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1. Introduction. The theory of Jacobi forms (that is, automorphic
forms on the Jacobi group and its generalizations to higher degree) has been
studied by several authors (cf. [7, 29, 20, 21, 11]). In particular, Shintani
introduced the standard L-function attached to a Jacobi form of arbitrary
degree, and afterward Murase derived in a series of papers [20, 21] its mero-
morphic continuation and functional equation by making use of its integral
expression. Moreover, Murase and Sugano derived in [22] an expression of
the standard L-function attached to a Jacobi form in terms of a power se-
ries generated by eigenvalues of Hecke operators. In this paper, we derive
a local expression of the standard L-function attached to a Jacobi form
in terms of a power series related to its Fourier coefficients. This can be
regarded as an analogue of Andrianov’s identity in [1] for Siegel modular
forms. As an application, we shall also prove a rationality theorem for a
formal power series related to a polynomial appearing in the theory of local
densities of quadratic forms, which is very similar to the result obtained in
[6] by Böcherer and Sato.

Let us describe our main results precisely. Let p be an arbitrary rational
prime. For any non-zero element a of the field Qp of p-adic numbers, we put

χp(a) =


1 if Qp(a1/2) = Qp,
−1 if Qp(a1/2)/Qp is unramified,
0 if Qp(a1/2)/Qp is ramified.

Let n be a positive even integer. For each non-degenerate half-integral sym-
metric matrix B′ of degree n over the ring Zp of p-adic integers, we define
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the local Siegel series with complex parameter s by

bp(B′; s) :=
∑

R∈Symn(Qp)/Symn(Zp)

ep(tr(−B′R))µp(R)−s,

where µp(R) = [ZnpR + Znp : Znp ], and ep is the standard additive character
of Qp. It is well-known that such singular series appear naturally in the
study of Fourier coefficients of Siegel Eisenstein series of degree n and there
exists a unique polynomial Fp(B′;X) in one variable X such that

bp(B′; s) =
(1− p−s)

∏n/2
i=1(1− p2i−2s)

1− ξp(B′)pn/2−s
Fp(B′; p−s),

where ξp(B′) = χp((−1)n/2 det(2B′)) (cf. [18]). Let B be a non-degenerate
symmetric matrix of degree n − 1 over a subring R of Zp satisfying the
condition

(B + trBrB)/4 is a half-integral symmetric matrix over R for some(1.1)
rB ∈ Rn−1.

Then we can associate B with a non-degenerate half-integral symmetric
matrix

B(1) =
(

1 rB/2
trB/2 (B + trBrB)/4

)
of degree n over R. Here we easily see that the vector rB is uniquely deter-
mined by B modulo 2Rn−1, and therefore B(1) is uniquely determined by B
up to GLn(R)-equivalence. For such a B over Zp, we define a polynomial
F

(1)
p (B;X) in X by

F (1)
p (B;X) := Fp(B(1);X)

and put

G(1)
p (B;X)

=
∑

D∈GLn−1(Zp)\Mn−1(Zp)∩GLn−1(Qp)

πp(D)F (1)
p (B[D−1];X)(pnX2)ordp(detD),

where πp(D) denotes the generalized local Möbius function, that is, πp(D) =

(−1)ipi(i−1)/2 or 0 according as D∈GLn−1(Zp)
(

1n−1−i

p1i

)
GLn−1(Zp)

for some 0 ≤ i ≤ n−1 or not. We note that these polynomials do not depend
on the choice of rB. In addition, we also define a polynomial B(1)

p (B; t) in
one variable t by

B(1)
p (B; t) :=

(1− ξp(B(1))p−(n−1)/2t)
∏n/2−1
i=1 (1− p−2i+1t2)

G
(1)
p (B; p−n+1/2t)

.
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On the other hand, for any positive even integers k and n, let φ be a
Jacobi form of weight k and of index 1 with respect to the Jacobi modular
group Γ Jn−1 of degree n − 1, and σ(φ) a Siegel modular form of weight
k − 1/2 with respect to the congruence subgroup Γ

