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1. Introduction. In this paper we are interested in the numbers of the
form

(1.1) λ1p1 + λ2p2 + µ12m1 + · · ·+ µs2ms ,

where p1, p2 are prime numbers, m1, . . . ,ms are positive integers, and the
coefficients λ1, λ2 and µ1, . . . , µs are real numbers satisfying suitable rela-
tions.

This is clearly a variation of the so-called Goldbach–Linnik problem, i.e.
to prove that every sufficiently large even integer is a sum of two primes and
s powers of two, where s is a fixed integer. Concerning this problem the first
result was proved by Linnik himself [14, 15] who remarked that a suitable s
exists but he gave no explicit estimate of its size. Other results were proved
by Gallagher [6], Liu–Liu–Wang [16, 17, 18], Wang [29] and Li [12, 13]. Now
the best conditional result is due to Pintz–Ruzsa [21] and Heath-Brown–
Puchta [9] (s = 7 suffices under the assumption of the Generalized Riemann
Hypothesis), while, unconditionally, it is due to Heath-Brown–Puchta [9]
(s = 13 suffices). Elsholtz, in unpublished work, improved it to s = 12.
We should also remark that Pintz–Ruzsa announced a proof for s = 8 in
their paper [22] which is as yet unpublished. Looking for the size of the ex-
ceptional set of the Goldbach problem we recall the fundamental paper by
Montgomery–Vaughan [19] in which they showed that the number of even
integers up to X that are not the sum of two primes is � X1−δ. Pintz
recently announced that δ = 1/3 is admissible in the previous estimate.
Concerning the exceptional set for the Goldbach–Linnik problem, the au-
thors of this paper in a joint work with Pintz [11] proved that for every
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s ≥ 1, there are � X3/5(logX)10 even integers in [1, X] that are not the
sum of two primes and s powers of two. This obviously corresponds to the
case λ1 = λ2 = µ1 = · · · = µs = 1.

In Diophantine approximation several results were proved concerning the
linear forms with primes that, in some sense, can be considered as the real
analogues of the binary and ternary Goldbach problems. On this topic we
recall the papers by Vaughan [26, 27, 28], Harman [8], Brüdern–Cook–Pe-
relli [2], and Cook–Harman [4].

Concerning the problem in (1.1), we can consider it as a real analogue
of the Goldbach–Linnik problem. Since the quality of our result depends on
rational approximations to λ1/λ2, we need to introduce the set of irrational
numbers with a suitable Diophantine property. More precisely, we let R
denote the set of irrational numbers ξ such that the denominators qm of
the convergents to ξ, arranged in increasing order of magnitude, satisfy
qm+1 � q1+ε

m . By Roth’s Theorem, all algebraic numbers belong to R, and
almost all real numbers, in the sense of the Lebesgue measure, also belong
to R. We denote by R′ the set of irrational numbers that do not belong
to R.

We have the following

Theorem. Suppose that λ1, λ2 are real numbers such that λ1/λ2 is neg-
ative and irrational with λ1 > 1, λ2 < −1 and |λ1/λ2| ≥ 1. Further sup-
pose that µ1, . . . , µs are nonzero real numbers such that λi/µi ∈ Q for
i ∈ {1, 2}, and denote by ai/qi their reduced representations as rational
numbers. Let moreover η be a sufficiently small positive constant such that
η < min(λ1/a1; |λ2/a2|). Finally, for λ1/λ2 ∈ R′, let

(1.2) s0 = 2 +
⌈

log(C(q1, q2)λ1)− log η
− log(0.91237810306)

⌉
,

while, for λ1/λ2 ∈ R, let

(1.3) s0 = 2 +
⌈

log(C(q1, q2)λ1)− log η
− log(0.83372131685)

⌉
,

where

(1.4) C(q1, q2) = (log 2 + C ·S′(q1))1/2(log 2 + C ·S′(q2))1/2

with C = 10.0219168340 and

(1.5) S′(n) =
∏
p|n
p>2

p− 1
p− 2

.

