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1. Introduction. Let χ be a primitive character modulo q. In [5], the
set W (χ) of Dirichlet series F (s):=

∑∞
n=1a(n)n−s satisfying the following

axioms has been introduced:

(i) the coefficients a(n) satisfy the bound a(n) �ε n
ε for every ε > 0

and (s− 1)mF (s) admits a continuation to C as an entire function
of finite order for some integer m ≥ 0;

(ii) logF (s) is a Dirichlet series whose coefficients b(n) are supported on
prime powers, and satisfy the bound b(n)� nθ for some θ < 1/2;

(iii) F (s) satisfies the functional equation

(1)
(
q

π

)s/2
Γ
(
s+ a(χ)

2

)
F (s)

=
τ(χ)
ia(χ)√q

(
q

π

)(1−s)/2
Γ
(

1− s+ a(χ)
2

)
F (1− s),

where a(χ) := (1−χ(−1))/2 and τ(χ) are the parity and the Gauss
sum of χ, respectively.

The characterization of the set W (χ) has been the subject of intensive
research, with fundamental contributions by Bochner [2], Vignéras [15],
Gérardin & Li [4], Piatetski-Shapiro & Raghunathan [13] and Kaczorowski
& Perelli [6]. These authors all prove, with different technics and different
generality, that W (χ) coincides with the set of Dirichlet L-functions L(s, ψ)
associated with characters ψ with a(ψ) = a(χ) and τ(ψ) = τ(χ). According
to the definition we will introduce below, this means that W (χ) coincides
with the set of Dirichlet L-functions which are associated with characters
having the same signature of χ. The set of conductors q for which L(s, χ) is
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the unique solution in W (χ) of (1) has been completely determined in [5]
and coincides essentially with the set of squarefree integers (some repeated
factors are allowed at primes 2 and 3). Thus, for non-squarefree conductors
the computation of |W (χ)| is a non-trivial problem and the present paper
accomplishes this task for integers which are either an odd prime power, or
whose prime factors have the following property:

(∗) (pϕ(p), p′ϕ(p′)) = 2 for any distinct primes p, p′ dividing q.

Such a strong requirement comes from the fact that it allows us to decom-
pose the problem for composite q into a collection of simpler subproblems
for prime power conductors, which is the case to which our approach is par-
ticularly well tuned. Hence, the motivation for (∗) is essentially technical,
nevertheless at present we do not see how to relax it and probably a new
idea is needed to solve the problem in greater generality.

We now give a quick overview of our results. In Theorem 1 we find
formulæ for the cardinality of W (χ) and of the analogous set T (χ) := {ψ :
τ(ψ) = τ(χ)}, in terms of some parameters associated with the character χ,
when q is an odd prime power. With a bit of extra work (Propositions 3–4)
these parameters become explicitly and easily computable. Theorems 5 and 6
contain similar results for composite integers satisfying (∗).

Theorem 3 (for prime powers) and Theorem 7 (for numbers satisfy-
ing (∗)) compute the number of distinct values of the Gauss sum and the
number of distinct signatures; the latter number is quite interesting since
it counts the functional equations of type (1) and conductor q having non-
trivial solutions. By the work of Kaczorowski & Perelli [6] this set coincides
with the set of admissible functional equations of degree 1 and conductor q
in the Selberg class.

Also some qualitative information is deduced, for example that for the
integers considered here |W (χ)| = Oε(q1/2+ε), and that this bound is essen-
tially optimal since |W (χ)| � √q for suitably chosen characters χ modulo q
and infinitely many integers q. The smallest value of |W (χ)| is also of in-
terest. Apart from the prime p = 3 which in this respect is exceptional, for
the other odd primes we find that W (χ) ≥ 2 whenever q = pk with k ≥ 4,
with 2 as the most probable value for W (χ) in a statistical sense which is
explained in Proposition 5. This means that for a generic character χ mod-
ulo pk (p odd, k ≥ 4) its functional equation (1) has a large probability to
have exactly two solutions. On the contrary, when the conductor is of the
form pk with k ≤ 3 there are still characters χ for which |W (χ)| = 1, i.e.,
functional equations of type (1) having a unique solution. These characters
can be determined and enumerated explicitly.

In this paper only odd primes are considered. In fact, the analogous
problem for q = 2k can be tackled along similar lines and produces similar
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conclusions, but the different structure of the group Z∗
2k

is reflected in several
technical differences, and we prefer to leave the presentation of those results
to a separate paper [10].

The paper is organized as follows: in Section 2 we recall some facts to fix
our notation and we give the definitions of some new objects; in Section 3
we prove our main results and several consequences for odd prime powers;
and in Section 4 we prove results for composite conductors.

2. Definitions and preliminary facts

2.1. Gauss sums. Given an integer q, a character χ modulo q and a
primitive qth root ζq of unity, the Gauss sum τ(χ, ζq) is defined as τ(χ, ζq) :=∑q

n=1 χ(n)ζnq . It depends not only on the character χ but also on the root
ζq according to the relation

χ(b)τ(χ, ζbq) = τ(χ, ζq) ∀b : (b, q) = 1.

For convenience, we denote by τ(χ) the Gauss sum τ(χ, e(1/q)). The Gauss
sum is a multiplicative map when considered as a function of both χ and ζ;
in fact, let q1 and q2 be coprime integers, χ1, χ2 be primitive characters
modulo q1, q2 respectively, and ζq1 , ζq2 be primitive roots of unity of order
q1 and q2, respectively. Then τ(χ1χ2, ζq1ζq2) = τ(χ1, ζq1)τ(χ2, ζq2). Explicit
formulæ for Gauss sums modulo squarefull prime powers have been found
by Odoni [12] for odd primes and extended to the prime 2 by Funakura [3];
an alternative proof has been given by Mauclaire [8, 9] (see also [1]).

2.2. Groups Z∗
pk

, p odd prime. The group Z∗
pk

is cyclic. Let Uk :=

{x ∈ Z∗
pk

: xp−1 = 1} and Vk := {x ∈ Z∗
pk

: xp
k−1

= 1}. Then |Uk| = p − 1,
|Vk| = pk−1 and Z∗

pk
is the direct product of Uk and Vk. The map Uk → Z∗p

associating with x ∈ Uk its class modulo p is a group isomorphism, thus for
every integer z the congruence x = z (mod p) has a solution x ∈ Uk if and
only if p - z and in this case the solution is unique. Let g be a primitive root
modulo pk. Each character χ modulo pk is determined by the integer αχ,
unique modulo ϕ(pk), such that χ(g) = e(αχ/ϕ(pk)), and χ is even if and
only if αχ is even, and primitive if and only if p does not divide αχ. The
decomposition Z∗

pk
= Uk × Vk reflects in a decomposition of each character

χ of Z∗
pk

as the product of a character χU of Uk and a character χV of Vk.
According to this decomposition, χ is primitive if and only if among the
values of χV there are primitive pk−1th roots of unity, and χ is even if and
only if χU (−1) = 1.

2.3. Signatures. Let χ be a primitive character modulo q and let a(χ)
denote its parity. Let ζq be a primitive qth root of unity. The signature of
χ at ζq is the couple of data (a(χ), τ(χ, ζq)) and we denote it by s(χ; ζq);
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s(χ) abbreviates s(χ; e(1/q)). By abuse of notation, we denote by W (χ)
also the set {ψ : s(ψ) = s(χ)}; analogously, we denote by T (χ) the set
{ψ : τ(ψ) = τ(χ)}.

2.4. Three arithmetical functions. We denote by Ψ the multiplica-
tive function whose values at a prime power pk with k > 0 are defined as
follows:

Ψ(pk) :=


1 if k ∈ {1, 2},
2 · 3k−3 if k ≥ 3 and p = 3,

1 +
pk−1 − pδ

2(p+ 1)
if k ≥ 3 and p ≥ 5, with δ ∈ {0, 1}

and δ + k = 1 (mod 2).
The values of Ψ at the 2-powers are not defined since they will not be used
in this paper; conventionally we set them to 1. Moreover, we denote by
Φ the multiplicative function Φ(n) :=

∑
d|n dϕ(d) and by Φ∗ the function

Φ∗(n) :=
∑

d|n d
∗ϕ(d), where d∗ := d if d is even, d∗ := 2d if d is odd.

Writing n as 2Nm with m odd, we see that

Φ∗(n) =
∑
d|n

d∗ϕ(d) =
∑
d|n

dϕ(d) +
∑
d|n
d odd

dϕ(d)(2)

= (1 + Φ(2N ))Φ(m) = Φ∗(2N )Φ(m).

2.5. Invariants associated with a character. Let p be an odd prime,
and let k > 1. Let g be a primitive root modulo pk and let r be an integer
coprime to p such that gp−1 = 1+rp (mod p2). Let χ be a primitive character
modulo pk, with χ(g) = e(αχ/ϕ(pk)). The number αχ is coprime to p and
there exists a unique u ∈ Uk satisfying ur = −αχ (mod p). Both r and
αχ depend on g, but u is g-independent; we denote it by uχ and by dχ its
order in Uk. The number 1 + p generates Vk, hence there exists an integer
aχ (unique modulo pk−1) such that χ(1 + p) = e(−aχ/pk−1). The integer
r is determined only modulo p, but the integer (1 + p)p

k−2r is well defined
modulo pk with value 1 + rpk−1, and

e(−aχr/p) = χ((1 + p)p
k−2r) = χ(1 + rpk−1).