(n−1)
0 (4) of the Siegel

modular group of degree n−1 corresponding to φ under the Eichler–Zagier–
Ibukiyama correspondence σ (cf. §§2.3 and 2.4 below). Let D(n−1)

p (Z) be the
set of all (n− 1)× (n− 1) matrices with entries in Z whose determinant is
a power of p. For each positive definite half-integral symmetric matrix B of
degree n− 1 over Z, we define a power series G̃φ,p(B; t) in t by

G̃φ,p(B; t) :=
∑

D∈GLn−1(Z)\D(n−1)
p (Z)

πp(D)Cσ(φ)(B[D−1])(pkt)ordp(detD),

where Cσ(φ)(B) denotes the Bth Fourier coefficient of σ(φ). Then our first
main result is the following:

Theorem 1.1 (cf. Theorem 3.1 below). Suppose that φ is a Hecke eigen-
form, that is, a common eigenfunction of all Hecke operators, whose Satake
p-parameter is of the form (χ(1)

φ (p), . . . , χ(n−1)
φ (p)) up to the action of the

Weyl group. Then, for each positive definite half-integral symmetric matrix
B of degree n− 1 over Z satisfying the condition (1.1), we have

B(1)
p (B; pn−1/2t)G̃φ,p(B; t)∏n−1

i=1 (1− χ(i)
φ (p)pn−1/2t)(1− χ(i)

φ (p)−1pn−1/2t)

=
∑

W∈GLn−1(Z)\D(n−1)
p (Z)

Cσ(φ)(B[W ])p−(k−n−1) ordp(detW )tordp(detW ).

This can be regarded as an analogue of the so-called Andrianov identity,
which was obtained in the study of standard L-functions attached to Siegel
modular forms of integral weight (cf. [1], see also [5]). We also note that
the above identity for p 6= 2 can be derived from a similar result for Siegel
modular forms of half-integral weight due to Shimura and Zhuravlev (cf.
Corollary 5.2 in [25], see also Theorem 1.1 in [28]). However, we cannot use
their results to prove the above identity for p = 2.

Next, we explain an application of the above result to the rationality of
a certain formal power series related to the polynomial F (1)

p (B;X). For each
non-degenerate half-integral symmetric matrix B of degree n − 1 over Zp
satisfying the condition (1.1), we define a Laurent polynomial F̃ (1)

p (B;X)
in X by

F̃ (1)
p (B;X) := X−ordp((−1)n/2 det(2B(1))d(B(1))−1)/2F (1)

p (B; p−(n+1)/2X),
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and put

G̃(1)
p (B;X, t)

=
∑

D∈GLn−1(Zp)\Mn−1(Zp)∩GLn−1(Qp)

πp(D)F̃ (1)
p (B[D−1];X)tordp(detD),

where d(B(1)) is the discriminant of the field extension

Qp(
√

(−1)n/2 det(2B(1)))/Qp.

We note that the functional equation F̃
(1)
p (B;X) = F̃

(1)
p (B;X−1) holds

(cf. [12]). Thus F̃
(1)
p (B;X) is a polynomial in X + X−1, and therefore

G̃
(1)
p (B;X, t) is a polynomial in X +X−1 and t. Now we put

R(1)
p (B;X, t) =

∑
W∈GLn−1(Zp)\Mn−1(Zp)∩GLn−1(Qp)

F̃ (1)
p (B[W ];X)tordp(detW ).

By applying Theorem 1.1 to the Jacobi Eisenstein series, we obtain the
following:

Theorem 1.2 (cf. Theorem 3.4 below). Let n be a positive even integer.
If B is a non-degenerate half-integral symmetric matrix of degree n− 1 over
Zp satisfying the condition (1.1), then

R(1)
p (B;X, t) =

B(1)
p (B; pn/2−1t)G̃(1)

p (B;X, t)∏n−1
j=1 (1− pj−1Xt)(1− pj−1X−1t)

.

We note that Böcherer and Sato ([6]) obtained a similar identity for a
half-integral symmetric matrix of degree n. The above identity will play
an important role in proving a conjecture on the period of the Ikeda lift
proposed in [13] by Ikeda (cf. [16, 17]).