Then for every real number γ and every integer s ≥ s0 the inequality

(1.6) |λ1p1 + λ2p2 + µ12m1 + · · ·+ µs2ms + γ| < η
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has infinitely many solutions in primes p1, p2 and positive integers
m1, . . . ,ms.

Using the notation λ = (λ1, λ2), µ = (µ1, µ2), we notice that inequality
(1.6) is homogeneous in the quantities λ, µ, γ and η, and by a suitable
rescaling we can take, say, λ2 as close to −1 as we please. The hypothesis
λ2/µ2 ∈ Q (which is needed in the proof of Lemma 4) prevents us from
simply taking λ2 = −1.

The only result on this problem we know of is by Parsell [20]; our values
in (1.2)–(1.3) improve Parsell’s

(1.7) s0 = 2 +
⌈

log(2C1(q1, q2)|λ1λ2|)− log η
− log(0.954)

⌉
,

where

(1.8) C1(q1, q2) = 25(log 2q1)1/2(log 2q2)1/2.

Checking the proof in [20] one can see that (1.8) is in fact

(1.9) C1(q1, q2, ε) = (1 + C1 ·S′(q1))1/2(1 + C1 ·S′(q2))1/2 + ε,

and C1 = 11.4525218267. Comparing only denominators in (1.2)–(1.3) with
the denominator in (1.7), we see that our gain is about 50% when λ1/λ2 ∈ R′

and about 75% when λ1/λ2 ∈ R. In practice, the following examples show
that gains are actually slightly larger. For instance, taking λ1 =

√
3 = µ−1

1 ,
λ2 = −

√
2 = µ−1

2 and η = 1, we get s0 = 19, while for λ1 = π = µ−1
1 ,

λ2 = −
√

2 = µ−1
2 and η = 1, we get s0 = 41. Parsell’s estimates (1.7) and

(1.9) respectively give s0 = 90 and s0 = 102.
Moreover we remark that the work of Rosser–Schoenfeld [23] on n/ϕ(n)

(see Lemma 2 below) gives for S′(q) a sharper estimate than 2 log(2q), used
in (1.8), for large values of q.

With respect to [20], our main gain comes from enlarging the size of
the major arc since this lets us use sharper estimates on the minor arc. In
particular, on the major arc we replace the technique used in [20] with a
well-known argument involving the Selberg integral; this also simplifies the
actual work to get a “good” major arc contribution.

On the minor arc we use Brüdern–Cook–Perelli’s [2] and Cook–Harman’s
[4] technique to deal with the exponential sum on primes (S(α)), while in
order to work with the exponential sum over powers of two (G(α)), we apply
Pintz–Ruzsa’s [21] algorithm to estimate the measure of the subset of the
minor arc on which |G(α)| is “large”. These two ingredients lead to a sharper
estimate on the minor arc and let us improve the size of the denominators
in (1.2)–(1.3). It is in this step that we have to distinguish between whether
λ1/λ2 belongs to R or to R′; this leads to two different estimates for the
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minor arc and, a fortiori, using Pintz–Ruzsa’s algorithm (see Lemma 5), to
two different constants in (3.10)–(3.11) and (1.2)–(1.3).

A second, less important, gain arises from our Lemma 4 which im-
proves the values in (1.4) compared with the ones in (1.9) (obtained in
[20, Lemma 3]). Such an improvement comes from using the Prime Number
Theorem (to get log 2 instead of 1) and Khalfalah–Pintz’s [10] computational
estimates for the number of representations of an integer as a difference of
powers of two (see Lemma 1).

Finally we remark that assuming a suitable form of the twin-prime
conjecture, i.e. B = 1 + ε in Lemma 3, we find that (1.4) holds with
C = 2.5585042083.

As a consequence of the Theorem we have

Corollary. Suppose that λ1, λ2 are real numbers such that λ1/λ2 is
negative and irrational. Further suppose µ1, . . . , µs are nonzero real num-
bers such that λi/µi ∈ Q for i ∈ {1, 2}, and denote by ai/qi their reduced
representations as rational numbers. Let moreover η be a sufficiently small
positive constant such that η < min(|λ1/a1|; |λ2/a2|) and τ ≥ η > 0. Finally
let s0 = s0(λ,µ, η) be as defined in (1.2)–(1.3). Then for every real number
γ and every integer s ≥ s0 the inequality

(1.10) |λ1p1 + λ2p2 + µ12m1 + · · ·+ µs2ms + γ| < τ

has infinitely many solutions in primes p1, p2 and positive integers
m1, . . . ,ms.

