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On the non-existence of simple congruences
for quotients of Eisenstein series

by

MicHAEL DEwWAR (Kingston, Ont.)

1. Introduction. Define p(n) to be the number of ways of writing n as
a sum of non-increasing positive integers. Ramanujan famously established
the congruences

p(5n +4) = 0 mod 5,
p(7Tn+5) =0 mod 7,
p(11n +6) = 0 mod 11,
and noted that there does not appear to be any other prime for which the
partition function has equally simple congruences. Ahlgren and Boylan [I]
build on the work of Kiming and Olsson [5] to prove that there truly are no

other such primes. For large enough primes [, Sinick [7] and the author [3]
prove the non-existence of simple congruences

a(ln+¢) =0 mod
for wide classes of functions a(n) related to the coefficients of modular forms.
However, all of the modular forms studied in [I], [7] and [3] are non-vanishing
on the upper half-plane. Here we prove the non-existence of simple congru-
ences (when [ is large enough) for ratios of Eisenstein series.
Let oy (n) := 3, d™ and define the Bernoulli numbers By, by t/(et — 1)
= Y22, BitF /k!. For even k > 2, set

Note that Fy = E4 = Eg = 1 modulo 2 and 3. Berndt and Yee [2] prove
congruences for the quotients of Eisenstein series in Table (1} where F(q) :=
> a(n)q™. An obviously necessary requirement for the congruences in the
n = 2 mod 3 column of Table [1]is that there are simple congruences of the
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Table 1. Congruences of Berndt and Yee [2]

F(q) n =2 mod 3 n =4 mod 8
1/E;  a(n) =0 mod 3*
1/E;  a(n) =0 mod 32
1/Es  a(n) =0mod 3* a(n) =0 mod 7>
E2/Es a(n) =0mod 3*
F2/Es a(n)=0mod 3> a(n)=0mod 7?
Es/Es a(n) =0mod 3*
E2/Es a(n)=0mod 3°

form a(3n + 2) = 0 mod 3. All but the first form in Table [1| are covered by
the following theorem.

THEOREM 1.1. Let r > 0 and s,t € Z. If ESESEL = Y a(n)q™ has
a simple congruence a(ln 4+ ¢) = 0 mod [ for the prime [, then either | <
2r + 8|s| + 12|t| +21 orr =s =1t =0.

This theorem gives an explicit upper bound on primes [ for which there
can be congruences of the form a(In-+c) = 0 mod I* as in the middle column
of Table [1l

REMARK 1.2. See Remark for a slight improvement of Theorem
in some cases.

EXAMPLE 1.3. The form FEg/ EiQ can only have simple congruences for
[ <129. Of these, the primes [ = 2 and 3 are trivial with £y = Fg = 1 mod [.
For the remaining primes, the only congruences are

a(ln 4+ ¢) =0mod 17,  where <1C7> =-1.

Mahlburg [6] shows that for each of the forms in Table |1 except 1/Es,
there are infinitely many primes [ such that for any ¢ > 1, the set of n with
a(n) = 0 mod I’ has arithmetic density 1. On the other hand, our result
shows that (for large enough [) every arithmetic progression modulo [ has
at least one non-vanishing coefficient modulo .

Section 2 recalls certain definitions and tools from the theory of modular
forms. Simple congruences are reinterpreted in terms of Tate cycles, which
are reviewed in Section 3. Section 4 proves Theorem [I.1

2. Preliminaries. A modular form of weight £ € Z on SLy(Z) is a
holomorphic function f : H — C which satisfies

P(250) = er v atsn
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for every (¢%) € SLy(Z), and which is holomorphic at infinity. Modular
forms have Fourier expansions in powers of ¢ = ¢2™". For any prime [ > 5,
let Zgy = {a/b € Q : 1 { b}. We denote by My the set of all weight k
modular forms on SLy(Z) with [-integral Fourier coefficients. Although Ej,
is a modular form of weight k whenever k > 4, F5 is called a quasi-modular
form since it satisfies the slightly different transformation rule

By (Z:i;) = (er + P By(r) — (er +d).