Notation. We denote by Z, Q, R and C the ring of rational integers, the
field of rational numbers, the field of real numbers and the field of complex
numbers, respectively. We put e(x) = exp(2π

√
−1x) for any x ∈ C. For each

rational prime p, let Qp and Zp be the field of p-adic rational numbers and
the ring of p-adic integers, respectively. We denote by ordp the valuation of
Qp normalized as ordp(p) = 1, and by ep the continuous additive character
of Qp such that ep(x) = e(x) for any x ∈ Q, which will be called the standard
additive character of Qp.

Let R be a commutative ring. We denote by R× the unit group of R,
and by Mm,n(R) the set of m× n matrices with entries in R. In particular,
we write Mn(R) = Mn,n(R) and Rn = M1,n(R). We denote by 1n,0n ∈
Mn(R) the unit matrix and the zero matrix of degree n, respectively. We
put GLn(R) = {U ∈ Mn(R) | detU ∈ R×}, where detU is the determinant
of U . For X ∈ Mm,n(R) and A ∈ Mm(R), we write A[X] = tXAX ∈
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Mn(R), where tX denotes the transpose of X. Let Symn(R) be the set of
symmetric matrices of degree n with entries in R. If R is an integral domain
of characteristic different from 2, let Sym∗n(R) be the set of all half-integral
symmetric matrices of degree n over R, that is,

Sym∗n(R) :=
{
T = (tij) ∈ Symn(Frac(R))

∣∣∣∣ tii ∈ R (1 ≤ i ≤ n),
2tij ∈ R (1 ≤ i 6= j ≤ n)

}
,

where Frac(R) is the field of fractions of R. In addition, for any subset S of
Symn(R), we denote by S× the subset of S consisting of all non-degenerate
elements in S. In particular, if R is a subring of R, we denote by S>0 (resp.
S≥0) the subset of S consisting of all positive definite (resp. semi-positive
definite) matrices. For any commutative ring R, the group GLn(R) acts on
Symn(R) in the following way:

GLn(R)× Symn(R) 3 (U,A) 7→ A[U ] ∈ Symn(R).

For a subgroup G of GLn(R), and a subset S of Symn(R) stable under
the action of G, we denote by S/G the set of G-orbits in S. For a subring
R′ of R we define an equivalence relation on Symn(R) as follows: for any
A1, A2 ∈ Symn(R),

(1.2) A1 ∼R′ A2
def⇐⇒ A2 = A1[U ] for some U ∈ GLn(R′).

For square matricesX ∈ Mm(R) and Y ∈ Mn(R), we writeX ⊥ Y =
(
X
Y

)
.

In particular, we often write x ⊥ Y instead of (x) ⊥ Y for any x ∈ R.
We can simply write the diagonal matrix with entries x1, . . . , xn in R by
x1 ⊥ · · · ⊥ xn.

2. Preliminaries

2.1. Siegel modular forms of integral weight. Let Gn(R) be the
real symplectic group of degree n, that is,

Gn(R) := Spn(R) = {M ∈ GL2n(R) | tMJnM = Jn},
where Jn =

(
0n 1n
−1n 0n

)
. For any S ∈ Symn(R) and A ∈ GLn(R), we put

nn(S) =
(

1n S
0n 1n

)
and dn(A) =

( A 0n
0n tA−1

)
, respectively. We easily see that

the elements nn(S),dn(A) and Jn generate Gn(R). The discrete subgroup
Γn := Spn(Z) = Gn(R) ∩ M2n(Z) of Gn(R) is called the Siegel modular
group of degree n. For any N ∈ Z>0, we denote by Γ (n)

0 (N) the congruence
subgroup of Γn defined by

Γ
(n)
0 (N) :=

{(
A B
C D

)
∈ Γn | C ≡ 0n (mod N)

}
.

We denote the Siegel upper half-space of degree n by Hn, that is,

Hn := {Z = X +
√
−1Y ∈ Symn(C) | Y > 0 (positive definite)}.
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For any M =
(
A B
C D

)
∈ Gn(R) and Z ∈ Hn, we easily see that j(M,Z) :=

CZ + D ∈ GLn(C) and we put M〈Z〉 := (AZ + B)(CZ + D)−1. As is
well-known, this defines a transitive action of Gn(R) on Hn.