Moreover, the definition of r implies that gp
k−2(p−1) = 1 + rpk−1 (mod pk)

and we have

e(−aχr/p) = χ(1 + rpk−1) = χ(g(p−1)pk−2
) = e(αχ/p)

so that aχr = −αχ (mod p), proving that aχ = uχ (mod p). Hence, there
exists an integer z (unique modulo pk−2 and independent of g) such that
aχ = uχ(1+zp) (mod pk−1); we denote this integer by zχ. Finally, we remark
that the couple (uχ, zχ) uniquely determines the component χV of χ, because
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the couple determines aχ which gives the value of χ at the generator 1 + p
of Vk.

2.6. A special p-adic function. Let w be the p-adic function

w(z) :=
log(1 + zp)
log(1 + p)

.

The power series defining w(z) converges p-adically for every p-adic integer z.
In particular, for every such z we have (1 + p)w(z) = 1 + zp and

w′(z) =
p

(1 + pz) log(1 + p)
.

Moreover, let Cp be the p-adic integer

Cp :=
1− log(p/log(1 + p))

log(1 + p)
− 1
p
,

and finally for z ∈ Zp let z denote the p-adic function

z(z) :=
z − w(z)

p
− z(w(z)− Cp).

Reducing z(z) modulo p we get

(3) z(z) =
{ p−1

2 (z2 + z) (mod p) if p > 3,
2z + z2 + 2z3 (mod 3) if p = 3.

The function z inherits from w a representation as power series that con-
verges for every p-adic integer. A simple computation shows that

z′(z) = −w(z)− log(p/log(1 + p))
log(1 + p)

,

implying that z′(z) = 0 at the unique p-adic integer

(4) z0 :=
log(1 + p)− p

p2
.

Note that z0 = p−1
2 (mod p) for every p > 3, but z0 = 2 (mod 3) for

p = 3. Finally, we remark that z′′(z) = −w′(z) = −1 (mod p) and z′′′(z) =
−w′′(z) = 0 (mod p) for every p-adic integer z.

3. Main results. As we have anticipated in the Introduction, the main
theme of this paper is the study of the set W (χ) of characters having the
same signature as χ. This set is evidently strictly related with the set T (χ)
of characters having the same Gauss sum as χ, and for the moment we
concentrate on this second set. In Section 4 we shall see that there is a
procedure, based upon the multiplicativity of the Gauss sum, reducing the
problem for a composite q to a collage of similar results for the prime power
dividing q. Nevertheless, we shall see that in order to take advantage of
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this approach the problem must be generalized as follows: determine the
characters ψ for which τ(χ) = ϑτ(ψ) and ϑ ∈ {±1}, for every given character
χ modulo q when q is a prime power. The case ϑ = 1 corresponds to the
original problem, and the case ϑ = −1 is introduced only as a tool for
Section 4. Concluding, in this section q always denotes an odd prime power
pk and we study equalities of the form τ(χ) = ϑτ(ψ) with ϑ ∈ {±1}. The
next result shows that this equality admits only the trivial solution when q
itself is a prime. The statement of the proposition is slightly more general
than what we need here, because a generic root of unity ϑ is admitted; we
formulate it in the present form for a possible future reference.

Proposition 1. Let p be an odd prime and let χ, ψ be primitive charac-
ters modulo p. Let ζp be a primitive pth root of unity. Suppose that τ(χ, ζp) =
ϑτ(ψ, ζp) where ϑ is any root of unity. Then χ = ψ.

Proof. LetK0 andK be the cyclotomic fields Q[e(1/ϕ(p))] and Q[e(1/p),
e(1/ϕ(p))], respectively. For every a coprime to p there exists a Galois au-
tomorphism σa ∈ Gal(K/K0) such that σa(e(1/p)) = e(a/p), hence

σa(τ(χ, ζp)) = τ(χ, ζap ) = χ(a) τ(χ, ζp),

implying that

χ(a) =
τ(χ, ζp)

σa(τ(χ, ζp))
.

The equality ϑ = τ(χ, ζp)/τ(ψ, ζp) shows that ϑ ∈ K so that ϑ is a ϕ(p2)th
root of unity. Let ϑ = ϑp−1ϑp be the decomposition into a product of a
(p−1)th root and a pth root of unity. Then σa(ϑp−1) = ϑp−1 and σa(ϑp) = ϑap
so that

χ(a) =
τ(χ, ζp)

σa(τ(χ, ζp))
=

ϑp−1ϑpτ(ψ, ζp)
σa(ϑp−1ϑpτ(ψ, ζp))

(5)

=
ϑp
ϑap

τ(ψ, ζp)
σa(τ(ψ, ζp))

= ϑ1−a
p ψ(a).

Since χ/ψ is a character modulo p, the above identity implies that ϑ1−ab
p =

ϑ1−a
p ϑ1−b

p for every a, b ∈ Z∗p. This is impossible if ϑp 6= 1, hence ϑp = 1 and
χ = ψ by (5).

By Proposition 1 we can assume from now on that q is a squarefull prime
power so that we have at our disposal Odoni’s formula for the value of a
Gauss sum. We recall it in the form given by Funakura in [3].

Theorem (Odoni–Funakura). Let q = pk with p odd prime and k > 1.
Let χ be a primitive character modulo q. Then

τ(χ)
√
q

= εχχ(aχ)e(aχ(1 + pCp)/q)
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where

εχ :=


1 if k is even,(
aχ
p

)
i(1−p)/2 if k is odd.

Using this result we prove the following proposition characterizing the
characters χ, ψ modulo q having equal Gauss sums, in terms of their pa-
rameters uχ, uψ, zχ, zψ and of the function z.

Proposition 2. Let q = pk with p odd prime and k > 1, let χ, ψ be
primitive characters modulo pk, and let ϑ ∈ {±1}. Then

(6) τ(χ) = ϑτ(ψ) if and only if


(6.a) uχ = uψ =: u,
(6.b) χ(u) = ϑψ(u),
(6.c) z(zχ) = z(zψ) (mod pk−2),

where the last condition is significant only if k ≥ 3.

Proof. Assume that τ(χ) = ϑτ(ψ), so that

(7) εχχ(aχ)e(aχ(1 + pCp)/q) = ϑεψψ(aψ)e(aψ(1 + pCp)/q)

by Odoni’s result. Taking the ϕ(q)th power of this identity we deduce that

e(aχ(p− 1)/p) = e(aψ(p− 1)/p)

(because χ(aχ) and ψ(aψ) are ϕ(q)th roots of unity, ϑ2 = 1 and ε2
χ = ε2

ψ),
thus aχ = aψ (mod p) implying uχ = uψ, which is (6.a). Let u denote this
common value. The Legendre symbol

( ·
p

)
depends only on the class modulo

p so that
(
aχ
p

)
=
(
u
p

)
=
(
aψ
p

)
and, under (6.a), the equality in (7) can be

written as

χ(aχ)e(aχ(1 + pCp)/q) = ϑψ(aψ)e(aψ(1 + pCp)/q).

Introducing the parameters zχ and zψ, and using (6.a), the previous equality
becomes

(8) χ(u(1 + zχp))e(uzχp(1 + pCp)/q)
= ϑψ(u(1 + zψp))e(uzψp(1 + pCp)/q).

The pk−1th power of (8) gives

χ(u(1 + zχp))p
k−1

= ϑψ(u(1 + zψp))p
k−1

,

implying that χ(u) = ϑψ(u), because (1 + zχp)p
k−1

= 1 in Z∗q and u ∈
Uk implies that up = u. Hence also the second condition (6.b) is proved.
Under (6.a)–(6.b), equality (8) becomes

(9) χ(1 + zχp)e(uzχ(1 + pCp)/pk−1) = ψ(1 + zψp)e(uzψ(1 + pCp)/pk−1).

The p-adic map w gives (1 + p)w(z) = 1 + zp so that

χ(1 + zχp) = e(−aχw(zχ)/pk−1)
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and (9) becomes

−aχw(zχ) + uzχ(1 + pCp) = −aψw(zψ) + uzψ(1 + pCp) (mod pk−1).

Recalling that aχ = u(1 + zχp) and aψ = u(1 + zψp) (by (6.a)), we deduce
that uz(zχ) = uz(zψ) (mod pk−2), which is equivalent to (6.c) because u is
coprime to p. Each step in the previous argument can be reversed, so that
under conditions (6.a)–(6.c) we have τ(χ) = ϑτ(ψ).

In view of the previous result, for every given z′ we denote by nk(z′) the
number of solutions of the congruence

(10) z(z) = z(z′) (mod pk).

This definition does not apply when k = 0: for later use it is useful to set
n0(z′) = 1 for every z′.

