)f2(x). Thus the lower density of primes p for which
ρ∗1(p) ≥ 1, ρ∗2(p) ≥ 1, and p 6≡ 1, mod q, is at least

1−
(

d1 −
3
2

)
1

q − 1
−
(

d2 −
3
2

)
1

q − 1
− 1
q − 1

− 2δ3

= 1− (d1 + d2 − 2)
q − 1

− 2δ3 ≥ 1− q − 2
q − 1

− 2δ3 > 0

if q1 be close enough to 1/(q−1). Consequently, since ρ∗(p) = ρ∗1(p) +ρ∗2(p),
there is a positive lower density of primes p incongruent to 1, mod q, for
which ρ∗(p) > 1, the proof of our assertion being complete.

From this discussion we gain the result that brings to fruition the esti-
mation of Ψ(X,h) through the ideas behind the proof of Lemma 6 in [3].

Choose f(x) according to the above procedures so that the primes p
for which p 6≡ 1, mod q, and ρ∗(p) > 1 form a set S of a positive lower
density B. Then∏

p≤y
p 6≡1,mod q

(
1 +

ρ∗1/2(p)
p

)

≤
∏
p≤y

p 6≡1,mod q

(
1 +

ρ∗(p)
p

) ∏
p≤y
p∈S

(
1 +

ρ∗(p)√
2 p

)(
1 +

ρ∗(p)
p

)−1

,

the multiplicand in the third product being not more than

1−
(

1− 1√
2

)
ρ∗(p)
p

+O

(
1
p2

)
≤ 1− 2−

√
2

p
+O

(
1
p2

)
.
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Hence, by (44) with B0 = 1
2B, the third product is seen to be

O

{∏
p≤y
p∈S

(
1 +

1
p

)√2−2}
= O(logB(1/

√
2−1) y),

which in combination with (42) shews that

(48)
∏
p≤y

p6≡1,mod q

(
1 +

ρ∗1/2(p)
p

)
= O(log1+E−δ4 y)

for some small positive number δ4.
The estimation of Ψ2(X,h) follows sufficiently closely to that of R(x, h) in

[3] that we need only indicate the main points of divergence. Hence, adopting
the notation of [3] and therefore temporarily abandoning the conventions
hitherto used in the present paper, we restrict the numbers k in [3] to be of
type P and allow the polynomial f(x) therein to be the f(x) of the present
paper so that it is no longer necessarily irreducible, ρ(p) being the present
ρ∗(p).

First, defining k1 and k2 more or less as before but noting they can be
written as P1 and P2 because they are of type P (square-free), we note that
Lemmata 7 and 8 in [3] are yet valid. Secondly, the bound corresponding
to
∑

2 is also true, especially as the case related to
∑

4 is absent. Thirdly,
estimate (8) holds, while (9) stands with the factor (h, k) absent because
0 < h ≤ 8A1 in (30). Then through our equation in (48) above, the sum

∑
7

in (11) of [3] becomes
O(log1+E−δ4 x)

and therefore ∑
1

= O{x(log log x)c8 logE−δ4 x}

with the consequence that

R(h, x) = O(x logE−
1
2
δ4 x).

Hence, reverting to our current notation, we have

(49) Ψ2(X,h) = O(X logE−
1
2
δ4 X).

8. F (x) has a linear factor—final phase. At last we can return to
(30), deducing from (49) that

Ψ(X) >
1
8
A7X logE X +O(X logE−

1
2
δ4 X) >

1
16
A7X logE X > 0

for X > X0. Hence there is at least one value of n between 1
2X and X for

which F (n) is divisible by a number P greater than A1X, where A1 can
be chosen as large as we wish. Consequently, by the preamble in §3, the
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number r in the assumed representation of F (n) by rg(r, s) is divisible by P
and thus exceeds A1X. But this does not agree with inequality r ≤ c3X
in (2), and we therefore deduce as required that F (x) must have a rational
linear factor.