This Corollary immediately follows from the Theorem, since multiplying
both sides of (1.10) by a suitable constant, we can always reduce ourselves to
the case λ1 > 1, λ2 < −1 and |λ1/λ2| ≥ 1. Hence the Theorem ensures that
(1.6) has infinitely many solutions and the Corollary immediately follows
from the condition τ ≥ η.

We finally remark that the condition about the rationality of the two
ratios λi/µi, i = 1, 2, which, at first sight, could appear “weird”, is in fact
quite natural in the sense that otherwise the numbers λx+µy, x, y ∈ Z, are
dense in R by Kronecker’s Theorem (see also the remark after Lemma 4).

2. Definitions. Let ε be a sufficiently small positive constant, X be a
large parameter, M = |µ1|+ · · ·+ |µs| and L = log2(εX/(2M)), where log2 v
is the base 2 logarithm of v. We will use the Davenport–Heilbronn variation
of the Hardy–Littlewood method to count the number N(X) of solutions of
the inequality (1.6) with εX ≤ p1, p2 ≤ X and 1 ≤ m1, . . . ,ms ≤ L. Let
now e(u) = exp(2πiu) and

S(α) =
∑

εX≤p≤X
log p e(pα) and G(α) =

∑
1≤m≤L

e(2mα).
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For α 6= 0, we also define

K(α, η) =
(

sinπηα
πα

)2

and hence both

(2.1) K̂(t, η) =
�

R
K(α, η)e(tα) dα = max(0; η − |t|)

and

(2.2) K(α, η)� min(η2;α−2)

are well-known facts. Letting

I(X; R) =
�

R
S(λ1α)S(λ2α)G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα,

it follows from (2.1) that

I(X; R)� η log2X ·N(X).

We will prove that

(2.3) I(X; R)�s,λ,ε η
2X(logX)s,

thus obtaining
N(X)�s,λ,ε ηX(logX)s−2

and hence the Theorem follows. To prove (2.3) we first dissect the real line
into the major, minor and trivial arcs, by choosing P = X1/3 and letting

(2.4) M = {α ∈ R : |α| ≤ P/X}, m = {α ∈ R : P/X < |α| ≤ L2},

and t = R \ (M ∪m). Accordingly, we write

(2.5) I(X; R) = I(X; M) + I(X; m) + I(X; t).

We will prove that the inequalities

I(X; M) ≥ c1η2XLs,(2.6)
|I(X; t)| = o(XLs)(2.7)

hold for all sufficiently large X, and

(2.8) |I(X; m)| ≤ c2(s)ηXLs,

where c2(s) > 0 depends on s, c2(s)→ 0 as s→ +∞, and c1 = c1(ε,λ) > 0
is a constant such that

(2.9) c1η − c2(s) ≥ c3η

for some absolute positive constant c3 and s ≥ s0. Inserting (2.6)–(2.9) into
(2.5), we finally conclude that (2.3) holds, thus proving the Theorem.



198 A. Languasco and A. Zaccagnini

3. Lemmas. Let 1 ≤ n ≤ (1− ε)X/2 be an integer and p, p′ two prime
numbers. We define the twin prime counting function as follows:

(3.1) Z(X; 2n) =
∑

εX≤p≤X

∑
p′≤X

p′−p=2n

log p log p′.

Moreover we denote by S(n) the singular series and set S(n) = 2c0S′(n)
where S′(n) is defined in (1.5) and

(3.2) c0 =
∏
p>2

(
1− 1

(p− 1)2

)
.

Notice that S′(n) is a multiplicative function. According to Gourdon–Sebah
[7], we also have 0.66016181584 < c0 < 0.66016181585.