For any k ∈ Z, a C-valued holomorphic function F (Z) on Hn is called
a (holomorphic) Siegel modular form of degree n and weight k if it satisfies
the following two conditions:

(i) F (M〈Z〉) = det(j(M,Z))kF (Z) for any M ∈ Γn;
(ii) F possesses a Fourier expansion of the form

F (Z) =
∑

B∈Sym∗n(Z)≥0

AF (B)e(tr(BZ)),

where tr(∗) denotes the trace of a matrix.

In particular, a Siegel modular form F is called a cusp form if it satisfies
the stronger condition AF (B) = 0 unless B > 0 (positive definite). We
denote by Mk(Γn) and Sk(Γn) the C-vector spaces consisting of all Siegel
modular forms and Siegel cusp forms of degree n and weight k, respectively.
For further details on Siegel modular forms of integral weight, see [1] or [8].

2.2. Review of the theory of Jacobi forms of higher degree. In
this subsection, we introduce some basic facts on Jacobi forms of integral
weight whose index is a scalar. For further details on Jacobi forms, see
[7, 20, 21, 29].

2.2.1. Jacobi group and complex analytic Jacobi forms. Let Gn=Spn(Q)
= {M ∈ GL2n(Q) | tMJnM = Jn}; we naturally identify Gn with its image
under the natural inclusion

Gn 3M =
(
A B

C D

)
7→ [M ] :=


1 0 0 0
0 A 0 B

0 0 1 0
0 C 0 D

 ∈ Gn+1.

We denote by Hn the Heisenberg group consisting of all elements of the form

[(λ, µ), κ] :=


1 0 κ µ

0 1n tµ 0n
1 0
0 1n




1 λ

0 1n
1 0
−tλ 1n


for some (λ, µ) ∈ Qn ⊕Qn and κ ∈ Q. Then

GJn := {[(λ, µ), κ] · [M ] ∈ Gn+1 | [(λ, µ), κ] ∈ Hn, M ∈ Gn}
is a Q-algebraic subgroup of Gn+1; it is called the Jacobi group of degree n.
We note that the Jacobi group GJn is a semi-direct product Gn n Hn, and
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forms a connected non-reductive Q-algebraic group with the center

ZJn = {[(0, 0), κ] | κ ∈ Q}.

It is easy to see the following:

Lemma 2.1. For each [(λ, µ), κ], [(λ′, µ′), κ′]∈Hn, and M =
(
A B
C D

)
∈Gn,

we have

[(λ, µ), κ] · [(λ′, µ′), κ′] = [(λ+ λ′, µ+ µ′), κ+ κ′ + 2λ tµ′],(2.1)
[(λ, µ), κ] · [M ](2.2)

= [M ] · [(λA+ µC, λB + µD), κ+ (λA+ µC) t(λB + µD)− λ tµ].

Proof. Since it is an easy calculation, we omit the proof.

According to the action of Gn+1(R) = Spn+1(R) on the Siegel upper
half-space Hn+1, the group GJn(R) of real points of GJn naturally acts on
the space Hn × Cn as follows. For each g = [(λ, µ), κ] · [M ] ∈ GJn(R) with
M =

(
A B
C D

)
∈ Gn(R) and (τ, z) ∈ Hn × Cn, we put

g〈τ, z〉 := (M〈τ〉, z(Cτ +D)−1 + λM〈τ〉+ µ).

We easily see that this action is transitive and the stabilizer of the point
(
√
−1 1n, 0) ∈ Hn × Cn in GJn(R) coincides with ZJn (R) ·K∞, where K∞ is

the stabilizer of
√
−1 1n ∈ Hn in Gn(R), that is,

K∞ =
{(

A B

−B A

)
∈ Gn(R)

∣∣∣∣A+
√
−1B is unitary

}
.