9. Establishment of the first theorem. In proceeding to the first
theorem we shall still need the numbers P but with the slight difference
that they are now permitted to have small prime divisors. With this under-
standing, an estimate regarding them is stated as

Lemma 4. Let τ(y;h, k) be the number of integers P not exceeding y
that are congruent to h,mod k, where (h, k) equals 1 or 2. Then

τ(y;h, k) > y1−ε (y > y0(k, ε)).

This is similar to but slightly weaker than the analogous Lemma 2.1
in I. Anything sharper being unnecessary here, we adopt a method that
avoids recourse to analytic methods involving fractional powers of s − 1 in
the neighbourhood of s = 1; only a sketch is given because the ideas used
are familiar.

In the case where (h, k) = 1 we only consider odd numbers P ′ that are
of type P . Since 1 is a quadratic residue, mod q, the aggregate of these
numbers P ′ is contained in the set of odd square-free numbers M that are
counted with a multiplicity

m(M) =
∏
p|M

{
1−

(
p

q

)}
≤ 2ωq(M),

where ωq(M) is the number of distinct prime factors of M other than q.
Then, forming the analogue

τ ′(y;h, k) =
∑
M≤y

M≡1,mod k

m(M)

of τ(y;h, k), we have first that

(50) τ(y;h, k) > y−ετ ′(y;h, k)

since d(M) = O(yε) for M ≤ y.
Next take Dirichlet characters χ, mod k, and set

τ ′(y, χ) =
∑
M≤y

χ(M)m(M)

with the usual inference that

τ ′(y;h, k) =
1

φ(k)

∑
χ

χ(h)τ ′(y, χ).
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The generating function of τ ′(y, χ) is then the Dirichlet’s series∑
M

m(M)χ(M)
M s

(σ > 1),

which by Euler’s theorem is the product∏
p 6=2

[
1 +

χ(p)
ps

{
1−

(
p

q

)}]
that is seen to equal

H6(s)
∏
p6=2

{
1 +

χ(p)
ps

}{
1−

(
p

q

)
χ(p)
ps

}
=

L(s, χ′)H6(s)
L(s, χ∗)L(2s, χ′)

where χ′ is the character, mod q or 2q, induced by χ, χ∗(n) = (n|q)χ′(n), and
H6(s) is a regular non-zero bounded function for σ > 1− 2δ. This function
has a pole at s = 1 only when χ is principal (even though the denominator
might have a pole there for other χ) and we deduce by well-known contour
integral methods that

τ ′(y;h, k) ∼ c(h, k)y (c(h, k) > 0)

as y → ∞, from which and (50) the result follows when (h, k) = 1. If
(h, k) = 2, then the conclusion follows by writing P as 2P ′.

We need a corollary of this proposition in the form of

Lemma 5. There are numbers of type P as large as we wish that are
congruent to h, mod k, for given co-prime numbers h, k and that have no
prime factors less than a given number c9.

Form the modulus
k′ =

∏
p≤c9
p-k

p

and the arithmetical progression of numbers n answering to the congruences
n ≡ h, mod k, n ≡ 1, mod k′. Using this progression in Lemma 4, we get
the stated result.

Still assuming Hypothesis P, we first dispose of the special case in which
F (x) is of the form

(51) D(ax+ b)q,

where (a, b) = 1 and D, a are both positive. Taking the number c9 in
Lemma 5 to exceed both q and q

√
2q−1D, we find a number n exceeding X0

for which an + b is a number P without prime divisors less than c9 and
consider the equation

(52) rg(r, s) = D(an+ b)q = DP q
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that is soluble in r, s under the condition 0 < s < r. Here, by the preamble
in §3, P | r so that r = Pl; also, by the first part of (1),

rq ≤ 2q−1DP q

and thus r ≤ c9P with the consequence that 0 < l < c9. Therefore

lg(lP, s) = DP q−1,

whence, since P is prime to l and the coefficient q of sq−1 in g(lP, s), it
follows that P | s and s = Pl1, with 0 < l1 < l. From this we conclude that

D = lg(l, l1) = (l − l1)q + lq1

and

(53) F (x) = {(l − l1)(ax+ b)}q + {l1(ax+ b)}q,
which identity expresses F (x) in the expected form (if instead of s we used
r − s, we would obtain this identity with the terms in reverse order).

