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On the non-existence of simple congruences
for quotients of Eisenstein series
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Michael Dewar (Kingston, Ont.)

1. Introduction. Define p(n) to be the number of ways of writing n as
a sum of non-increasing positive integers. Ramanujan famously established
the congruences

p(5n+ 4) ≡ 0 mod 5,
p(7n+ 5) ≡ 0 mod 7,
p(11n+ 6) ≡ 0 mod 11,

and noted that there does not appear to be any other prime for which the
partition function has equally simple congruences. Ahlgren and Boylan [1]
build on the work of Kiming and Olsson [5] to prove that there truly are no
other such primes. For large enough primes l, Sinick [7] and the author [3]
prove the non-existence of simple congruences

a(ln+ c) ≡ 0 mod l

for wide classes of functions a(n) related to the coefficients of modular forms.
However, all of the modular forms studied in [1], [7] and [3] are non-vanishing
on the upper half-plane. Here we prove the non-existence of simple congru-
ences (when l is large enough) for ratios of Eisenstein series.

Let σm(n) :=
∑

d|n d
m and define the Bernoulli numbers Bk by t/(et − 1)

=
∑∞

k=0Bkt
k/k!. For even k ≥ 2, set

Ek(τ) := 1− 2k
Bk

∞∑
n=1

σk−1(n)qn.

Note that E2 ≡ E4 ≡ E6 ≡ 1 modulo 2 and 3. Berndt and Yee [2] prove
congruences for the quotients of Eisenstein series in Table 1, where F (q) :=∑
a(n)qn. An obviously necessary requirement for the congruences in the

n ≡ 2 mod 3 column of Table 1 is that there are simple congruences of the
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Table 1. Congruences of Berndt and Yee [2]

F (q) n ≡ 2 mod 3 n ≡ 4 mod 8

1/E2 a(n) ≡ 0 mod 34

1/E4 a(n) ≡ 0 mod 32

1/E6 a(n) ≡ 0 mod 33 a(n) ≡ 0 mod 72

E2/E4 a(n) ≡ 0 mod 33

E2/E6 a(n) ≡ 0 mod 32 a(n) ≡ 0 mod 72

E4/E6 a(n) ≡ 0 mod 33

E2
2/E6 a(n) ≡ 0 mod 35

form a(3n+ 2) ≡ 0 mod 3. All but the first form in Table 1 are covered by
the following theorem.

Theorem 1.1. Let r ≥ 0 and s, t ∈ Z. If Er2E
s
4E

t
6 =

∑
a(n)qn has

a simple congruence a(ln + c) ≡ 0 mod l for the prime l, then either l ≤
2r + 8|s|+ 12|t|+ 21 or r = s = t = 0.

This theorem gives an explicit upper bound on primes l for which there
can be congruences of the form a(ln+c) ≡ 0 mod lk as in the middle column
of Table 1.

Remark 1.2. See Remark 4.1 for a slight improvement of Theorem 1.1
in some cases.

Example 1.3. The form E6/E
12
4 can only have simple congruences for

l ≤ 129. Of these, the primes l = 2 and 3 are trivial with E4 ≡ E6 ≡ 1 mod l.
For the remaining primes, the only congruences are

a(ln+ c) ≡ 0 mod 17, where
(
c

17

)
= −1.

Mahlburg [6] shows that for each of the forms in Table 1 except 1/E2,
there are infinitely many primes l such that for any i ≥ 1, the set of n with
a(n) ≡ 0 mod li has arithmetic density 1. On the other hand, our result
shows that (for large enough l) every arithmetic progression modulo l has
at least one non-vanishing coefficient modulo l.

Section 2 recalls certain definitions and tools from the theory of modular
forms. Simple congruences are reinterpreted in terms of Tate cycles, which
are reviewed in Section 3. Section 4 proves Theorem 1.1.

2. Preliminaries. A modular form of weight k ∈ Z on SL2(Z) is a
holomorphic function f : H→ C which satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)
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for every
(
a b
c d

)
∈ SL2(Z), and which is holomorphic at infinity. Modular

forms have Fourier expansions in powers of q = e2πiτ . For any prime l ≥ 5,
let Z(l) = {a/b ∈ Q : l - b}. We denote by Mk the set of all weight k
modular forms on SL2(Z) with l-integral Fourier coefficients. Although Ek
is a modular form of weight k whenever k ≥ 4, E2 is called a quasi-modular
form since it satisfies the slightly different transformation rule

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6ic

π
(cτ + d).

Definition 2.1. If l is a prime, then a Laurent series f =
∑

n≥N a(n)qn

∈ Z(l)((q)) has a simple congruence at c mod l if a(ln + c) ≡ 0 mod l for
all n.