DEFINITION 2.1. If [ is a prime, then a Laurent series f =} - v a(n)q"
€ Z((g)) has a simple congruence at ¢ mod [ if a(in + ¢) = 0 mod [ for
all n.

LEMMA 2.2. Suppose that | is prime and that f = > a(n)q™ and g =
> b(n)q" € Zyy((q)) with g # 0 mod . The series f has a simple congruence

at ¢ mod [ if and only if the series fg' has a simple congruence at ¢ mod I.

Proof. It suffices to consider the reductions mod [ of the series
(Z a(n)q”) (Z b(n)ql”) = Z <Z b(m)a(n — lm))q” mod [.

If a(n) vanishes when n = ¢ mod [, then the inner sum on the right hand
side will also vanish for n = ¢ mod [. The converse follows via multiplication
by (32 b(n)g")~" and repetition of this argument. =

Our main tool is Ramanujan’s @ operator
1 d _d
T omidr Ydg
For any prime [ and any Laurent series f = > a(n)q" € Zq)((q)), by Fer-
mat’s Little Theorem

o'f = Za(n)nlq” = Za(n)nq" = O f mod [.

We call the sequence Of,...,0 f mod ! the Tate cycle of f. Note that
O'=1f = f mod [ is equivalent to f having a simple congruence at 0 mod .
We now recall some facts about the reductions of modular forms mod [.

See Swinnerton-Dyer [8, Section 3] for the details on this paragraph. There
are polynomials A(Q, R), B(Q, R) € Z)[Q, R] such that

A(Ey, Es) = Ej_1, B(Ey, Eg) = Epq1.

Reduce the coeflicients of these polynomials modulo [ to get A B € F[Q, R].
Then the polynomial A has no repeated factor and is prime to B. Further-
more, the Fj-algebra of reduced modular forms is naturally isomorphic to
]Fl [Qa R]

A-1

(2.1)



36 M. Dewar

via Q — FE4 and R — Fg. Whenever a power series f is congruent to a
modular form, define the filtration of f by
w(f):=inf{k: f =g € My mod [}.
If f € Mj, then for some g € My y;41, ©Of = g mod . The next lemma also
follows from [8, Section 3.
LEMMA 2.3. Letl > 5 be prime, f € My,, f Z0mod ! and g € M, .
(1) If f =g mod, then k1 = ko mod [ — 1.
(2) w(Of) <w(f)+ 1+ 1 with equality if and only if w(f) #Z 0 mod I.
(3) If w(f) = 0mod I, then for some s > 1, w(Of) =w(f)+ (+1) —
(4) w(f*) = iw(f).
The natural grading induced by ({2.1]) provides a key step in the following
lemma which is taken from the proof of [, Proposition 2].

LEMMA 2.4. A form f € My with ©f £ 0 mod [ has a simple congruence
at ¢ 2 0 mod I if and only if @U+1/2f = —($)©f mod L.

Proof. Since © satisfies the product rule, we have

-1 -1
[—1 , . . -
o qgf) = g < , )(—c)lllqc@lf mod [ = E d71g°O f mod

: 1 ;
=0 =0

-1
cl—lq—Cf + Z Cl—l—iq—ceif mod .
i=1

A simple congruence for f at ¢ Z 0 mod [ is equivalent to a simple con-
gruence for ¢~¢f at 0 mod I, which in turn is equivalent to O/~ 1(¢=¢f) =
q—¢f mod [. This is equivalent to 0 = Zi;% d=17=¢O! f mod I, by the com-
putation above, and hence to 0 = Zi;i =170 f mod I. By Lemma [2.3(2)
and (3), for 1 <4 < (I —1)/2 we have

w(@'f) = w(@ D2y = u(f) + 2 mod I — 1.

By Lemma [2.3|1) and the natural grading (filtration modulo [ —1), the only
way for the given sum to be zero is if for all 1 < i < (I — 1)/2 we have

d=1-igif 4 lelf(i+(lfl)/2)@i+(lfl)/2f =0 mod I,
which happens if and only if
@i+(l—1)/2f = _C(l—l)/QQif = _ <;> Qlf mod l,
which happens if and only if
eWl2r = _ <(l:> Of modl. u
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LEMMA 2.5. Let a,b,c > 0 be integers and let | > 11 be prime. Then

w(E, | EYES) = al 4+ a + 4b + 6c.