Theorem 1. Let q := pk with p odd prime. Let χ be a primitive char-
acter modulo q. Recall that dχ is the order of uχ in Uk. Then |T (χ)| =
(p− 1)nk−2(zχ)/dχ and |W (χ)| = (p− 1)nk−2(zχ)/d∗χ, where

d∗χ =
{
dχ if dχ is even,
2dχ if dχ is odd.

Proof. Formula for |T (χ)|. Let ψ be a primitive character modulo pk.
By Proposition 2 we know that τ(ψ) = τ(χ) if and only if (6.a)–(6.c) are sat-
isfied. We have already noticed that the parameters uψ and zψ uniquely de-
termine ψV : by (6.a), uψ is fixed, and by (6.c), zψ can be chosen in nk−2(zχ)
ways, therefore there are 1 ·nk−2(zχ) possible couples of data (uψ, zψ), i.e. of
possible ψV . The decomposition Z∗

pk
= Uk × Vk shows that (6.b) is actually

a condition for the values that ψU assumes on the subgroup of Uk generated
by uχ. As Uk is cyclic, there are |Uk|/dχ = (p−1)/dχ characters of Uk having
a prescribed value at uχ, so that we have (p−1)/dχ possible choices for ψU .
Hence, we have (p−1)nk−2(zχ)/dχ possible choices for the couple (ψU , ψV ),
i.e. for ψ.

Formula for |W (χ)|. We notice that ψ and χ have the same parity iff
ψU (−1) = χU (−1), so that ψ has the same signature as χ iff both the equal-
ity ψU (−1) = χU (−1) and conditions (6.a)–(6.c) are satisfied. The condition
on the parity and (6.b) show that the values of ψU on the group 〈−1, uχ〉
are fixed by χ. If dχ is even, from u

dχ
χ = 1 we get udχ/2χ = −1 (because

dχ is the order of uχ), thus −1 belongs to the subgroup generated by uχ
and by (6.b) we conclude that each character satisfying (6.a)–(6.c) already
has the same parity as χ. In this case the number of distinct signatures is
equal to the number of distinct Gauss sums. If dχ is odd then −1 does not
belong to the group generated by uχ, and 〈uχ〉 is a subgroup of index 2 in
〈−1, uχ〉, therefore there are only (p− 1)/2dχ possible choices for ψU . Since
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as in the previous case we have nk−2(zχ) possible choices for ψV , the claim
follows.

The case τ(ψ) = −τ(χ) is analogous, but presents one difference. Con-
sider (6) with ϑ = −1 and let the order d of u be odd. Then from (6.b)
we have the contradiction 1 = χ(ud) = χ(u)d = −ψ(u)d = −ψ(ud) = −1.
It is easy to prove that this is the unique obstruction to the existence of
solutions of the system in (6), and the argument we have already used to
prove Theorem 1 allows us also to prove the following result.

Theorem 2. Let q := pk with p odd prime. Let χ be a primitive charac-
ter modulo q. The number of primitive characters ψ modulo q with τ(ψ) =
−τ(χ) is 0 if dχ is odd, and (p− 1)nk−2(zχ)/dχ if dχ is even.

Theorems 1–2 are useful only if we have a convenient way to compute
the value of nk(z′). When p > 3, using the explicit identities (3) it is easy
to verify that z′ and −1 − z′ are the solutions of (10) when k = 1. These
solutions are distinct if and only if z′ 6= −1/2 (mod p). By (4), the condition
z′ 6= −1/2 (mod p) implies that z′(z′) 6= 0 (mod p) when p > 3 so that
Hensel’s lemma (see [7, Ch. I, Th. 3]) implies that for these values of z′

and these primes p the congruence in (10) has exactly two solutions for
every k > 1, too. When z′ = −1/2 (mod p) the condition z′(z′) 6= 0
(mod p) is violated, Hensel’s lemma is not applicable in its simpler form,
and more solutions can appear. The following lemma will be used firstly
to prove Proposition 3 below providing the exact number of solutions for
every p > 3, and secondly for the proof of a part of Proposition 4 giving the
analogous result in the special case p = 3.

Lemma 1. Let p be an odd prime. Let f : Zp → Zp be a map represented
by a power series. Assume that f ′(z0) = 0 at a unique p-adic integer z0, and
that f ′′(z) 6= 0 (mod p) and f ′′′(z) = 0 (mod p) for every z ∈ Zp. Let z′ ∈ Zp
with z′ = z0 (mod p). Finally, let ν0 be the p-adic exponent of z′−z0. Then,
for every k the number of solutions of

(11)
{
f(z) = f(z′) (mod pk),
z = z0 (mod p),

is {
2pν0 if ν0 ≤ b(k − 1)/2c,
pbk/2c if ν0 > b(k − 1)/2c.

Proof. By hypothesis ν0 > 0. Since f ′′(z) 6= 0 (mod p), from f ′(z′) =
f ′′(z0)(z′− z0) +O(p(z′− z0)) we conclude that pν0 ‖ f ′(z′). It is convenient
to define m ∈ Z in such a way that f ′(z′) = mpν0 (mod pν0+1) and to set
` := b(k − 1)/2c.
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Step 1. The p-adic exponent of n! is (n− sn)/(p− 1), where sn denotes
the sum of the digits of the p-adic representation of n. In particular, it is
always strictly lower than n/2 for positive n and odd p.

Step 2. Let z be a solution of (11) and let s ∈ N be such that ps ‖
(z − z′). We prove that s ≥ min(ν0, `+ 1).

Note that s > 0, because ν0 > 0 and p | (z − z0) by hypothesis. Suppose
s < min(ν0, `+ 1). Then 2s+ 1 ≤ 2`+ 1 ≤ k, hence we can reduce modulo
p2s+1 the congruence f(z) = f(z′) (mod pk). In this way we obtain

0 = f(z)− f(z′) = f ′(z′)(z − z′) +
1
2
f ′′(z′)(z − z′)2

+
1
6
f ′′′(z′)(z − z′)3 (mod p2s+1),

since the order in p of each term (1/n!)f (n)(z′)(z−z′)n is strictly larger than
ns−n/2 (by Step 1), which is ≥ 2s for n ≥ 4. Moreover, pν0+s ‖ f ′(z′)(z−z′)
and ν0 + s ≥ 2s + 1 by hypothesis, hence the first term in the previous
congruence is 0 modulo p2s+1; also the last term is zero modulo p2s+1 (for
p = 3 this is true because we are assuming that f ′′′(z′) is divisible by p). In
this way from the previous congruence we get

0 = (z − z′)2 (mod p2s+1),

which is a contradiction.

Step 3. We prove that if ν0 > `, then for every z′ there are pbk/2c

solutions to (11).
Let z be a solution. By Step 2 we know that z = z′ + hp`+1 for some

integer h. Moreover, modulo pk we have

f(z′ + hp`+1)− f(z′) = f ′(z′)hp`+1

because the terms (1/n!)f (n)(z′)hnpn(`+1) are of order strictly larger than
n(` + 1) − n/2 (by Step 1), which is ≥ k − 1 for n ≥ 2. Since ν0 + ` + 1 ≥
2`+ 2 ≥ k we have

f(z′ + hp`+1)− f(z′) = f ′(z′)hp`+1 = mhpν0+`+1 = 0

for every choice of h. This argument shows that in this case the solutions
of (11) are the numbers of the form z′ + hp`+1 with any h (mod pk−`−1).
The claim follows since pk−`−1 = pbk/2c.

Step 4. We prove that if ν0 = ` and k odd, then for every z′ there are
2p` solutions to (11).

We notice that by assumption ν0 ≥ 1, hence ` ≥ 1, so that this step
applies only for k ≥ 3. Let z be a solution. By Step 2 we know that z =
z′ + hpν0 for some h. Moreover, the order of each term (1/n!)f (n)(z′)hnpnν0
in p is strictly larger than nν0 − n/2 (by Step 1). Since ν0 = (k − 1)/2, the
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nth term is at least of order k whenever n ≥ 2(k− 1)/(k− 2), i.e. whenever
n ≥ 4. It follows that modulo pk we have

f(z′ + hpν0)− f(z′) = f ′(z′)hpν0 +
1
2
f ′′(z′)h2p2ν0 +

1
3!
f ′′′(z′)h3p3ν0

=
(
mh+

1
2
f ′′(z′)h2 +

1
3!
f ′′′(z′)h3pν0

)
p2ν0 .

Since 2ν0 = k − 1, the congruence f(z′ + hpν0) = f(z′) (mod pk) becomes

mh+
1
2
f ′′(z′)h2 +

1
3!
f ′′′(z′)h3pν0 = 0 (mod p).

Recalling that we are assuming that f ′′(z′) 6= 0 (mod p) and f ′′′(z′) = 0
(mod p), we can simplify this equation to

2mh+ f ′′(z′)h2 = 0 (mod p),

thus we have two solutions for h modulo p. In this way, we get 2pk−(ν0+1) =
2p` solutions.