Lemma 2.2. Suppose that l is prime and that f =
∑
a(n)qn and g =∑

b(n)qn ∈ Z(l)((q)) with g 6≡ 0 mod l. The series f has a simple congruence
at c mod l if and only if the series fgl has a simple congruence at c mod l.

Proof. It suffices to consider the reductions mod l of the series(∑
a(n)qn

)(∑
b(n)qln

)
≡
∑
n

(∑
m

b(m)a(n− lm)
)
qn mod l.

If a(n) vanishes when n ≡ c mod l, then the inner sum on the right hand
side will also vanish for n ≡ c mod l. The converse follows via multiplication
by (

∑
b(n)qn)−l and repetition of this argument.

Our main tool is Ramanujan’s Θ operator

Θ :=
1

2πi
d

dτ
= q

d

dq
.

For any prime l and any Laurent series f =
∑
a(n)qn ∈ Z(l)((q)), by Fer-

mat’s Little Theorem

Θlf =
∑

a(n)nlqn ≡
∑

a(n)nqn = Θf mod l.

We call the sequence Θf, . . . , Θlf mod l the Tate cycle of f . Note that
Θl−1f ≡ f mod l is equivalent to f having a simple congruence at 0 mod l.

We now recall some facts about the reductions of modular forms mod l.
See Swinnerton-Dyer [8, Section 3] for the details on this paragraph. There
are polynomials A(Q,R), B(Q,R) ∈ Z(l)[Q,R] such that

A(E4, E6) = El−1, B(E4, E6) = El+1.

Reduce the coefficients of these polynomials modulo l to get Ã, B̃ ∈ Fl[Q,R].
Then the polynomial Ã has no repeated factor and is prime to B̃. Further-
more, the Fl-algebra of reduced modular forms is naturally isomorphic to

Fl[Q,R]
Ã− 1

(2.1)
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via Q → E4 and R → E6. Whenever a power series f is congruent to a
modular form, define the filtration of f by

ω(f) := inf{k : f ≡ g ∈Mk mod l}.
If f ∈ Mk, then for some g ∈ Mk+l+1, Θf ≡ g mod l. The next lemma also
follows from [8, Section 3].

Lemma 2.3. Let l ≥ 5 be prime, f ∈Mk1, f 6≡ 0 mod l and g ∈Mk2.

(1) If f ≡ g mod l, then k1 ≡ k2 mod l − 1.
(2) ω(Θf) ≤ ω(f) + l + 1 with equality if and only if ω(f) 6≡ 0 mod l.
(3) If ω(f) ≡ 0 mod l, then for some s ≥ 1, ω(Θf) = ω(f) + (l + 1) −

s(l − 1).
(4) ω(f i) = iω(f).

The natural grading induced by (2.1) provides a key step in the following
lemma which is taken from the proof of [5, Proposition 2].

Lemma 2.4. A form f ∈Mk with Θf 6≡ 0 mod l has a simple congruence
at c 6≡ 0 mod l if and only if Θ(l+1)/2f ≡ −

(
c
l

)
Θf mod l.

Proof. Since Θ satisfies the product rule, we have

Θl−1(q−cf) ≡
l−1∑
i=0

(
l − 1
i

)
(−c)l−1−iq−cΘif mod l ≡

l−1∑
i=0

cl−1−iq−cΘif mod l

≡ cl−1q−cf +
l−1∑
i=1

cl−1−iq−cΘif mod l.

A simple congruence for f at c 6≡ 0 mod l is equivalent to a simple con-
gruence for q−cf at 0 mod l, which in turn is equivalent to Θl−1(q−cf) ≡
q−cf mod l. This is equivalent to 0 ≡

∑l−1
i=1 c

l−1−iq−cΘif mod l, by the com-
putation above, and hence to 0 ≡

∑l−1
i=1 c

l−1−iΘif mod l. By Lemma 2.3(2)
and (3), for 1 ≤ i ≤ (l − 1)/2 we have

ω(Θif) ≡ ω(Θi+(l−1)/2f) ≡ ω(f) + 2i mod l − 1.

By Lemma 2.3(1) and the natural grading (filtration modulo l−1), the only
way for the given sum to be zero is if for all 1 ≤ i ≤ (l − 1)/2 we have

cl−1−iΘif + cl−1−(i+(l−1)/2)Θi+(l−1)/2f ≡ 0 mod l,

which happens if and only if

Θi+(l−1)/2f ≡ −c(l−1)/2Θif ≡ −
(
c

l

)
Θif mod l,

which happens if and only if

Θ(l+1)/2f ≡ −
(
c

l

)
Θf mod l.
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Lemma 2.5. Let a, b, c ≥ 0 be integers and let l > 11 be prime. Then
ω(Eal+1E

b
4E

c
6) = al + a+ 4b+ 6c.