The map g 7→ g〈
√
−1 1n, 0〉 induces a diffeomorphism of the quotient

GJn(R)/(ZJn (R) ·K∞) onto Hn × Cn.
Let l and m be non-negative integers. For any C-valued function φ(τ, z)

on Hn × Cn, we define the action of g ∈ GJn(R) on φ by

(φ|l,mg)(τ, z) := Jl,m(g, (τ, z))−1φ(g〈τ, z〉),

where for g = [(λ, µ), κ] · [M ], we put

Jl,m(g, (τ, z)) := det(Cτ +D)l

×e(−mκ−mτ [tλ]− 2mλ tz−mλ tµ+m{(Cτ +D)−1C}[t(z+λτ +µ)]).

It is easy to see that for any gi ∈ GJn(R) (i = 1, 2),

(φ|l,mg1)|l,mg2 = φ|l,m(g1g2).

In particular, it follows from Lemma 2.1 that for any M,M ′ ∈ Gn(R) and
[(λ, µ), κ], [(λ′, µ′), κ′] ∈ Hn(R), we have
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φ|l,m[M ]|l,m[M ′] = φ|l,m[MM ′],
φ|l,m[(λ, µ), κ]|l,m[(λ′, µ′), κ′] = φ|l,m[(λ+ λ′, µ+ µ′), κ+ κ′ + 2λ tµ′],

φ|l,m[M ]|l,m
[
(λ, µ)M,κ+ (λ, µ)M

(
0n 1n
0n 0n

)
tM t(λ, µ)− λ tµ

]
= φ|l,m[(λ, µ), κ] · [M ].

We also define a subgroup of GJn(R) by Γ Jn := Γn nHn(Z), where Hn(Z) is
a subgroup of Hn(R) consisting of all elements with integral entries.

Let l and m be positive integers. A holomorphic function φ(τ, z) on
Hn × Cn is called a (holomorphic) Jacobi form of degree n, weight l and
index m if it satisfies the following two conditions:

(i) φ|l,mγ = φ for any γ ∈ Γ Jn .
(ii) φ possesses a Fourier expansion of the form

φ(τ, z) =
∑

T∈Sym∗n(Z), r∈Zn
cφ(T, r)e(tr(Tτ) + r tz)

with cφ(T, r) = 0 unless 4mT − trr ≥ 0.

In particular, a Jacobi form φ is called cuspidal if it satisfies the stronger
condition cφ(T, r) = 0 unless 4mT − trr > 0. We denote by Jl,m(Γ Jn ) and
Jcusp
l,m (Γ Jn ) the C-vector spaces consisting of all Jacobi forms and cuspidal

Jacobi forms of degree n, weight l and index m, respectively.
As an important example of Jacobi form, we consider Fourier–Jacobi

coefficients of Siegel modular forms of arbitrary degree n > 1. For any
k ∈ Z, let F ∈Mk(Γn) possess a Fourier expansion

F (Z) =
∑

B′∈Sym∗n(Z)≥0

AF (B′)e(tr(B′Z)) (Z ∈ Hn),

and we put

Z =
(
τ ′ z
tz τ

)
with τ ∈ Hn−1, z ∈ Cn−1 and τ ′ ∈ H1.

Then we have the so-called Fourier–Jacobi expansion

F

((
τ ′ z
tz τ

))
=
∞∑
m=0

φm(τ, z)e(mτ ′),

where

(2.3) φm(τ, z) =
∑

T∈Sym∗n−1(Z), r∈Zn−1

4mT−trr≥0

AF

((
m r/2
tr/2 T

))
e(tr(Tτ) + r tz).
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We easily see that φm ∈ Jk,m(Γ Jn−1) for each m ∈ Z>0. In particular, if
F ∈ Sk(Γn), then φm ∈ J cusp

k,m (Γ Jn−1).
As another example, if k is an even integer such that k > n+ 1, for each

m ∈ Z>0, we define the Jacobi Eisenstein series of degree n− 1, weight k
and index m by

E
(n−1)
k,m (τ, z) :=

∑
γ∈PJn−1∩ΓJn−1\ΓJn−1

Jk,m(γ, (τ, z))−1 (τ ∈ Hn−1, z ∈ Cn−1),

where

P Jn−1 :=
{

[(λ, µ), κ] ·
[(

A B
C D

)]
∈ GJn−1

∣∣C = 0n−1, λ = 0
}
.