For the general case in which (51) does not obtain we shall need the
services of a lemma that is essentially due to Bombieri and Pila [1] and that
will also be implicitly used in §11 later.

Lemma 6. Let Ψ(u, v) be an irreducible polynomial of degree greater
than 1 with integer coefficients. Then the number of integral solutions of the
equation Ψ(u, v) = 0 for which |u|, |v| ≤ Q is O(Q1/2+ε), where the constants
implied by the O-notation are independent of the coefficients of Ψ(u, v).

If Ψ(u, v) be absolutely irreducible and of degree d, then the result is
that of Bombieri and Pila, where the exponent can actually be taken as
1/d + ε. But, in the opposite case, Ψ(u, v) is a product of absolutely irre-
ducible factors none of which is proportional to a polynomial with rational
coefficients. The rational zeros of each factor being also those of one of its
non-proportional conjugates and therefore O(1) in number, the estimate
remains true.

In the case now under review F (x) can be expressed in the not yet
necessarily unique form

(54) (ax+ b)(A0x
q−1 + · · ·+Aq) = (ax+ b)F1(x), say,

where (a, b) = 1 and a,A0 > 0. Associated with this polynomial as thus
expressed, there are the discriminant∆ of the second factor and the resultant

(55) R = A0b
q−1 −A1ab

q−2 + · · ·+Aqa
q−1

of both factors, neither of which can yet be asserted to be non-zero. Then,
to initiate the demonstration, we shall avail ourselves of any suitable se-
quence S of positive numbers n up to a large limit X for which an + b is
of type P , the number t(X) of such n being constrained by the inequality

(56) t(X) > X3/4.
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For the time being it is enough to know that Lemma 4 ensures the existence
of such a sequence, although later it will be specialized in the light of what
emerges.

As the equation

(an+ b)F1(n) = rg(r, s) (0 < s < r)

is always soluble for n > X0, we deduce from the preamble in §3 that for
any such n ∈ S we have (an + b) | r and r = l(an + b) for some positive
integer l, whence

F1(n) = lg{l(an+ b), s}
for such an integer l. Yet, by the first part of (1), D1(an+ b)q > rq/2q−1 for
a suitable positive number D1, and then

r <
q
√

2q−1D1 (an+ b)

with the implication that

0 < l < c10 = q
√

2q−1D1.

Hence, for some value l1 of l in this range, the equation

(57) F1(n) = l1g{l1(an+ b), s} (0 < s < l1(an+ b))

is soluble for at least
1
c10
{t(X)−X0} > X3/5

values of n in S . Also regardless of the first condition in parentheses in (57),
it is evident that the primary equation connecting n and s implies that (4)

(58) |s| ≤ c11n ≤ c11X

because its right-hand side contains the term l1qs
q−1 by (0).

Let us view the polynomial

h(u, v) = F1(u)− l1g{l1(au+ b), v},
which is certainly of degree q − 1 > 1. Then, by Lemma 6, the number of
solutions of (57) in n, s not exceeding the apposite bounds X, c11X, respec-
tively, is O(X1/2+ε) when h(u, v) is a product of irreducible polynomials of
degree at least 2. Therefore from (0) we see that h(u, v) has a linear factor
containing v of the type v − a1u− b1 and we get the identity

(59) F1(u) = l1g{l1(au+ b), a1u+ b1}
containing rational numbers a1, b1. Here, since the case (51) has been ex-
cluded, the linear polynomial a1u+ b1 is not proportional to au+ b so that,
in particular, a1 and b1 are not both zero.