Proof. Since Eal+1E
b
4E

c
6 ∈ Mal+a+4b+6c, it suffices to show that Ã(Q,R)

does not divide B̃(Q,R)aQbRc. However Ã has no repeated factors and is
prime to B̃ and so it suffices to show that Ã does not divide QR. But QR
has weight 10 and El−1 has weight l − 1 > 10 so this is impossible.

3. The structure of Tate cycles. The framework we use below follows
Jochnowitz [4]. Let f ∈Mk be such thatΘf 6≡ 0 mod l. Recall from Section 2
that the Tate cycle of f is the sequence Θf, . . . , Θl−1f mod l. With s ≥ 1
as in (3) of Lemma 2.3, we have

ω(Θi+1f) ≡
{
ω(Θif) + 1 mod l if ω(Θif) 6≡ 0 mod l,
s+ 1 mod l if ω(Θif) ≡ 0 mod l.

In particular, when ω(Θif) ≡ 0 mod l, the quantity s which determines
the change in filtration also controls the time until the next occurrence
of ω(Θif) ≡ 0 mod l. We say that Θif is a high point of the Tate cycle
and Θi+1f is a low point of the Tate cycle whenever ω(Θif) ≡ 0 mod l.
Elementary considerations (see, for example, [4, Section 7] or [3, Section 3])
yield

Lemma 3.1. Let f ∈Mk with Θf 6≡ 0 mod l.

(1) If the Tate cycle has only one low point, then the low point has
filtration 2 mod l.

(2) The Tate cycle has one or two low points.

Lemma 3.2. Suppose f ∈ Mk has a simple congruence at c 6≡ 0 mod l,
where l ≥ 5 is prime, and Θf 6≡ 0 mod l. Then the Tate cycle of f has two
low points. Furthermore, if Θif is a high point, then

ω(Θi+1f) = ω(Θif) + (l + 1)−
(
l + 1

2

)
(l − 1) ≡ l + 3

2
mod l.

Proof. By Lemma 2.4, ω(Θf) = ω(Θ(l+1)/2f). Hence, the filtration is
not monotonically increasing between Θf and Θ(l+1)/2f , so there must be
a fall in filtration (and hence a low point) somewhere in the first half of the
Tate cycle. We also have ω(Θ(l+1)/2f) = ω(Θf) = ω(Θlf) and so by the
same reasoning there must be a low point somewhere in the second half of
the Tate cycle. By Lemma 3.1, there are exactly two low points in the Tate
cycle. Lemma 2.3(2) and (3) give

ω(Θf) = ω(Θ(l+1)/2f) = ω(Θf) +
(
l − 1

2

)
(l + 1)− s(l − 1)
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for some s ≥ 1. Hence s = (l + 1)/2. By the same reasoning, the fall in
filtration for the second half of the Tate cycle must also have s = (l + 1)/2.
The lemma follows.

The proof of Theorem 1.1 uses the above lemma to determine how far the
filtration falls, and the bounds of the next lemma to show a corresponding
restriction on l.

Lemma 3.3. Let l ≥ 5 be prime and suppose f ∈ Mk has a simple
congruence at c 6≡ 0 mod l. If ω(f) = Al +B where 1 ≤ B ≤ l − 1, then

l + 1
2
≤ B ≤ A+

l + 3
2

.

Proof. Since B 6= 0, ω(Θf) = (A + 1)l + (B + 1). From the proof of
Lemma 3.2, the Tate cycle has a high point before Θ(l+1)/2f . By Lemma 3.2,
the high point is Θif with 1 ≤ i ≤ (l − 1)/2. Hence we have

ω(Θif) = Al +B + i(l + 1) ≡ B + i ≡ 0 mod l.

Together with the restrictions on B and i, this congruence implies that
B + i = l and B ≥ (l + 1)/2. Also, by Lemma 2.3 the high point has
filtration

ω(Θl−Bf) = ω(f) + (l −B)(l + 1) = (A+ l −B + 1)l.

Lemma 3.2 implies that the corresponding low point has filtration

ω(Θl−B+1f) =
(
A−B +

l + 3
2

)
l +
(
l + 3

2

)
.

The fact that ω(Θl−B+1f) ≥ 0 implies the second inequality.

If Θf ≡ 0 mod l, then the Tate cycle is trivial and the above lemmas are
not applicable. We dispense with this case now.

Lemma 3.4. Let f = Er2E
s
4E

t
6 where r ≥ 0 and s, t ∈ Z. If l is a prime

such that Θf ≡ 0 mod l, then either l ≤ 13 or r ≡ s ≡ t ≡ 0 mod l.

Example 3.5. We have Θ(E4E6) ≡ 0 mod l for l = 2, 3, 11.

Example 3.6. We have Θ(E144
2 E−15

4 E−14
6 )≡0 mod l for l=2, 3, 5, 7, 13.

Note that Θf ≡ 0 mod l is equivalent to f having simple congruences at
all c 6≡ 0 mod l.