We easily see that the right-hand side of the above definition is absolutely
convergent and E

(n−1)
k,m ∈ Jk,m(Γ Jn−1). Moreover, Böcherer ([4]) showed that

for any m ∈ Z>0, there exists a certain relation between E
(n−1)
k,m and the

mth coefficient e(n−1)
k,m of the above Fourier–Jacobi expansion of the Siegel

Eisenstein series E
(n)
k ∈ Mk(Γn). In particular, when m = 1, we have

E
(n−1)
k,1 = e

(n−1)
k,1 .

For later use, we give an explicit formula for the Fourier coefficients of
e

(n−1)
k,1 in case n is even. Let k be a positive even integer such that k > n+1.

The Siegel Eisenstein series E(n)
k of weight k with respect to Γn is defined

by

E
(n)
k (Z) =

∑
(C,D)

det(CZ +D)−k (Z ∈ Hn)

where (C,D) runs through a complete set of representatives of the equiv-
alence classes of coprime symmetric pairs of size n. For each positive def-
inite half-integral symmetric matrix B′ of degree n, we denote by d(B′)
the discriminant of the field extension Q(

√
(−1)n/2 det(2B′))/Q and put

f(B′) =
√

(−1)n/2 det(2B′)/d(B′). It is well-known that f(B′) ∈ Z>0. Fur-
thermore, we denote by χB′ the Kronecker character corresponding to the
above field extension. For each B′ ∈ Sym∗n(Z)>0, the B′th Fourier coefficient
A

(n)
k (B′) of E(n)

k is described as

A
(n)
k (B′) = ξ(n, k)L(1− k/2 + n/2, χB′)f(B′)k−(n+1)/2(2.4)

×
∏

p|f(B′)

F̃p(B′; pk−(n+1)/2),

where

ξ(n, k) = 2n/2ζ(1− k)−1

n/2∏
i=1

ζ(1 + 2i− 2k)−1,
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L(s, χB′) denotes the Dirichlet L-function associated with χB′ , and

F̃p(B′;X) = X−ordp(f(B′))Fp(B′; p−(n+1)/2X).

We note that if B ∈ Sym∗n−1(Z)>0 satisfies condition (1.1), then F̃ (1)
p (B;X)

= F̃p(B(1);X). Thus we have

Proposition 2.1. Under the same assumption as above, let e(n−1)
k,1 pos-

sess a Fourier expansion

e
(n−1)
k,1 (τ, z) =

∑
T∈Sym∗n−1(Z), r∈Zn−1

c
(n−1)
k,1 (T, r)e(tr(Tτ) + r tz).

Then, for each T ∈ Sym∗n−1(Z) such that BT = 4T − trr > 0 with r ∈ Zn−1,
we have

c
(n−1)
k,1 (T, r)

= ξ(n, k)L(1− k + n/2, χ
B

(1)
T

)f(B(1)
T )k−(n+1)/2

∏
p|f(B(1)

T )

F̃ (1)
p (BT ; pk−(n+1)/2),

where

B
(1)
T =

(
1 r/2

tr/2 (BT + trr)/4

)
=
(

1 r/2
tr/2 T

)
∈ Sym∗n(Z)>0.

Proof. Since
c

(n−1)
k,1 (T, r) = A

(n)
k (B(1)

T ),

the assertion immediately follows from (2.4).

Returning to the general theory of Jacobi forms, we now consider the
action of Hecke operators on Jacobi forms. Let M ∈ Spn(Q) and decompose
the double coset Γ JnMΓ Jn into disjoint right cosets:

Γ JnMΓ Jn =
d⊔
i=1

Γ Jn gi,

where d is the number of right cosets, that is, d = [Γ JnMΓ Jn : Γ Jn ]. Then, for
any φ ∈ Jl,m(Γ Jn ), we define the action of the double coset Γ JnMΓ Jn on φ by

φ|l,mΓ JnMΓ Jn :=
d∑
i=1

φ|l,mgi,

where the summation on the right-hand side is well-defined. We easily see
that for any γ ∈ Γ Jn ,

(φ|l,mΓ JnMΓ Jn )|l,mγ = φ|l,mΓ JnMΓ Jn ,
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that is, φ|l,mΓ JnMΓ Jn ∈ Jl,m(Γ Jn ). Moreover, if φ ∈ J cusp
l,m (Γ Jn ), we have