(4) This apparently superfluous observation will be seen to be needed when we move
on to consider qth powers that are not of the same sign.
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We shew that the number l1 is unique. First, if F1(u, v) denote the form
vq−1F1(u/v) of degree q − 1, the identity may be expressed as

F1(u, v) = l1g{l1(au+ bv, a1u+ b1v)},
whence, setting u = −b, v = a, we find that

(60) R = F1(−b, a) = l1(ab1 − a1b)q−1q 6= 0

by (55) and (0). Also, since l1g(Ξ,H) transforms into F1(u, v) by the sub-
stitution

Ξ = l1(au+ bv), H = a1u+ b1v

of modulus l1(ab1 − a1b), the discriminants ∆ and −qq−2 of F1(u, v) and
g(Ξ,H) are seen to be connected by the equation

∆ = −l(q+1)(q−2)
1 (ab1 − a1b)(q−1)(q−2)qq−2 6= 0

after a short calculation. This and (60) then imply that (5)

(61) ∆+ l
q(q−2)
1 Rq−2 = 0

with the implication that l1 is unique throughout.
We stress that the truth of the identity (59) is absolute and that it is

therefore independent of the process that led to it. If a1, b1 therein be not
both integers, let I be the least positive integer for which a2 = Ia1, b2 = Ib1
are integers so that (a2, b2) = 1; let also I1 be the product of the distinct
prime divisors p of I. Next, since it is easily verified that each of the con-
gruences

ax+ b ≡ 0, mod p, a2x+ b2 ≡ 0, mod p,

has at most one solution, mod p, there exists a residue class hp,mod p, for
which

ahp + b 6≡ 0, mod p, a2hp + b2 6≡ 0, mod p,

when p is odd. But, if p = 2 , the second condition is still met with a suitable
residue class h2,mod 2, for which ah2 + b may be either odd or even. Hence,
if H be a simultaneous solution, mod I1, of all the congruences

H ≡ hp, mod p,

pertaining to the prime divisors p of I1, then

(aH + b, I1) = 1 or 2, (a2H + b2, I1) = 1.

Through this number H we now impose on n the condition n ≡ H, mod I1,
whereby the numbers an+ b belong to the arithmetical progression given by
the residue class aH + b,mod aI1, in which (aH + b, aI1) = (aH + b, I1) = 1

(5) Note that when q = 3 this becomes ∆ = −Rl31, which is what (46) in I should
state. Obtained in a different way in I, this equality was expressed there with a mistake
in the sign.
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or 2. Then, by stipulating that an+ b be a number of type P and appealing
to Lemma 4 with h = aH + b, k = aI1, we identify the sequence S needed
and observe that its members n adhere to the condition (a2n+ b2, I1) = 1.

We go back to (57), in which l1 is still given by (61). For some large n
in S this is valid for an integral value of s, as is the parallel equation

F1(n) = l1g{l(an+ b), a1n+ b1}

in virtue of the identity (59). Consequently, by one of our initial remarks
in §3, a1n + b1 equals either s or l1(an + b) − s and is therefore a positive
integer less than l1(an+ b). But here

a1n+ b1 =
1
I

(a2n+ b2) and (a2n+ b2, I) = 1,

which is impossible when I > 1. Therefore (59) is an identity in which a1, b1
are integers and in which, moreover, 0 < a1u+ b1 < l1(au+ b) for u > X0.
Finally via (54) we conclude that

F (x) = l1(ax+ b)g{l1(ax+ b), a1x+ b1}(62)

= {l1(ax+ b)− a1x− b1}q + (a1x+ b1)q,

in which each linear polynomial is positive for sufficiently large values of x.
We have therefore proved

Theorem 1. Suppose that F (x) is a polynomial of prime degree q > 2
having the property that F (n) is equal to a sum of two positive integral qth
powers for all sufficiently large integers n. Then F (x) is identically the sum
of two qth powers of polynomials with integral coefficients (in this case linear
or constant) that are both positive for sufficiently large values of x.