Proof. Since El‘:_lEbE6 € Myi1atabiee, it suffices to show that A(Q R)

does not divide B(Q, R)*QVR¢. However A has no repeated factors and is
prime to B and so it suffices to show that A does not divide QR. But QR
has weight 10 and E;_; has weight [ — 1 > 10 so this is impossible. »

3. The structure of Tate cycles. The framework we use below follows
Jochnowitz [4]. Let f € M}, be such that @ f # 0 mod [. Recall from Section 2]
that the Tate cycle of f is the sequence Of,...,0"1f mod l. With s > 1
as in (3) of Lemma we have

©+17) {w(@if)+1m0dl if w(O'f) £ 0mod I,
w = ,
s+ 1modl if w(O'f) =0 mod I.

In particular, when w(©'f) = 0 mod I, the quantity s which determines
the change in filtration also controls the time until the next occurrence
of w(@'f) = 0mod I. We say that ©'f is a high point of the Tate cycle
and Ol f is a low point of the Tate cycle whenever w(©f) = 0 mod I.
Elementary considerations (see, for example, [4, Section 7] or [3, Section 3])
yield

LEMMA 3.1. Let f € My with ©f % 0 mod .

(1) If the Tate cycle has only one low point, then the low point has
filtration 2 mod [.
(2) The Tate cycle has one or two low points.

LEMMA 3.2. Suppose f € My has a simple congruence at ¢ % 0 mod [,
where I > 5 is prime, and O f # 0 mod l. Then the Tate cycle of f has two
low points. Furthermore, if ©'f is a high point, then

WO ) =w(@ f) + (I +1) - <l;1>(l -1 = lzg mod I.

Proof. By Lemma w(Of) = w(@+N/2f) Hence, the filtration is
not monotonically increasing between @ f and ©U+1)/2f 5o there must be
a fall in filtration (and hence a low point) somewhere in the first half of the
Tate cycle. We also have w(@Ut)/2f) = w(Of) = w(O'f) and so by the
same reasoning there must be a low point somewhere in the second half of
the Tate cycle. By Lemma there are exactly two low points in the Tate
cycle. Lemma [2.3|(2) and (3) give

w(6f) =w(@ 2 —won + (15 )a+ ) -sa-1)
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for some s > 1. Hence s = (I + 1)/2. By the same reasoning, the fall in
filtration for the second half of the Tate cycle must also have s = (I +1)/2.
The lemma follows. m

The proof of Theorem [1.1]uses the above lemma to determine how far the
filtration falls, and the bounds of the next lemma to show a corresponding
restriction on /.

LEMMA 3.3. Let I > 5 be prime and suppose f € My has a simple
congruence at ¢ Z0mod l. If w(f) = Al+ B where 1 < B <1 —1, then

Proof. Since B # 0, w(Of) = (A+ 1)l + (B + 1). From the proof of
Lemma the Tate cycle has a high point before ©U+1/2f By Lemma
the high point is ©'f with 1 < ¢ < (I — 1)/2. Hence we have

w(@'f) = Al+B+i(l+1)=B+i=0mod L

Together with the restrictions on B and 4, this congruence implies that
B+i=1and B > (I+1)/2. Also, by Lemma the high point has
filtration

wO B =w(f)+(U-B)(I+1)=(A+1—-B+1)L

Lemma [3.2] implies that the corresponding low point has filtration
143 [+3
w(O' P ) = (A— B+ —; )l + <; )

The fact that w(6'~B+1 ) > 0 implies the second inequality. =

If ©f = 0 mod [, then the Tate cycle is trivial and the above lemmas are
not applicable. We dispense with this case now.

LEMMA 3.4. Let f = ESE;EL where r > 0 and s,t € Z. If | is a prime
such that ©f = 0mod I, then either | <13 orr=s=1t =0 mod .

EXAMPLE 3.5. We have O(E,Fg) = 0 mod [ for [ = 2,3, 11.
EXAMPLE 3.6. We have 9(E%44E215E(;14) =0mod ! for 1=2,3,5,7,13.