Let further k ≥ 1 be an integer and rk,k(m) be the number of represen-
tations of an integer m as

∑k
i=1 2ui −

∑k
i=1 2vi , where 1 ≤ ui, vi ≤ L are

integers, so that rk,k(m) = 0 for sufficiently large |m|. Define

S(k, L) =
∑

m∈Z\{0}

rk,k(m)S(m).

The first lemma is about the behaviour of S(k, L) for sufficiently large X.

Lemma 1 (Khalfalah–Pintz [10, Theorem 2]). For any given k ≥ 1, there
exists A(k) ∈ R such that

lim
L→+∞

(
S(k, L)
2L2k

− 1
)

= A(k).

Moreover they also proved numerical estimates for A(k) when 1 ≤ k ≤ 7.
We will just need

(3.3) A(1) < 0.2792521041.

The second lemma is an upper bound for the multiplicative part of the
singular series.

Lemma 2. For n ∈ N, n ≥ 3, we have

S′(n) <
n

c0ϕ(n)
<
eγ log logn

c0
+

2.50637
c0 · log log n

,

where γ = 0.5772156649 . . . is the Euler constant.

Proof. Let n ≥ 3. The first estimate follows immediately after remarking
that

S′(n) =
∏
p|n
p>2

(p− 1)2

p(p− 2)

∏
p|n
p>2

p

p− 1
<
∏
p>2

(p− 1)2

p(p− 2)

∏
p|n

p

p− 1
=

1
c0

n

ϕ(n)
.
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The second estimate is a direct application of Theorem 15 of Rosser and
Schoenfeld [23].

Letting f(1) = f(2) = 1 and f(n) = n/(c0ϕ(n)) for n ≥ 3, we can
say that the inequality S′(n) ≤ f(n) is sharper than Parsell’s estimate
S′(n) ≤ 2 log(2n) (see page 7 of [20]) for every n ≥ 1. Since it is clear that
computing the exact value of f(n) for large values of n is not easy (it requires
the knowledge of every prime factor of n), we also remark that the second
estimate in Lemma 2 leads to a sharper bound than S′(n) ≤ 2 log(2n) for
every n ≥ 14.

The next lemma is a famous result of Bombieri and Davenport.

Lemma 3 (Theorem 2 of Bombieri–Davenport [1]). There exists a posi-
tive constant B such that, for every positive integer n,

Z(X; 2n) < BS(n)X,

where Z(X; 2n) and S(n) are defined in (1.5) and (3.1)–(3.2), provided that
X is sufficiently large.

Chen [3] proved that B = 3.9171 can be used in Lemma 3. The assump-
tion of a suitable form of the twin prime conjecture, i.e. Z(X; 2n) ∼ S(n)X
as X → +∞, implies that in this case we can take B = 1 + ε for every
positive ε.

Now we state some lemmas we need to estimate I(X; m). The first one is

Lemma 4. Let X be a sufficiently large parameter and let λ, µ 6= 0 be
two real numbers such that λ/µ ∈ Q. Let a, q ∈ Z\{0} with q > 0, (a, q) = 1
be such that λ/µ = a/q. Let further 0 < η < |λ/a|. Then
�

R
|S(λα)G(µα)|2K(α, η) dα < ηXL2((1− ε) log 2 +C ·S′(q)) +OM,ε(ηXL),

where C = 10.0219168340.

Proof. First of all we remark that the constant C is in fact 2B(1+A(1)),
where B = 3.9171 is the constant in Lemma 3 and A(1) is estimated in
(3.3). This should be compared with the value C1 = 11.4525218267 obtained
in [20]. Assuming the twin prime conjecture in Lemma 3 and taking B =
1 + 10−20, we get C = 2.5585042083. Letting now

I =
�

R
|S(λα)G(µα)|2K(α, η) dα,

by (2.1) we immediately have
(3.4)
I =

∑
εX≤p1,p2≤X

∑
1≤m1,m2≤L

log p1 log p2 max(0; η−|λ(p1−p2)+µ(2m1−2m2)|).
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Let δ = λ(p1 − p2) + µ(2m1 − 2m2). For a sufficiently small η > 0, we claim
that

(3.5) |δ| < η is equivalent to δ = 0.