Step 5. We prove that if ν0 = ` and k even, then for every z′ there are
2p` solutions to (11).

We notice that by assumption ν0 ≥ 1, hence ` ≥ 1, so that this step
applies only for k ≥ 4. Let z be a solution. By Step 2 we know that z =
z′ + hpν0 for some h. Moreover, the order of each term (1/n!)f (n)(z′)hnpnν0
in p is strictly larger than nν0 − n/2 (by Step 1). Since ν0 = (k − 2)/2, the
nth term is at least of order k whenever n ≥ 2(k− 1)/(k− 3), i.e. whenever
n ≥ 6. Moreover, every odd prime divides 5! at most once, so that also the
term with n = 5 is of order at least k. It follows that modulo pk we have

f(z′ + hpν0)− f(z′) = f ′(z′)hpν0 +
1
2
f ′′(z′)h2p2ν0

+
1
6
f ′′′(z′)h3p3ν0 +

1
4!
f (4)(z′)h4p4ν0 .

Thus

f(z′ + hpν0)− f(z′)

= mhp2ν0 +
1
2
f ′′(z′)h2p2ν0 +

1
6
f ′′′(z′)h3p3ν0 +

1
4!
f (4)(z′)h4p4ν0 .

Since 2ν0 = k−2, we obtain in this way a solution to f(z) = f(z′) (mod pk)
whenever

(12) mh+
1
2
f ′′(z′)h2 +

1
6
f ′′′(z′)h3pν0 +

1
4!
f (4)(z′)h4pk−2 = 0 (mod p2).

The term 1
6f
′′′(z′)h3pν0 is divisible by p because ν0 ≥ 1 (when p = 3 we use

the assumption f ′′′(z′) = 0 (mod p)); also (1/4!)f (4)(z′)h4pk−2 is divisible
by p because k − 2 ≥ 2 and the term 4! in the denominator erases at
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most one power of p (and only when p = 3). It follows that this equation
modulo p becomes mh+ 1

2f
′′(z′)h2 = 0, having two distinct solutions for h:

0 and −2m(f ′′(z′))−1. Since the value of the derivative (in h) of the function
appearing on the L.H.S. in (12) is zero only at h = −m(f ′′(z′))−1 (mod p),
we see that each solution of (12) modulo p lifts in a unique way to a solution
modulo p2. Concluding, we have proved that (12) has two solutions; in this
way, we get 2pk−(ν0+2) = 2p` solutions of (11).

Step 6. Steps 3–5 prove the claim whenever ν0 ≥ `. Suppose now that
ν0 < ` so that 2ν0 + 1 < k. Hensel’s lemma (see [14, Ch. 1, Sec. 6.4])
shows that each solution modulo p2ν0+1 lifts to a unique solution mod-
ulo pk; in this way we see that the number of solutions modulo pk is equal
to the number of solutions modulo p2ν0+1, i.e. 2pν0 (by Step 4), which is the
claim.

Proposition 3. Let p > 3 be a prime and let ν0 be such that pν0 ‖
(z′ − z0), where z0 is given in (4). Then

nk(z′) =
{

2pν0 if ν0 ≤ b(k − 1)/2c,
pbk/2c if ν0 > b(k − 1)/2c.

Proof. The discussion before Lemma 1 proves the claim when ν0 = 0;
the claim for ν0 ≥ 1 is an immediate consequence of Lemma 1.

The case p = 3 behaves in a different and more complicated way because
there are numbers z′ and integers k for which the congruence z(z) = z(z′)
(mod 3k) admits more solutions than z(z) = z(z′) (mod 3k+1); for example,
there are ten solutions for z(z) = z(32 + 2 · 33) (mod 34) while the same
equation admits only one solution modulo 35. In other words, not every
solution modulo 3k can be lifted to a 3-adic solution. The following table
shows the solutions of z(z) = z(z′) (mod 3) for each z′:

z′ Solutions

0 0 (simple), 2 (double)

1 1 (simple)

2 0 (simple), 2 (double)

By Hensel’s lemma, each simple solution lifts to a unique solution modulo
3k for every k > 1, so that if z′ = 1 (mod 3) there is a unique solution for
every k; in other cases more solutions modulo 3k appear. The next proposi-
tion gives the exact number of solutions for every z′. In order to formulate
it we need a second constant that, as z0, has a special role: let z1 be the
3-adic integer such that z1 = 0 (mod 3) and z(z1) = z(z0). Its existence and
uniqueness follow by Hensel’s lemma from the congruences z(0) = z(z0)



Multiplicity results 55

(mod 3) and z′(0) = 2 (mod 3), and its approximate value is

z1 = 32 + 2 · 33 + 2 · 34 + 35 + 2 · 36 + 37 + 2 · 38

+ 310 + 312 + 2 · 313 + 314 + 2 · 316 +O(317).

Proposition 4. Assume p = 3 in (10).

• If z′ = 0 (mod 3) and ν1 is such that 3ν1 ‖ (z′ − z1), then

nk(z′) =


1 + 2 · 3ν1/2 if ν1 is even, z′ = z1 + 2 · 3ν1 (mod 3ν1+1),

and ν1 < k,
1 + 3bk/2c if ν1 ≥ k,
1 otherwise.

• If z′ = 1 (mod 3) then nk(z′) = 1 for every k.
• If z′ = 2 (mod 3) and ν0 is such that 3ν0 ‖ (z′ − z0), then

nk(z′) =
{

1 + 2 · 3ν0 if ν0 ≤ b(k − 1)/2c,
1 + 3bk/2c if ν0 > b(k − 1)/2c.

Proof. The case z′ = 1 (mod 3) has been proved during the discussion
preceding Proposition 4, thus we suppose now that z′ = 0 or 2 (mod 3).
According to the table above, there is one solution congruent to 0 (mod 3)
and this solution lifts uniquely to a solution modulo 3k for every k, therefore
nk(z′)− 1 counts the solutions of

(13) z(z) = z(z′) (mod 3k), z = 2 (mod 3).

If z′ = 2 (mod 3), the number of solutions of (13) is determined by Lemma 1,
hence to complete the proof of the theorem we have to consider the case
z′ = 0 (mod 3).

Step 1. By definition, ν1 is the 3-adic exponent of z′ − z1 and our
assumptions imply that ν1 ≥ 1. We have

z(z′)−z(z0) = z(z1 + (z′ − z1))−z(z1) = z′(z1)(z′ − z1) +O(3(z′ − z1)),

proving that 3ν1 ‖ (z(z′)−z(z0)).

Step 2. Suppose that ν1 ≥ k, so that z(z′) = z(z0) (mod 3k). Under
this assumption the congruence z(z) = z(z′) (mod 3k) is equivalent to
z(z) = z(z0) (mod 3k), which has 3bk/2c solutions congruent to 2 (mod 3),
according to Lemma 1.

Step 3. We now prove that for every m the solutions of z(z) = z(z0)
(mod 3m) with z = 2 (mod 3) are the numbers {z0 + 3b(m+1)/2ch}3bm/2ch=1 .

In fact, this set contains 3bm/2c distinct numbers and in the previous step
we have proved that the equation has exactly 3bm/2c solutions. Moreover we
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have the Taylor series

z(z0+3b(m+1)/2ch) = z(z0)+z′(z0)3b(m+1)/2ch+
∞∑
n≥2

z(n)(z0)
n!

3nb(m+1)/2chn.

The order in 3 of (z(n)(z0)/n!)3nb(m+1)/2chn is at least nb(m + 1)/2c −
(n − sn)/2, where sn denotes the sum of the digits appearing in the 3-adic
representation of n. It is easy to prove that nb(m+ 1)/2c − (n− sn)/2 ≥ m
for every m ≥ 1 and every n ≥ 2, and it follows that the Taylor series gives

z(z0 + 3b(m+1)/2ch) = z(z0) + z′(z0)3b(m+1)/2ch+O(3m).

Since z′(z0) = 0 (by definition of z0) we conclude that every number of that
set is a solution of the congruence.

Step 4. Assume now that ν1 < k. By Step 1, reducing (13) modulo 3ν1
we obtain the system {

z(z) = z(z0) (mod 3ν1),
z = 2 (mod 3).

According to the previous discussion, z must be equal to z0 + 3`+1h for a
suitable integer h, where for convenience we set ` := b(ν1 − 1)/2c. Taking
this into account in (13) and using z′(z0) = 0 and z′′(z0) = 2 (mod 3) we
get (modulo 3k)

0 = z(z′)−z(z) = z(z′)−z(z0+3`+1h) = z(z′)−z(z0)−32`+2h2+O(32`+3)

(in order to prove the claim for ` = 0 we use the congruence z′′′(z) = 0
(mod 3)) so that

(14) z(z′)−z(z0) = 32`+2h2 +O(32`+3) (mod 3k).

If ν1 is odd, then ` = (ν1 − 1)/2, the R.H.S. is divisible by 3ν1+1 while the
L.H.S. is divisible only by 3ν1 , by Step 1, so in this case we have no solutions.