Note that @f = 0 mod [ is equivalent to f having simple congruences at
all ¢ # 0 mod [.

Proof of Lemma[3.f} Assume [ > 17 and expand f as a power series to
get

f =1+ (=24r + 2405 — 504t)q
+ (28872 — 5760rs + 120961t — 360r + 28800s°
— 1209605t — 266405 + 127008t — 143640t)q> + - - - .
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If ©f = 0 mod [, then the coefficients of ¢ and ¢? vanish modulo I. That is,
(3.1) — 24r 4 240s — 504t = 0 mod [,

and

(3.2)  288r% — 5760rs + 120967t — 3607 + 28800s>
— 1209605t — 266405 + 127008t> — 143640t = 0 mod 1.
Furthermore, by Lemmas [2.3|2) and 2.5 and the fact that E» = Ej4q mod [,

we have

(3.3) w(E[ 1 E{ES) =1+ 4s + 6t = 0 mod L.

Solving the system of congruences given by and yields
(3.4) Tr = —72t mod [,

(3.5) 14s = 15t mod [.

Substituting (3.4)) and (3.5)) into 49 times (3.2 yields
—8255520t = 0 mod .

Since 8255520 = 2° - 3% . 5. 72 .13, the lemma follows. m

4. Proof of Theorem We begin with the trivial observation that
E}ESEE = 1+ -+ does not have a simple congruence at 0 mod . Hence,
we assume that E5F;E} has a simple congruence at ¢ # 0 mod [, where
I > 5. Since Fy = Fj11 mod [, E{+1EjEé has a simple congruence at ¢ mod .
Recall that our goal is to show [ < 2r + 8|s| + 12|t| + 21. Hence, if [ < |s]
or [ < |t| then we are done. Thus we assume [ + s > 0 and [ +¢ > 0. We
also assume [ > 11. Lemma allows us to take O(ESE;EL) # 0 mod |

(otherwise we are done). By Lemma [2.2| we see that

ElTHEfSEéH € My 1101+ (r+4s+6t)
has a simple congruence at ¢ mod . We work with this multiplied form
E{+1Efl+sEé+t because it is holomorphic (with positive weight) and so our
filtration apparatus is applicable. By Lemma
(4.1) w(E} By BT = (r +10) + (r + 45 + 6t).
We break into four cases depending on the size of r + 4s + 6t:
(1) If I < |r 4 4s + 6t| then we are done.
(2) If 0 < r 4+ 4s + 6t < [ then by equation (4.1)) and the first inequality
of Lemma [3.3] (I +1)/2 < r +4s + 6t and we are done.
(3) If r + 4s + 6t = 0, then by Lemma
w(OFE]  EF B = (r+11)1+1-5'(1-1)
for some s’ > 1. If | < r + 13 then we are done, so it suffices to consider
I > r+13. Now in order for the filtration above to be non-negative, we must
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have s’ < r + 11. Now w(@E{HEfﬁsEé’Lt) = s’ + 1 mod [. By Lemma
there must be a high point of the Tate cycle before Q(HI)/QE[HEESEéH.

Let ¢ be the index of the first high point, so 1 <i < (I —1)/2. Then
w(O'Ef EXSEM) =5/ +i=0mod [
Together with the restrictions on ¢ and s’ (namely s’ <r+11 <r+13 <),
this congruence implies that
[+1
5
That is, | < 2s’ — 1 < 2r + 21 and we are done.
(4) If =l <r+4s+6t <0, then take B =1+41r+4s+ 6t and A =r+09.
Equation (4.1)) and the second inequality of Lemma give

1+3
l+r+4s+6t§r+9+%,

which is equivalent to [ < 21 — 8s — 12t and we are done. =

s>

REMARK 4.1. Combining these four cases and recalling that the proof
assumed [+ s> 0,1+t >0 and [ > 11, we see that if r 4+ 4s + 6t > 0, then

I <max{|s| — 1,[t| — 1,11,2r + 8s + 12t — 1},
and if r 4+ 4s + 6t < 0, then
I <max{|s| — 1, [t| — 1,11,21 — 8s — 12¢}.
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