Recall our hypothesis on a and q, and assume that δ 6= 0 in (3.5). For
η < |λ/a| this leads to a contradiction. In fact we have

1
|a|

>
η

|λ|
>

∣∣∣∣(p1−p2)+
q

a
(2m1−2m2)

∣∣∣∣ =
∣∣∣∣a(p1 − p2) + q(2m1 − 2m2)

a

∣∣∣∣ ≥ 1
|a|
,

since a(p1−p2)+q(2m1−2m2) 6= 0 is a linear integral combination. Invoking
(3.5) in (3.4), for η < |λ/a| we can write

(3.6) I = η
∑

εX≤p1,p2≤X

∑
1≤m1,m2≤L

λ(p1−p2)+µ(2m1−2m2 )=0

log p1 log p2.

The diagonal contribution in (3.6) is equal to

(3.7) η
∑

εX≤p≤X
log2 p

∑
1≤m≤L

1 = ηXL2(1− ε) log 2 +OM,ε(ηXL)

where we used the Prime Number Theorem instead of trivially estimating
the contribution of log pi as in [20].

Now we have to estimate the contribution I ′ of the nondiagonal solutions
of δ = 0 and we will achieve this by connecting I ′ with the singular series
of the twin prime problem. Recalling that λ/µ = a/q 6= 0, (a, q) = 1,
by Lemma 3 and the fact that Z(X; (q/a)(2m2 − 2m1)) 6= 0 if and only if
a | (2m2 − 2m1), we have, since S(v) = S(2uv) for all u, v ∈ N, u ≥ 1,

I ′ ≤ 2η
∑

1≤m1<m2≤L
Z

(
X;

q

a
(2m2 − 2m1)

)
(3.8)

< 2BXη
∑

1≤m1<m2≤L
S

(
q

a
(2m2 − 2m1)

)
.

Using the multiplicativity of S′(n) (defined in (1.5)), we get

S′
(
q

a
(2m2 − 2m1)

)
≤ S′(q)S′

(
2m2 − 2m1

a

)
≤ S′(q)S′(2m2 − 2m1),

and so, by Lemma 1, (3.3) and (3.8), we can write, for every sufficiently
large X,

I ′ ≤ 2BXηS′(q)
∑

1≤m1<m2≤L
S(2m2 − 2m1) = BXηS′(q)S(1, L)(3.9)

< 2B(1 +A(1))S′(q)XηL2.
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Hence, by (3.6)–(3.7) and (3.9), we finally get

I < ηXL2((1− ε) log 2 + 2B(1 +A(1))S′(q)) +OM,ε(ηXL),

proving Lemma 4.

We remark that if in Lemma 4 we consider also the case λ/µ ∈ R\Q, we
can just find η = η(X)→ 0 as X → +∞ and this implies that s0 ≈ |log η| →
+∞ (see (1.2)–(1.3) for the precise definition of s0). This essentially depends
on the fact that, for λ/µ ∈ R \ Q and m,n ∈ Z, there is no function f(X)
such that |λm + µn| ≥ f(X) and f(X) → c > 0 as X → +∞ since the set
of values of λm+ µn is dense in R. A different, but related, way to see this
phenomenon is to remark that the inequality |αn+m| < η is equivalent to
either ‖nα‖ < η or ‖nα‖ > 1 − η, where ‖u‖ is the distance of u from the
nearest integer. When α is irrational, this has ∼ 2ηX solutions with n ≤ X,
since the sequence ‖nα‖ is uniformly distributed modulo 1.

To estimate the contribution of G(α) on the minor arc we use Pintz–
Ruzsa’s method as developed in [21, §§3–7].

Lemma 5 (Pintz–Ruzsa [21, §7]). Let 0 < c < 1. Then there exists
ν = ν(c) ∈ (0, 1) such that

|E(ν)| := |{α ∈ (0, 1) : |G(α)| > νL}| �M,ε X
−c.