Proof of Lemma 3.4. Assume l ≥ 17 and expand f as a power series to
get

f = 1 + (−24r + 240s− 504t)q

+ (288r2 − 5760rs+ 12096rt− 360r + 28800s2

− 120960st− 26640s+ 127008t2 − 143640t)q2 + · · · .
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If Θf ≡ 0 mod l, then the coefficients of q and q2 vanish modulo l. That is,

(3.1) − 24r + 240s− 504t ≡ 0 mod l,

and

(3.2) 288r2 − 5760rs+ 12096rt− 360r + 28800s2

− 120960st− 26640s+ 127008t2 − 143640t ≡ 0 mod l.

Furthermore, by Lemmas 2.3(2) and 2.5 and the fact that E2 ≡ El+1 mod l,
we have

ω(Erl+1E
s
4E

t
6) ≡ r + 4s+ 6t ≡ 0 mod l.(3.3)

Solving the system of congruences given by (3.3) and (3.1) yields

7r ≡ −72t mod l,(3.4)
14s ≡ 15t mod l.(3.5)

Substituting (3.4) and (3.5) into 49 times (3.2) yields

−8255520t ≡ 0 mod l.

Since 8255520 = 25 · 34 · 5 · 72 · 13, the lemma follows.

4. Proof of Theorem 1.1. We begin with the trivial observation that
Er2E

s
4E

t
6 = 1 + · · · does not have a simple congruence at 0 mod l. Hence,

we assume that Er2E
s
4E

t
6 has a simple congruence at c 6≡ 0 mod l, where

l ≥ 5. Since E2 ≡ El+1 mod l, Erl+1E
s
4E

t
6 has a simple congruence at c mod l.

Recall that our goal is to show l ≤ 2r + 8|s| + 12|t| + 21. Hence, if l < |s|
or l < |t| then we are done. Thus we assume l + s ≥ 0 and l + t ≥ 0. We
also assume l > 11. Lemma 3.4 allows us to take Θ(Er2E

s
4E

t
6) 6≡ 0 mod l

(otherwise we are done). By Lemma 2.2 we see that

Erl+1E
l+s
4 El+t6 ∈M(r+10)l+(r+4s+6t)

has a simple congruence at c mod l. We work with this multiplied form
Erl+1E

l+s
4 El+t6 because it is holomorphic (with positive weight) and so our

filtration apparatus is applicable. By Lemma 2.5,

ω(Erl+1E
l+s
4 El+t6 ) = (r + 10)l + (r + 4s+ 6t).(4.1)

We break into four cases depending on the size of r + 4s+ 6t:

(1) If l ≤ |r + 4s+ 6t| then we are done.
(2) If 0 < r + 4s+ 6t < l then by equation (4.1) and the first inequality

of Lemma 3.3, (l + 1)/2 ≤ r + 4s+ 6t and we are done.
(3) If r + 4s+ 6t = 0, then by Lemma 2.3,

ω(ΘErl+1E
l+s
4 El+t6 ) = (r + 11)l + 1− s′(l − 1)

for some s′ ≥ 1. If l ≤ r + 13 then we are done, so it suffices to consider
l > r+13. Now in order for the filtration above to be non-negative, we must
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have s′ ≤ r + 11. Now ω(ΘErl+1E
l+s
4 El+t6 ) ≡ s′ + 1 mod l. By Lemma 2.4,

there must be a high point of the Tate cycle before Θ(l+1)/2Erl+1E
l+s
4 El+t6 .

Let i be the index of the first high point, so 1 ≤ i ≤ (l − 1)/2. Then

ω(ΘiErl+1E
l+s
4 El+t6 ) ≡ s′ + i ≡ 0 mod l.

Together with the restrictions on i and s′ (namely s′ ≤ r+ 11 < r+ 13 < l),
this congruence implies that

s′ ≥ l + 1
2

.

That is, l ≤ 2s′ − 1 ≤ 2r + 21 and we are done.
(4) If −l < r+ 4s+ 6t < 0, then take B = l+ r+ 4s+ 6t and A = r+ 9.

Equation (4.1) and the second inequality of Lemma 3.3 give

l + r + 4s+ 6t ≤ r + 9 +
l + 3

2
,

which is equivalent to l ≤ 21− 8s− 12t and we are done.

Remark 4.1. Combining these four cases and recalling that the proof
assumed l+ s ≥ 0, l+ t ≥ 0 and l > 11, we see that if r + 4s+ 6t > 0, then

l ≤ max{|s| − 1, |t| − 1, 11, 2r + 8s+ 12t− 1},
and if r + 4s+ 6t ≤ 0, then

l ≤ max{|s| − 1, |t| − 1, 11, 21− 8s− 12t}.
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