In completing this part of our work we must mention that Hypothesis P
must fail if the polynomial F (x) within it have a degree r less than q. Obvious
for reasons of density when r < 1

2q, this assertion is easily substantiated by
greatly simplified versions of our methods in which exponential sums are
absent. Indeed, unless r = q − 1 the basic method behind §5 suffices, while
in the exceptional case the argument must be augmented by some of the
reasoning in §4. Consequently we may replace Theorem 1 by the slightly
stronger

Theorem 1A. The conclusion of Theorem 1 is still valid if it be merely
assumed that the total degree of F (x) does not exceed q.

10. Two qth powers of either sign. In the study of polynomials F (x)
that represent sums of two qth powers of either sign the apposite variant of
Hypothesis P to be assumed is
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Hypothesis P1. The conditions of Hypothesis P hold except that F (n)
is now only supposed to be equal to a sum of two perfect non-zero qth powers
of any sign.

A moderate change to our proof of Theorem 1 will suffice to demonstrate
that Hypothesis P1 implies that F (x) is equal to the sum of two qth powers
of linear polynomials, especially as the previous treatment was so described
that it can be readily adapted for the new situation. Yet near the beginning
of the exposition we shall need to look at an extra sum that is akin to one
introduced at the corresponding stage in I and that therefore can be passed
over in a few words.

The polynomial F (x) still being assumed to have a positive leading co-
efficient, what was said in the preamble in §3 is still applicable save for (3),
the second part of (1), and the inequality 0 < s < r, the last of which should
be replaced by the conditions s < r, s 6= 0 since in the present context the
inequalities s < 0 and s > r are equivalent.

On the assumption of Hypothesis P1, the greatest departure from the
previous treatment lies in the way that §4 must be modified in order to secure
the irreducibility of F (x). The change begins at equation (14), where the
appropriate sum Υ (X) to be considered appertains to the new conditions.
Then, bringing in the large enough positive constant c12, we divide Υ (X) into
two sums Υ ∗(X) and Υ †(X) that answer, respectively, to the two conditions
−c12r ≤ s < r, s 6= 0 and s < −c12r.

In the former case

c2n
q < (r − s)q + sq ≤ {(1 + c12)2 − c212}rq

so that n ≤ c13r in place of (3) but still r ≤ c3X as in (2). The only
alteration in the analysis of the earlier sum Υ (X) needed for that of Υ ∗(X)
being the change of c4 into c13, we find as before that

Υ ∗(X) = o(X).

As for Υ †(X), the condition of summations implies

{(1 + c12)2 − c212}rq < (r − s)q + sq ≤ c1Xq

with the result that r ≤ γX where γ is as small as required provided that
c12 was chosen suitably. Then, letting Υ †r (X) be the contribution to Υ †(X)
due to a given value of r, we write

Υ †(X) =
∑
r≤γX

Υ †r (X)

and continue by handling Υ †r (X) by the method used to estimate Θ(2)
r in I.

At this point, by analogy with I, we encounter the equation

2q−1F (n) = r2q−1m,
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in which, being of the form

g(2r, 2s) =
1
2r
{(2r − 2s)q + (2s)q} =

1
2r
{(r + (r − 2s))q + (r − (r − 2s))q},

2q−1m is a polynomial in r and (r − 2s)2. The method of utilizing the
congruence I (58) being therefore applicable to

2q−1F (n) ≡ rg(2r, 2s), mod p,

because a congruence Ω2 ≡ a, mod p, normally has two solutions in Ω,
mod p, we find that

Υ †(X) <
1
2
X,

by following the analysis of I almost verbatim from (55) therein. Hence
Υ (X) < 3

4X for X > X0 and thus F (x) is irreducible.
Next, owing to the continued validity of the inequality for Ψ(X) in §8,

the methods of §§5–8 establish exactly as before the existence of the rational
linear factor of F (x).