To obtain explicit values for ν we have to modify the Pintz–Ruzsa al-
gorithm since in this application the estimate has to be performed for a
different choice of parameters than the ones used in [21]. We have used the
PARI/GP [25] language and the gp2c compiling tool to compute fifty deci-
mal digits (but we write here just ten) of the constant involved in the above
lemma. We will give two different estimates that we will use in the case when
λ1/λ2 belongs to R or R′. If we run the program in our cases, Lemma 5
gives the following results:

(3.10) |G(α)| ≤ 0.83372131685 · L

if α ∈ [0, 1] \ E where |E| �M,ε X
−2/3−10−20

, to be used when λ1/λ2 ∈ R,
and

(3.11) |G(α)| ≤ 0.91237810306 · L

if α ∈ [0, 1] \ E where |E| �M,ε X
−4/5−10−20

, to be used when λ1/λ2 ∈ R′.
The computing time to get (3.10)–(3.11) on a double quad-core PC of the

NumLab laboratory of the Department of Pure and Applied Mathematics
of the University of Padova was 24 minutes and 40 seconds in the first case
(but to get 30 correct digits just 3 minutes and 24 seconds suffice), and 29
minutes in the second case (but just 3 minutes and 50 seconds to get 30
correct digits). The PARI/GP source code of our program together with
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the cited numerical values are available at www.math.unipd.it/˜languasc/
PintzRuzsaMethod.html.

Now we state some lemmas we will use to work on the major arc. Let
θ(x) =

∑
p≤x log p, let

(3.12) J(X,h) =
X�

εX

(θ(x+ h)− θ(x)− h)2 dx

be the Selberg integral, and set

U(α) =
∑

εX≤n≤X
e(αn).

Applying to S(α) − U(α) the famous Gallagher lemma ([5, Lemma 1])
on the truncated L2-norm of exponential sums, one gets the following well-
known statement which we cite from Brüdern–Cook–Perelli [2, Lemma 1].

Lemma 6. For 1/X ≤ Y ≤ 1/2 we have
Y�

−Y
|S(α)− U(α)|2 dα�ε

logX
Y

+ Y 2X + Y 2J(X, 1/Y ),

where J(X,h) is defined in (3.12).

To estimate the Selberg integral, we use the next result.

Lemma 7 (Saffari–Vaughan [24, §6]). For any A > 0 there exists B =
B(A) > 0 such that

J(X,h)�ε
h2X

(logX)A

uniformly for h ≥ X1/6(logX)B.

4. The major arc. Letting

(4.1) T (α) =
X�

εX

e(tα) dt�ε min(X, 1/|α|),

we first write

(4.2) I(X; M) =
�

M

T (λ1α)T (λ2α)G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα

+
�

M

(S(λ1α)− T (λ1α))T (λ2α)G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα

+
�

M

S(λ1α)(S(λ2α)− T (λ2α))G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα

= J1 + J2 + J3,
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say. We will prove that

(4.3) J1 ≥
1− c4ε
λ1

η2XLs

for some positive c4, and

(4.4) J2 + J3 = o(η2XLs),

showing that

I(X; M) ≥ 1− c5ε
λ1

η2XLs

for some positive c5, which implies that (2.6) holds with c1 = (1− c5ε)/λ1.

Estimation of J2 and J3. We first estimate J3. We remark that, by the
partial summation formula, we have T (α)−U(α)� 1 +X|α|. So, recalling
P = X1/3, (2.4) and |S(λ1α)| � X, we get�

M

|T (λ2α)− U(λ2α)| |S(λ1α)| dα� X
�

M

(1 +X|λ2α|) dα

�λ X
2/3.

Hence, using the trivial estimates |G(µiα)| ≤ L and K(α, η) � η2, we can
write

J3 =
�

M

S(λ1α)(S(λ2α)− U(λ2α))G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα

+Oλ,M (η2X2/3Ls).