Now suppose ν1 even. Then ` = ν1/2−1 and dividing (14) by 3ν1 we see
that

(15)
z(z′)−z(z0)

3ν1
= h2 +O(3).

This equation has solutions for h if and only if (z(z′)−z(z0))/3ν1 = 1
(mod 3), i.e. iff z(z′) = z(z0) + 3ν1 + O(3ν1+1), and it is easy to see that
this happens iff z′ = z1 + 2 ·3ν1 +O(3ν1+1). In this way we see that if ν1 < k
then in order to have solutions it is necessary that

(16)
{
ν1 even,
z′ = z1 + 2 · 3ν1 +O(3ν1+1).

Let us assume that these conditions hold true. Suppose that k = ν1+1. Then
h is not subject to any condition except (15); in particular, every number
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of the form z0 ± 3ν1/2 + h′3ν1/2+1 solves (13). When h′ assumes the values
1, . . . , 3ν1/2 we get 2 · 3ν1/2 distinct solutions, in agreement with the claim.

Step 5. Suppose that k > ν1 + 1 and that (16) holds. Reducing mod-
ulo 3ν1+1 the congruence z(z) = z(z′) (mod 3k) we obtain an equation
having 2 · 3ν1/2 solutions, all of type z0 ± 3ν1/2 + h′3ν1/2+1. Let z̃ be an ar-
bitrary number of this form. This number solves z(z) = z(z′) (mod 3ν1+1),
moreover

z′(z̃) = z′(z0 ± 3ν1/2 + h̃3ν1/2+1) = z′(z0)±z′′(z0)3ν1/2 +O(3ν1/2+1)

= ∓3ν1/2 +O(3ν1/2+1)

(because z′(z0) = 0 and z′′(z0) = 2 (mod 3)), which shows that 3ν1/2 ‖
z′(z̃). Hence the 3-adic exponent of z′(z̃) is strictly lower than (ν1 + 1)/2.
Hensel’s lemma (as given in [14, Ch. 1, Sec. 6.4]) proves that under these
conditions z̃ can be lifted in a unique way to a solution of z(z) = z(z′) in Z3.
In particular, the equation modulo 3k has as many solutions congruent to 2
modulo 3 as the same equation modulo 3ν1+1, i.e. 2 · 3ν1/2.

Using Theorem 1 and Propositions 3–4 we can compute the number of
distinct Gauss sums and distinct signatures that we have modulo pk, when
p is an odd prime and k > 1.

Theorem 3. For every k > 1 and p ≥ 3 the number of distinct Gauss
sums and the number of distinct signatures modulo pk are Ψ(pk)Φ(p−1) and
Ψ(pk)Φ∗(p− 1), respectively.

Proof. Each character χ is uniquely determined by its χU and χV compo-
nents. Every couple (u, z′) with u ∈ Uk and z′ ∈ Zpk−1 uniquely determines
χV but leaves χU undetermined, hence there are p − 1 characters χ with
uχ = u and zχ = z′ (because we can choose χU in p − 1 ways). For every
d dividing p − 1 there are ϕ(d) numbers u in Uk of order d (because Uk is
cyclic), hence for every choice of z′ there are (p− 1)ϕ(d) characters χ with
zχ = z′ and uχ of order d. By Theorem 1 each value of the Gauss sum for a
character in this set is assumed (p− 1)nk−2(z′)/d times, hence the number
of distinct Gauss sums which are associated to characters in this set is

(p− 1)ϕ(d)
(p− 1)nk−2(z′)/d

=
dϕ(d)
nk−2(z′)

.

For every integer r, let m(r) denote the number of distinct z′ for which
nk−2(z′) = r. The previous argument shows that for every given integer
d | (p− 1) and every r there are

m(r)
r

dϕ(d)

distinct Gauss sums. Since m(r) is independent of d we find that the number
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of distinct Gauss sums is∑
r

∑
d|p−1

m(r)
r

dϕ(d) =
∑
r

m(r)
r

Φ(p− 1).

In order to complete the proof of the first formula we need an explicit eval-
uation of the sum over r. When k = 2 we have m(1) = 1 and m(r) = 0 for
every r > 1, thus the formula is proved in this case. Let now k > 2. The
cases p = 3 and p > 3 split, due to the different structure of Propositions 3
and 4.

Suppose p > 3. By Proposition 3 we know that m(r) 6= 0 only when r
is either of the form 2pν or pbk/2c−1 (recall that we are considering nk−2(z′)
while Proposition 3 provides nk(z′), hence the normalization k → k − 2 is
needed). Moreover, for every ν ≤ b(k − 3)/2c we have nk−2(z′) = 2pν iff
pν ‖ (z′ − z0). Since z′ is taken modulo pk−2, there are ϕ(pk−ν−2) possible
values for z′ satisfying pν ‖ (z′−z0). On the other hand, we have nk−2(z′) =
pbk/2c−1 iff pb(k−3)/2c+1|(z′−z0); modulo pk−2 there are pk−b(k−3)/2c−3 values
of z′ satisfying this condition. Summarizing, we have∑

r

m(r)
r

=
b(k−3)/2c∑

ν=0

ϕ(pk−ν−2)
2pν

+
pk−b(k−3)/2c−3

pbk/2c−1

= 1 +
p− 1

2

b(k−3)/2c∑
ν=0

pk−2ν−3 = 1 +
pk−1 − pδ

2(p+ 1)

where δ ∈ {0, 1} with δ + k = 1 (mod 2). By definition, this is Ψ(pk), thus
the proof of the first claim is complete in this case.

Suppose p = 3. By Proposition 4 we know that m(r) 6= 0 only when r
is either 1, or of the form 1 + 2 · 3ν or 1 + 3bk/2c−1 (as before, recall that
we are considering nk−2(z′) while Proposition 4 provides nk(z′), hence the
normalization k → k − 2 is needed).

According to Proposition 4 we have nk−2(z′) = 1 in three cases:

(1) z′ = 1 (mod 3),
(2) z′ = z1 ± 3ν +O(3ν+1), with ν < k − 2 and odd,
(3) z′ = z1 + 3ν +O(3ν+1), ν even and 1 < ν < k − 2.

Therefore

m(1) = 3k−3 +
∑

ν∈[1,k−2)
ν odd

2 · 3k−3−ν +
∑

ν∈[1,k−2)
ν even

3k−3−ν .

Writing this sum as 3k−3 +
∑k−3

ν=1
3−(−1)ν

2 3k−3−ν we get, after some compu-
tations,

m(1) =
5 · 3k−2 − 6 + (−1)k

8
.
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We have nk−2(z′)=1+3bk/2c−1 when either z=z′ (mod 3k−2) or 3b(k−3)/2c+1|
(z′−z0), i.e. in 3k−b(k−3)/2c−3 cases. Hencem(1+3bk/2c−1)=1+3k−b(k−3)/2c−3.

Finally, for every ν ≤ b(k − 3)/2c we have nk−2(z′) = 1 + 2 · 3ν when
either z′ = z1 + 2 · 32ν + O(32ν+1), or z′ = z0 ± 3ν + O(3ν+1). In the first
case we have 3k−2−(2ν+1) choices for z′ and in the second case there are
2 · 3k−2−(ν+1) choices, so that m(1 + 2 · 3ν) = 3k−2ν−3 + 2 · 3k−ν−3.

Summarizing, we have∑
r

m(r)
r

=
5 · 3k−2 − 6 + (−1)k

8
+

1 + 3k−3−b(k−3)/2c

1 + 3bk/2c−1

+
b(k−3)/2c∑

ν=1

3k−2ν−3(1 + 2 · 3ν)
1 + 2 · 3ν

=
5 · 3k−2 − 6 + (−1)k

8
+ 1 +

3k−1 − 3δ

8
− 3k−3

where δ ∈ {0, 1} with δ+ k = 1 (mod 2). With trivial simplifications we see
that this sum is simply 2 · 3k−3, which is exactly the value of Ψ(3k). The
proof of the first claim is now complete.

The claim about signatures can be proved in a similar way.

Theorem 3 can be generalized in the following way. As usual, let q = pk

with p ≥ 3 and k > 1. Let G(0) be the set of values τ of Gauss sums of
primitive characters modulo q for which −τ is not the value of a Gauss
sum, let G(+) be a set of representatives under the action of ±1 of the
values which are not in G(0), and finally let G(−) be the complementary set
(the negatives of the values in G(+), hence). By Theorem 2 the values in
G(0) are those values of Gauss sums which are associated with characters χ
whose parameter dχ is odd, while the values in G(±) are those associated
with characters χ whose parameter dχ is even. An argument similar to that
giving Theorem 3 yields the following result.

Theorem 4. Write p as 1 + 2Nm with m odd. Then

|G(0)| = Ψ(pk)Φ(m),

|G(±)| = 1
2
Ψ(pk)(Φ(p− 1)− Φ(m)) =

Φ(2N )− 1
2

Ψ(pk)Φ(m).