In deduction of the theorem, the only alteration in the procedure in §9
is the way in which account is taken of the new constraints on s. First, if
0 < s < r in (52) as before, then (53) is again valid but, if s < 0, then l1 < 0
and (53) presents F (x) identically as a sum of two qth powers of opposite
signs. Secondly, it is clear from a brief study of the text that the relaxation
of the condition on s does not affect the identity (59). In addition, if (57)
were valid for some large n in S with 0 < s < r, each linear factor in (62)
would be positive for large x as previously. But, if instead s < 0 in (57), then
either a1n+ b1 or l1(an+ b)− a1n− b1 would be negative because a1n+ b1
equals either s or l1(an + b) − s. Thus in the latter case the identity (62)
emerges in a form in which the qth powers are of opposite signs for large x.
We therefore obtain

Theorem 2. Suppose that F (x) is a polynomial of prime degree q > 2
having the property that F (n) is equal to a sum of non-zero perfect qth powers
for all sufficiently large integers n. Then F (x) is identically the sum of two
qth powers of non-zero polynomials with integral coefficients (in this case,
linear or constant), having invariable signs for large x.

As in Theorem 1A, the conclusion of Theorem 2 is still true if it be merely
assumed that the degree of F (x) does not exceed q. But the derivation of
this extension is somewhat harder than in the previous case.

We end the section by noting an alternative formulation of Theorem 2.
In this we shed the condition that the qth powers in the representation of
F (n) be both non-zero and impose instead the requirement that F (x) be
not identically a perfect qth power. In the consequential situation when (51)
is in place the number D is not a perfect qth power, whence s 6= 0 in (52),
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l1 6= 0 and (53) still expresses F (x) in the required way. Yet when (51) does
not obtain, a1u+ b1 is not proportional to au+ b as was deduced from (59),
and again we get (62); here identically it is seen that s does not assume the
value zero.

11. Polynomials in several variables that are a sum of two qth
powers. Advancing to polynomials in several variables, we generalize Hy-
pothesis P1 by enunciating

Hypothesis P2. F (x0, . . . , xr) is a polynomial of degree q with integral
coefficients that is not identically the qth power of a linear polynomial with
integral coefficients and that has the property that it equals the sum of two
perfect qth powers for all integral values of x0, . . . , xr.

Then almost as Theorem 3 in I was implied by Theorem 2 there, we can
obtain the following theorem from the alternative form of Theorem 2 here
that was stated at the end of the previous section.

Theorem 3. On Hypothesis P2 the polynomial F (x0, . . . , xr) is identi-
cally equal to the sum of two qth powers of linear polynomials in x0, . . . , xr
with integral coefficients.

The derivation of this is so similar in detail to the exegesis in §6 of I that
we need only indicate the two parts of the treatment that need modifica-
tion. The first change occurs at the point corresponding to the statement of
Lemma 6.1 in I, before which we obtain the identity

(63) F (ξ, t) = {B0ξ +B1(t)}q + {C0ξ + C1(t)}q

in ξ that is the analogue of (68) in I. Now, instead of that lemma, we require
the fact that a polynomial φ(y) of degree q has at most one representation
(apart from order) as

λ(y + α)q + µ(y + β)q

where α 6= β and λ, µ 6= 0. This follows from Lemma 6.1 of I by considering
the cubic polynomial that is the (q − 3)th derivative of φ(y).

The second change is needed at the place where equations (73) and (74)
were reached in I. In comparing (63) with the identical polynomial expression

(64) aξq + l1(t)ξq−1 + · · ·+ lq(t)

for f(ξ, t), we can no longer easily use the Hessian of f(ξ, t) qua polynomial
in ξ because this is not a quadratic for q > 3. Instead, we use the Hessian
of the (q − 3)th derivative ∂q−3f(ξ, t)/∂ξq−3, which by (63) equals

q(q − 1) . . . 4(B0C0)q−3{B0C1(t)− C0B1(t)}2{B0ξ +B1(t)}{C0ξ + C1(t)}
and which by (64) also equals a polynomial of the form

q1(t)ξ2 + c1(t)ξ + b1(t)
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as in I (74). From the equality of these representations we then carry on by
the methods of I.

As before, we need only assume that the degree of the polynomial in
Hypothesis P2 does not exceed q.
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