Now, using (2.4), the Cauchy–Schwarz inequality, the Prime Number The-
orem, Lemmas 6–7 with A = 3, Y = P/X, P = X1/3, and again the trivial
estimates |G(µiα)| ≤ L and K(α, η)� η2, we obtain

J3 � η2Ls
( �

M

|S(λ2α)− U(λ2α)|2 dα
)1/2( �

M

|S(λ1α)|2 dα
)1/2

+Oλ,M (η2X2/3Ls)

�λ,M,ε η
2Ls

X1/2

(logX)3/2

(1�

0

|S(α)|2 dα
)1/2

+ η2X2/3Ls

�λ,M,ε η
2XLs−1 = o(η2XLs).

The integral J2 can be estimated analogously using (4.1) instead of the
Prime Number Theorem. Hence (4.4) holds.

Estimation of J1. Recalling that P = X1/3 and using (2.4), (4.1) and
(4.2) we obtain

(4.5) J1 =
∑

1≤m1≤L
· · ·

∑
1≤ms≤L

J(µ12m1 +· · ·+µs2ms +γ, η)+Oε(η2X2/3Ls),
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where J(u, η) is defined by

J(u, η) :=
�

R
T (λ1α)T (λ2α)e(uα)K(α, η) dα

=
X�

εX

X�

εX

K̂(λ1u1 + λ2u2 + u, η) du1 du2

and the second relation follows by interchanging the order of integration.
For the sake of simplicity let

J0(u, η) :=
X�

0

X�

0

K̂(λ1u1 + λ2u2 + u, η) du1 du2,

where λ1 > −λ2 > 1, |u| ≤ εX, 0 < η ≤ εX, and ε > 0 is sufficiently
small in terms of λ1 and λ2. The trivial change of variables y1 = λ1u1 and
y2 = −λ2u2 yields

J0(u, η) = − 1
λ1λ2

λ1X�

0

−λ2X�

0

K̂(y1 − y2 + u, η) dy1 dy2

= − 1
λ1λ2

λ1X�

0

dy1

−λ2X�

0

max(0; η − |y1 − y2 + u|) dy2.

We may obviously assume that X ≥ (λ1 + λ2)−1(η + |u|), so that the lines
y2 = y1 + u+ jη, for j ∈ {−1, 0, 1}, intersect the boundary of the rectangle
[0, λ1X] × [0,−λ2X] on its upper horizontal side. Exploiting the fact that
the integrand vanishes outside the set y1 + u− η ≤ y2 ≤ y1 + u+ η, we may
replace the condition y1 ∈ [0, λ1X] with y1 ∈ [0,−λ2X − η − u] ∪ [−λ2X −
η − u,−λ2X + η − u] = I1 ∪ I2, say. If y1 ∈ I1 we have

−λ2X�

0

max(0; η − |y1 − y2 + u|) dy2 =
−λ2X−y1−u�

−y1−u
max(0; η − |w|) dw = η2,

and the total contribution of I1 to J0 is therefore η2(−λ2X − η − u). The
contribution of I2 is nonnegative, and it is easily seen that it is O(η3).
Finally,

J0(u, η) = − 1
λ1λ2

η2(−λ2X − η − u) +O(η3) ≥ 1
λ1
Xη2 +O(εXη2).

Arguing as above, it is also easy to see that J0(u, η)− J(u, η)� εXη2, and
(4.3) follows.
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5. The trivial arc. Recalling (2.4) and the trivial estimate |G(µiα)|
≤ L, and using the Cauchy–Schwarz inequality, we get

|I(X; t)| � Ls
(+∞�

L2

|S(λ1α)|2K(α, η) dα
)1/2(+∞�

L2

|S(λ2α)|2K(α, η) dα
)1/2

.

By (2.2) and making a change of variable, we find, for i = 1, 2, that
+∞�

L2

|S(λiα)|2K(α, η) dα�λ

+∞�

λiL2

|S(α)|2

α2
dα

�
∑

n≥λiL2

1
(n− 1)2

n�

n−1

|S(α)|2 dα

�λ L
−2

1�

0

|S(α)|2 dα�λ,M,ε
X

logX
,

by the Prime Number Theorem, and hence (2.7) holds.