The next subsections illustrate some non-trivial consequences of the pre-
vious theorems. Mainly we will show that the cases q = p2 and q = p3 are
in some sense exceptional, because for these prime powers there are still
characters modulo q with |W (χ)| = 1, i.e. characters χ for which L(s, χ)
is the unique solution (with Euler product) of the corresponding functional
equation. Moreover, we will show that this phenomenon disappears when
q = pk with k ≥ 4 because for these powers |W (χ)| is always greater than 2.
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Moreover, we shall see that the value of |W (χ)| is two for more than half the
signatures, and that only occasionally does it reach its largest value which
is of order

√
q.

The following fact is a first, and quite unexpected, consequence of The-
orem 3: for every pk the quotient “number of distinct signatures/number of
distinct Gauss sums” depends on p but is independent of k; in fact

|{distinct signatures mod pk}|
|{distinct Gauss sums mod pk}|

=
Φ∗(p− 1)
Φ(p− 1)

= 1 +
1

Φ(2N )
(17)

= 1 +
3

22N+1 + 1

where we have set p = 1 + 2Nm for a suitable odd integer m, and where we
have used (2) to simplify the quotient Φ∗(p − 1)/Φ(p − 1). It is immediate
to see that the universal bound

|{distinct signatures mod pk}|
|{distinct Gauss sums mod pk}|

≤ 1 +
1
3

holds with equality for primes p = 3 (mod 4) (giving N = 1 in (17)), and
that

lim inf
p→∞

|{distinct signatures mod pk}|
|{distinct Gauss sums mod pk}|

= 1,

because for every integer N there are infinitely many primes p = 1 (mod 2N ).

3.1. Consequences: modulo p2. Each character χ is uniquely deter-
mined by its components χU and χV , and χV is in its turn uniquely de-
termined by the couple (uχ, zχ). For every d dividing p − 1 there are ϕ(d)
numbers u ∈ Uk of order d; moreover, 0 is the unique value available for zχ
when q = p2, so that n0(zχ) = 1. It follows that for every d there are ϕ(d) ·1
possible choices for χV . Since there are p − 1 possible choices for χU , we
conclude that there are (p − 1)ϕ(d) characters χ for which uχ has order d.
By Theorem 1 the values of the Gauss sums of characters in this set are
assumed (p − 1)/d times, hence there are exactly dϕ(d) distinct values for
the Gauss sums which are assumed (p− 1)/d times. In particular, there are
(p− 1)ϕ(p− 1) Gauss sums whose values are assumed only once.

In a similar way we can prove that for every d dividing p − 1, among
the (p − 1)ϕ(d) characters χ with dχ = d there are exactly d∗ϕ(d) distinct
signatures whose values are assumed (p − 1)/d∗ times. Hence a signature
is assumed only once iff d∗ = p − 1. When p = 1 (mod 4) the unique
possibility is d = p − 1 so that there are d∗ϕ(d) = (p − 1)ϕ(p − 1) such
signatures (p − 1 is even, hence (p − 1)∗ = p − 1). When p = 3 (mod 4)
we have d∗ = p − 1 both for d = p − 1 and for d = (p− 1)/2, hence in
this case there are (p − 1)ϕ(p − 1) + (p − 1)ϕ((p − 1)/2) such signatures.
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Since ϕ((p− 1)/2) = ϕ(p− 1) when p = 3 (mod 4), we have proved that the
number of signatures which are assumed only once is

2\(p− 1)ϕ(p− 1) where 2\ :=
{

1 if p = 1 (mod 4),
2 if p = 3 (mod 4).

3.2. Consequences: modulo p3. Also in this case the number of prim-
itive characters whose Gauss sum is assumed only once and the number of
primitive characters whose signature is assumed only once are

(p− 1)ϕ(p− 1) and 2\(p− 1)ϕ(p− 1)

respectively. In fact, by Theorem 1 the Gauss sum is assumed only once iff
n1(zχ) = 1 and dχ = p − 1, while the signature is assumed only once iff
n1(zχ) = 1 and d∗χ = p − 1. Since n1(z′) is 1 only for z′ = (p− 1)/2 (by
Proposition 3 if p > 3 and by Proposition 4 if p = 3), the claim follows as
in the proof of the previous claim for p2.

A similar argument shows that there are p−1
2

(
ϕ
(p−1

2

)
+ (p− 1)ϕ(p− 1)

)
values of Gauss sums each assumed twice and that the number of signatures
which are assumed twice is:

p−1
2

[
(p− 1)ϕ(p− 1) + ϕ

(p−1
2

)]
if p = 1 (mod 8),

(p− 1)2ϕ(p− 1) if p = 3 (mod 4),
p−1

2

[
(p− 1)ϕ(p− 1) + ϕ

(p−1
2

)
+ ϕ

(p−1
4

)]
if p = 5 (mod 8).

3.3. Consequences: modulo pk with k ≥ 4. Proposition 3 shows
that nk−2(zχ) ≥ 2 when k ≥ 4 and p > 3. By Theorem 1 we conclude that
in this case the value of each Gauss sum and each signature is assumed at
least twice. Actually, the number of Gauss sum values and the number of
signatures which are assumed exactly twice are

1
2

(p− 1)2pk−3ϕ(p− 1) and
2\

2
(p− 1)2pk−3ϕ(p− 1),

respectively. In fact, by Theorem 1 the value of a Gauss sum is assumed
twice iff d = p − 1 (hence ϕ(p − 1) choices for uχ) and nk−2(z′) = 2. By
Proposition 3 we have nk−2(z′) = 2 iff z′ 6= (p − 1)/2 (mod p), so that we
have pk−2 − pk−3 possible values for z′, producing ϕ(p − 1)(pk−2 − pk−3)
choices for χV . As usual we have p − 1 choices for χU , so that we have
exactly (p − 1)ϕ(p − 1)(pk−2 − pk−3) characters χ whose Gauss sum has
a value which is assumed twice. Dividing this number by 2 we obtain the
number of values of Gauss sums which are assumed twice.

Analogously, by Theorem 1 a signature is assumed twice iff d∗ = p − 1
and nk−2(z′) = 2, thus we have pk−2− pk−3 possible values for z′, as before.
Moreover, when p = 1 (mod 4) we have d∗ = p − 1 only for d = p − 1,
while for p = 3 (mod 4) we have d∗ = p − 1 both for d = p − 1 and for
d = (p − 1)/2. Thus in the first case the number of signatures is equal to
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the number of values of Gauss sums already computed, while in the second
case it is twice that number.

Suppose p = 3. Proposition 4 shows that 2 is not the minimum value
for nk−2(zχ), since nk−2(z′) = 1 for several values of z′. Indeed, in the proof
of Theorem 3 we have shown that nk−2(z′) = 1 for (5 · 3k−2 − 6 + (−1)k)/8
choices of z′, and using this formula we can prove that the number of Gauss
sums and of signatures which are assumed only once are

5 · 3k−2 − 6 + (−1)k

4
and

5 · 3k−2 − 6 + (−1)k

2
respectively. In fact, by Theorem 1 the value of the Gauss sum of χ is
assumed once iff dχ = 2 and nk−2(zχ) = 1; since there is a unique u ∈ Uk
having order 2, (5 · 3k−2 − 6 + (−1)k)/8 is also the number of couples (u, z′)
meeting those requirements. Since every couple uniquely determines the
component χV of the character χ, we see that (5 · 3k−2 − 6 + (−1)k)/8 is the
number of possible choices for χV . There are two choices for χU , hence the
first formula immediately follows. The formula for signatures can be proved
in a similar way by noticing that by Theorem 1 a signature is assumed once
iff d∗ = 2 and nk−2(z′) = 1 and that d∗χ = 2 for every character.

For p > 3, let

Gp,k :=
|values of Gauss sums mod pk assumed twice|

|values of Gauss sums mod pk|
,

Sp,k :=
|signatures mod pk assumed twice|

|signatures mod pk|
,

and analogously for p = 3 let

G3,k :=
|values of Gauss sums mod 3k assumed once|

|values of Gauss sums mod 3k|
,

S3,k :=
|signatures mod 3k assumed once|

|signatures mod 3k|
.

The previous formulæ and Theorem 3 show that

Gp,∞ := lim
k→∞

Gp,k =

 p2 − 1
p2

· (p− 1)ϕ(p− 1)
Φ(p− 1)

if p > 3,

5/8 if p = 3,

and

Sp,∞ := lim
k→∞

Sp,k =

 p2 − 1
p2

· 2\(p− 1)ϕ(p− 1)
Φ∗(p− 1)

if p > 3,

15/16 if p = 3.
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These limits show that a positive (and large) proportion of the values of
Gauss sums and signatures are assumed only the smallest number of times.
We now prove explicit bounds for these proportions.

Proposition 5. For p > 3 we have

α · p
2 − 1
p2

≤ Gp,∞ ≤
3
4
,

α · p
2 − 1
p2

≤ Sp,∞ ≤
3
4

if p = 1 (mod 4),

3
2
α · p

2 − 1
p2

≤ Sp,∞ ≤
8
9

if p = 3 (mod 4),

with α :=
∏
r

(
1− 1+r

1+r3

)
= 0.5145 . . . , where the product is over all primes.