6. The minor arc: λ1/λ2 ∈ R. Recalling first

I(X; m) =
�

m

S(λ1α)S(λ2α)G(µ1α) · · ·G(µsα)e(γα)K(α, η) dα,

and letting c ∈ (0, 1) to be chosen later, we first split m as m1 ∪m2, m1 ∩m2

= ∅, where m2 is the set of β ∈ m such that |G(β)| > ν(c)L and ν(c) is
defined in Lemma 5. We will choose c to get |I(X; m2)| = o(ηX), since,
again by Lemma 5, we know that |m2| �M,ε sL

2X−c.
To this end, we first use the trivial estimates |G(µiα)| ≤ L and K(α, η)

� η2, and the Cauchy–Schwarz inequality, thus obtaining

(6.1) |I(X; m2)|

≤ Ls
( �

m2

|S(λ1α)S(λ2α)|2K(α, η) dα
)1/2( �

m2

K(α, η) dα
)1/2

� ηLs|m2|1/2
( �

m2

|S(λ1α)S(λ2α)|2K(α, η) dα
)1/2

.

We can now argue as in Section 4 of Brüdern–Cook–Perelli [2] to get

(6.2)
�

m2

|S(λ1α)S(λ2α)|2K(α, η) dα�ε ηX
8/3+ε′ .

Hence, by (6.2), (6.1) becomes

|I(X; m2)| �M,ε s
1/2η3/2X4/3+2ε′−c/2.



206 A. Languasco and A. Zaccagnini

Taking c = 2/3+10−20 and using (3.10), we get, for ν = 0.83372131685 and
ε′ > 0 sufficiently small,

(6.3) |I(X; m2)| = o(ηX).

Now we evaluate the contribution of m1. Using Lemma 4 and the Cauchy–
Schwarz inequality, we infer that

|I(X; m1)| ≤ (νL)s−2
( �

m

|S(λ1α)G(µ1α)|2K(α, η) dα
)1/2

(6.4)

×
( �

m

|S(λ2α)G(µ2α)|2K(α, η) dα
)1/2

< νs−2C(q1, q2)ηXLs,

where, recalling Lemmas 2 and 4, C(q1, q2) is defined as in (1.4).
Hence, by (6.3) and (6.4), for X sufficiently large we finally get

|I(X; m)| < (0.83372131685)s−2C(q1, q2)ηXLs

whenever λ1/λ2 ∈ R.
This means that (2.8) holds with c2(s) = (0.83372131685)s−2C(q1, q2).

7. The minor arc: λ1/λ2 ∈ R′. We act on m1 as in (6.4) of the previous
section to obtain

(7.1) |I(X; m1)| < νs−2C(q1, q2)ηXLs,

where C(q1, q2) is defined in (1.4).
Now we proceed to estimate I(X; m2). First we argue as in the previous

section until (6.1) and then we work as in Section 8 of Cook–Harman [4]
and pp. 221–223 of Harman [8] to obtain

�

m2

|S(λ1α)S(λ2α)|2K(α, η) dα� η2X14/5+ε′ + ηX13/5+ε′ .

This, using (6.1), leads to

|I(X; m2)| �M,ε s
1/2X−c/2(η2X7/5+ε′ + η3/2X13/10+ε′).

Taking c = 4/5+10−20 and using (3.11), we get, for ν = 0.91237810306 and
ε′ > 0 sufficiently small,

(7.2) |I(X; m2)| = o(ηX).

Hence, by (7.1) and (7.2), for X sufficiently large we finally get

|I(X; m)| < (0.91237810306)s−2C(q1, q2)ηXLs

whenever λ1/λ2 ∈ R′.
This means that (2.8) holds with c2(s) = (0.91237810306)s−2C(q1, q2).
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8. Proof of the Theorem. We have to verify whether there exists an
s0 ∈ N such that (2.9) holds for X sufficiently large. Combining the inequal-
ities (2.6)–(2.8), where c2(s) = (0.83372131685)s−2C(q1, q2) if λ1/λ2 ∈ R,
and if λ1/λ2 ∈ R′, c2(s) = (0.91237810306)s−2C(q1, q2), we deduce for
s ≥ s0, with s0 defined in (1.2)–(1.3), that (2.9) holds in both cases. This
completes the proof of the Theorem.
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