Proof. By multiplicativity we have, for every integer n,
nϕ(n)
Φ(n)

=
∏
rj‖n

(
1− 1 + r2j−1

1 + r2j+1

)
,

where r runs over all primes. Each factor increases with j, therefore we have∏
r

(
1− 1 + r

1 + r3

)
≤
∏
r|n

(
1− 1 + r

1 + r3

)
≤ nϕ(n)

Φ(n)
≤
∏
r|n

(
1− 1

r2

)
≤ 3

4
.

Moreover, writing n = 2Nm with m odd, we have

nϕ(n)
Φ∗(n)

=
2Nϕ(2N )
1 + Φ(2N )

· mϕ(m)
Φ(m)

=
3 · 22N−1

4 + 22N+1
·
∏
rj‖m

(
1− 1 + r2j−1

1 + r2j+1

)
.

Let now p = 1 + 2Nm with m odd. For primes p = 1 (mod 4) we have (in
this case N > 1 but m can be equal to 1)

2
3
·
∏
r|m

(
1− 1 + r

1 + r3

)
≤ 3 · 22N−1

4 + 22N+1
·
∏
r|m

(
1− 1 + r

1 + r3

)
≤ 2\(p− 1)ϕ(p− 1)

Φ∗(p− 1)

=
3 · 22N−1

4 + 22N+1
·
∏
rj‖m

(
1− 1 + r2j−1

1 + r2j+1

)
≤ 3

4
·
∏
r|m

(
1− 1

r2

)
≤ 3

4
,

while for primes p = 3 (mod 4) we have (in this case N = 1 and m ≥ 3)∏
r>2

(
1− 1 + r

1 + r3

)
≤
∏
r|m

(
1− 1 + r

1 + r3

)

≤ 2\(p− 1)ϕ(p− 1)
Φ∗(p− 1)

=
∏
rj‖m

(
1− 1 + r2j−1

1 + r2j+1

)
≤
∏
r|m

(
1− 1

r2

)
≤ 8

9
.

These computations prove the claim.
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Each bound appearing in Proposition 5 is optimal. For example, for
every n ∈ N let wn be a prime such that wn = 1 + Pn (mod P 2

n), where
Pn :=

∏n
j=1 pj and {pj}j is the sequence of all primes. The existence of such a

prime is ensured by Dirichlet’s theorem on primes in arithmetic progressions,
since 1 +Pn and P 2

n are evidently coprime. Then wn− 1 = Pn(1 +Pnkn) for
some integer kn so that

(wn − 1)ϕ(wn − 1)
Φ(wn − 1)

=
∏
j≤n

(
1− 1 + pj

1 + p3
j

) ∏
rj‖(1+Pnkn)

(
1− 1 + r2j−1

1 + r2j+1

)
.

When n grows to infinity the first factor tends to α and the second to 1,
because each factor of 1 + Pnkn is greater than pn, so that

1 >
∏

rj‖(1+Pnkn)

(
1− 1 + r2j−1

1 + r2j+1

)
>

∏
rj‖(1+Pnkn)

(
1− 2

r2

)
≥
∏
d>pn

(
1− 2

d2

)
and the R.H.S. tends to 1 as n grows; this argument proves that limn→∞ Gwn,∞
= α. In a similar way, let wn be a prime such that wn = 1 + 2nϕ(P ′n)

(mod 2nP ′n) where P ′n :=
∏n
j=2 pj is the product over the sequence of odd

primes. As before the existence of such a prime is ensured by Dirichlet’s
theorem, since 1 + 2nϕ(P ′n) and 2nP ′n are coprime (because 1 + 2nϕ(P ′n) is odd
and for every odd prime pj dividing P ′n we have 1 + 2nϕ(P ′n) = 2 (mod pj)).
Then wn − 1 = 2hn(2nϕ(P ′n)−hn + P ′nkn) where hn is the greatest power of 2
dividing wn − 1, so that

(wn − 1)ϕ(wn − 1)
Φ(wn − 1)

=
(

1− 1 + 22hn−1

1 + 22hn+1

) ∏
rj‖(2nϕ(P ′n)−hn+P ′nkn)

(
1− 1 + r2j−1

1 + r2j+1

)
.

When n grows to infinity the first factor tends to 3/4 (because hn ≥ n) and
the second to 1, therefore limn→∞ Gwn,∞ = 3/4. With a similar approach it
is possible to determine suitable sequences of primes proving the optimality
of the bounds for Sp,∞.

4. Composite conductors. For the moment let q be still an odd prime
power, but let us consider the general equation τ(χ, ζq) = ϑτ(ψ, ζq). To
what extent the presence of the generic qth root of unity ζq affects the set of
solutions of this equation? It is not difficult to answer this question since the
cyclotomic field Q[e(1/ϕ(q)), ζq] = Q[e(1/(p− 1)), ζq] has an automorphism
σ such that σ(ζq) = e(1/q) (the automorphism is uniquely determined if we
also require that σ(e(1/(p− 1))) = e(1/(p− 1))), so that

τ(χ, ζq) = ϑτ(ψ, ζq) ⇔ σ(τ(χ, ζq)) = ϑσ(τ(ψ, ζq)) ⇔ τ(χζ) = ϑτ(ψζ)

where χζ := σ ◦ χ and ψζ := σ ◦ ψ are new primitive Dirichlet charac-
ters. Therefore, the characters ψ solving the equation can be recovered by
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applying the methods of the previous sections to χζ and composing the
solutions with σ−1. We can also be a bit more explicit. Let bζ ∈ Z∗q be
such that ζq = e(b−1

ζ /q), where b−1
ζ denotes the inverse of bζ in Z∗q . Then

σ(χ(1 + p)) = σ(e(−aχp/q)) = e(−aχbζp/q), proving that aχζ = bζaχ. In
particular, if we decompose bζ as uζ(1+zζp) with uζ ∈ Uk and 1+zζp ∈ Vk,
we find that uχζ = uζuχ and zχζ = zχ + zζ + zχzζp. By Proposition 2 we
conclude that τ(ψ, ζq) = ϑτ(χ, ζq) iff

uχ = uψ,

χ(uζuχ) = ϑψ(uζuψ),
z(zχ + zζ + zχzζp) = z(zψ + zζ + zψzζp) (mod pk−2).

These relations show in a concrete way how the equality is influenced by
the root ζq: the number of solutions is still given by Theorem 1, with dχ
replaced by the order of uζuχ, and zχ by zχ + zζ + zχzζp.

Let now q be a composite number, q = q′pk with q′, p odd integers and
p prime, p - q′. Let χ be a primitive character modulo q and let χ′, χp be
the primitive characters modulo q′ and pk, respectively, such that χ = χ′χp.
Let ζq be a primitive qth root of unity and let ζq′ and ζpk be primitive
roots of unity such that τ(χ, ζq) = τ(χ′, ζq′)τ(χp, ζpk). Let ψ be another
primitive character modulo q, with components ψ′ and ψp, and suppose
that τ(χ, ζq) = ϑτ(ψ, ζq); then

(18)
τ(ψ′, ζq′)
τ(χ′, ζq′)

= ϑ
τ(χp, ζpk)
τ(ψp, ζpk)

.

In this equality, the L.H.S. is in Q[e(1/ϕ(q′)), ζq′ ] while the R.H.S. is in
Q[e(1/ϕ(pk)), ζpk ]. If we assume that (q′ϕ(q′), pϕ(p)) = 2, then those cyclo-
tomic fields intersect only in Q and from (18) we deduce that

(19)
τ(ψ′, ζq′)
τ(χ′, ζq′)

= ϑ′,
τ(χp, ζpk)
τ(ψp, ζpk)

= ϑp

where ϑ′, ϑp ∈ {±1} and ϑ′ϑp = ϑ. By induction on the number of distinct
primes dividing q we obtain from (19) the following result.

Theorem 5. Let q =
∏n
j=1 p

kj
j be the decomposition of q into distinct

prime powers. Let χ be a primitive character modulo q, for every j let χj
be the primitive character modulo p

kj
j such that χ =

∏n
j=1 χj and let ζj

be the p
kj
j th primitive root of unity such that τ(χ) =

∏n
j=1 τ(χj , ζj). Let

ψ be another primitive character modulo q and let ψj for j = 1, . . . , n be
its component at pkjj . If (pj(pj − 1), pl(pl − 1)) = 2 for every j 6= l, then
τ(χ) = τ(ψ) iff there exists ϑ = (ϑ1, . . . , ϑn) ∈ {±1}n with ϑ1 · · ·ϑn = 1
such that τ(χj , ζj) = ϑjτ(ψj , ζj) for every j.
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Note that by Proposition 1 we know that χj = ψj and ϑj = 1 is the
unique solution of τ(χj , ζj) = ϑjτ(ψj , ζj) when kj = 1, hence it is sufficient
to consider the squarefull case. Collecting the previous results and using
the multiplicativity as suggested by the previous theorem we now prove
upper and lower bounds for |T (χ)| and |W (χ)| for composite q satisfying
the hypothesis in Theorem 5.

Theorem 6. Suppose q =
∏n
j=1 p

kj
j with (pj(pj − 1), pl(pl − 1)) = 2 for

j 6= l, kj ≥ 2 and n ≥ 2. Then

(20) |T (χ)| ≤ 3n+1/2

√
q′
√
q,

where q′ is the product of primes dividing q with odd order, i.e. q′ :=
∏n
j=1 p

δj
j

with δj ∈ {0, 1} and δj = kj (mod 2). This bound is essentially optimal be-
cause there exists an effective constant c > 0 such that for every q satisfying
the hypothesis there exists a primitive character χq modulo q for which

(21) |W (χq)| ≥
c√
q′
√
q.

Proof. Upper bound (20). For every factor pkjj the number of characters

ψj with τ(χj , ζj) = τ(ψj , ζj) is bounded by 2(pj − 1)pkj/2−δj/2−1
j (by Th. 1

and Prop. 3) when pj > 3, and by 2(pj − 1)pkj/2−1
j (by Th. 1 and Prop. 4)

when pj = 3. Analogously, the number of characters ψj with τ(χj , ζj) =
−τ(ψj , ζj) is bounded by 2pj−1

2 p
kj/2−δj/2−1
j (by Th. 2 and Prop. 3) when

pj > 3, and by 2pj−1
2 p

kj/2−1
j (by Th. 2 and Prop. 4) when pj = 3. It follows

that the number of characters ψj with τ(χj , ζj) = ±τ(ψj , ζj) is bounded
by 3pkj/2−δj/2j when pj > 3, and by 3pkj/2j when pj = 3. By Theorem 5 we
conclude that |T (χ)| ≤ 3n

√
3q/q′ by multiplicativity.

Lower bound (21). For every j we fix a character χj modulo p
kj
j with

zχj such that nkj−2(zχj ) ≥ p
bkj/2c−1
j and dχj = 2 for j = 1, . . . , n − 1,

while dχn = 1. Let χ be the character modulo q whose component at pkjj
is χj , for every j. For every j, let Tj,+ be the set of characters ψj such
that τ(ψj) = τ(χj), and Tj,− the set of ψj such that τ(ψj) = −τ(χj).
By Theorems 1–2 there are at least pj−1

2 p
bkj/2c−1
j characters in Tj,+ and

pj−1
2 p

bkj/2c−1
j characters in Tj,−, when j = 1, . . . , n− 1.

We now fix ψj in Tj,+∪Tj,− for j = 1, . . . , n−2 and ψn−1 in either Tn−1,+

or Tn−1,− in such a way that ϑ1 · · ·ϑn−1 = 1. We notice that these choices
can be done in 1

2

∏n−1
j=1 (pj − 1)pbkj/2c−1

j ways. Finally, we take ψn in such a
way that τ(χn) = τ(ψn) and with parity such that ψn(−1) ·

∏n−1
j=1 ψj(−1) =
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χ(−1); we can make this choice in pn−1
2 p

bkn/2c−1
n different ways because by

Theorem 1 there are (pn− 1)pbkn/2c−1
n characters whose Gauss sum is τ(χn)

and only pn−1
2 p

bkn/2c−1
n characters having also the same parity (because we

are assuming dχn = 1). The character ψ := ψ1 · · ·ψn satisfies both ψ(−1) =
χ(−1) and τ(χ, e(1/pk11 + · · · + 1/pknn )) = τ(ψ, e(1/pk11 + · · · + 1/pknn )), and
our construction shows that there are at least

(22)
1
4

n∏
j=1

(pj − 1)pbkj/2c−1
j =

1
4

n∏
j=1

(
1− 1

pj

)√
q
√
q′

such characters. A suitable automorphism converts that equality to an equal-
ity of Gauss sums at the principal qth root, therefore (21) will follow from
(22) after we prove the existence of a universal positive lower bound for the
product

∏n
j=1(1− p−1

j ), or, what is the same, of the existence of a universal
upper bound for

∑n
j=1 p

−1
j , when the primes satisfy the assumption of this

theorem.
Let Θ denote any set of odd primes {pj}nj=1 for which (pj(pj − 1),

pl(pl − 1)) = 2 for j 6= l. For every k let S′k := |Θ ∩ (2k, 2k+1]| and let
S(2k, Θ) := |{m ∈ (2k, 2k+1] : m 6= 0, 1 (mod p) ∀p ∈ Θ ∩ (1, 2k)}|. Note
that S′k ≤ S(2k, Θ), by the hypothesis on the primes. A standard result in
sieve theory (see [11, Th. 3.13]) gives the bound

S(2k, Θ)� 2k

k2

∏
p∈Θ∩(1,2k)

(
1− 2

p

)(
1− 1

p

)−2

≤ 2k

k2
.

It follows that S′k � 2k/k2, uniformly in Θ, and the claim immediately
follows.

Remark. The previous result involves a severe restriction on possible
values for q; we believe that a result of the form

|T (χ)| �ε q
1/2+ε, |W (χ)| = Ωε(q1/2−ε)

for every ε > 0, should hold for every q.

Finally, we give a formula for the number of distinct values assumed
by the Gauss sum and by the signature modulo integers q satisfying the
hypothesis of Theorem 5. That hypothesis implies that only at most one
prime congruent to 1 modulo 4 divides q. It is possible to produce a formula
for the number of distinct Gauss sums modulo q even when such a prime
exists, but the result is simpler when all primes dividing q are congruent to
3 modulo 4. The following theorem gives the formulæ for this simpler case.

Theorem 7. Let q =
∏n
j=1 p

kj
j with kj ≥ 2 and pj = 3 (mod 4) for

every j. Suppose that (pj(pj − 1), pl(pl − 1)) = 2 for every j 6= l. Finally,
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for every j let mj := (pj − 1)/2. Then the number of distinct Gauss sums
modulo q is

(2n+1 − 1)Ψ(q)Φ
( n∏
j=1

mj

)
,

and the number of distinct signatures modulo q is

4(2n − 1)Ψ(q)Φ
( n∏
j=1

mj

)
.

Proof. For every j we partition the set of Gauss sums modulo pkjj into

three classes: G(0)
j , G(−)

j and G
(+)
j , as in Theorem 4. Note that |G(0)

j | =

|G(±)
j | = Ψ(pkjj )Φ(mj), because we are assuming that pj = 3 (mod 4). Let

τ(χ) be a Gauss sum modulo q. We decompose it as product
∏n
j=1 τ(χj , ζj)

that for convenience of notation we write as
∏n
j=1 τj . We associate with τ

a string of n symbols s1, . . . , sn taken in {0,−1,+1}, by setting sj = 0, −1,
or +1 whenever τj belongs to G(0)

j , G(−)
j or G(+)

j , resp. Let two strings s, s′

associated with the Gauss sums of two characters be given; if there exists
̄ such that s̄ = 0 and s′̄ = ±1 (or vice versa) then the Gauss sums are
distinct. In fact, for the equality of these Gauss sums by Theorem 5 we
must have τ̄ = ϑ̄τ

′
̄ with ϑ̄ ∈ {±1}; the case ϑ̄ = 1 is impossible, since

by hypothesis τ̄ and τ ′̄ belong to distinct Ḡ sets. Also the case ϑ̄ = −1

is impossible, since the equality τ̄ = −τ ′̄ would imply τ̄ ∈ G
(−)
̄ ∪ G(+)

̄ ,
contrary to assumption.

Moreover, if in a string s we invert two non-zero symbols (hence −1 ↔
+1) we obtain a new string s′ corresponding to a Gauss sum with the same
value, by Theorem 5 again; as a consequence, the following list provides a
set of representative and mutually inequivalent strings that are therefore
associated with distinct Gauss sums:

{the string (0, . . . , 0)}
∪ {strings with h symbols 0, and +1 in the other positions}n−1

h=0

∪ {strings with h symbols 0, the symbol −1 in the first free position,

and +1 in the other positions}n−1
h=0.

This list contains 1 + 2
∑n−1

h=0

(
n
h

)
= 2n+1 − 1 strings. Each string, indepen-

dently of its content on symbols −1, 0 and +1, produces
∏n
j=1 Ψ(pkjj )Φ(mj)

distinct Gauss sums and the claim follows.
We have already noted that the parameter dχj of characters χj with

Gauss sums in G
(±)
j is even; these characters have equal Gauss sums if
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and only if they have equal signatures. On the other hand, the parame-
ter dχj of characters χj with Gauss sums in G

(0)
j is odd; the Gauss sums

of these characters are assumed both by characters with the same par-
ity and by characters with the opposite parity. It follows that when we
count the number of signatures modulo q adopting the same procedure
we used for Gauss sums, each string containing at least one 0 contributes
twice, while the strings without 0 contribute only once. The total number
of contributions is therefore 2

(
1 + 2

∑n−1
h=1

(
n
h

))
+ 2 = 4(2n − 1) times the

number of contributions of each term, which is
∏n
j=1 Ψ(pkjj )Φ(mj), as be-

fore.
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