φ|l,mΓ JnMΓ Jn ∈ J cusp
l,m (Γ Jn ). Here we note that each double coset Γ JnMΓ Jn

with M ∈ Gn(Q) contains a unique representative of the form

dn(δ1 ⊥ · · · ⊥ δn) = (δ1 ⊥ · · · ⊥ δn) ⊥ (δ−1
1 ⊥ · · · ⊥ δ−1

n )

with 0 < δ1| · · · |δn. Moreover, let D = δ1 ⊥ · · · ⊥ δn and D′ = δ′1 ⊥ · · · ⊥ δ′n
be two diagonal matrices with 0 < δ1| · · · |δn, 0 < δ′1| · · · |δ′n. We easily see
that if (δn, δ′n) = 1, then for any φ ∈ Jl,m(Γ Jn ),

φ|l,mΓ Jn dn(DD′)Γ Jn = φ|l,mΓ Jn dn(D)Γ Jn |l,mΓ Jn dn(D′)Γ Jn .

A Jacobi form φ ∈ Jl,1(Γ Jn ) is called a Hecke eigenform if it is a common
eigenfunction of all actions of double cosets Γ JnMΓ Jn with M ∈ Gn(Q), that
is, for any M ∈ Gn(Q), the equation

φ|l,mΓ JnMΓ Jn = λφ(M)φ

holds with some λφ(M) ∈ C. We easily see from the above argument that φ
is a Hecke eigenform if and only if it satisfies for any rational prime p and
D = pα1 ⊥ · · · ⊥ pαn ∈ D(n)

p (Z) with 0 ≤ α1 ≤ · · · ≤ αn,

φ|l,mΓ Jn dn(D)Γ Jn = λφ(D)φ

with λφ(D) ∈ C.

2.2.2. Jacobi forms on the adele group. Let A be the adele ring of Q and
let ΨA be the character of Q\A such that ΨA(x∞) = e(x∞) for any x∞ ∈ R.
In addition, for each m ∈ Z, we put ΨmA (κ) = ΨA(mκ) for any κ ∈ A. We
denote by GJn(A) the adele group of the Jacobi group GJn defined in the
previous subsection. It follows from the strong approximation theorem for
GJn that

GJn(A) = GJn(Q)GJn(R)KJ
fin,

where KJ
fin :=

∏
p<∞G

J
n(Zp).

Let l and m be positive integers. A C-valued function f on GJn(A) is
called a Jacobi form of weight l and index m if it satisfies the following two
conditions:

(i) The transformation formula

f([(0, 0), κ]γgk∞kfin) = det(j(k∞,
√
−1 1n))−lΨmA (κ)f(g)

holds for any κ ∈ A, γ ∈ GJn(Q), g ∈ GJn(A), k∞ ∈ K∞ and kfin ∈
KJ

fin.
(ii) For any (τ, z) ∈ Hn × Cn, we fix an element g∞ ∈ GJn(R) such that

g∞〈
√
−1 1n, 0〉 = (τ, z) and put

(2.5) Φf (τ, z) := Jl,m(g∞, (
√
−1 1n, 0))f(g∞),
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with the factor of automorphy Jl,m : GJn(R)×(Hn×Cn)→ C defined
in §2.2.1. Here we easily see that the value Φf does not depend on
the choice of g∞. Then the function Φf is holomorphic on Hn ×Cn.

In particular, a Jacobi form f is called cuspidal if it satisfies the further
condition that

|det(Im(τ))l/2 exp(−2mπ tr(Im(τ)−1[tIm(z)]))Φf (τ, z)|
is bounded on Hn × Cn. We denote by Jl,m(GJn(A)) and J cusp

l,m (GJn(A)) the
C-vector spaces of the Jacobi forms and cuspidal Jacobi forms of weight l
and index m on the group GJn(A), respectively.

It is easy to see that for each f ∈ Jl,m(GJn(A)), the associated function
Φf is an element of Jl,m(Γ Jn ). In particular, if f ∈ J cusp

l,m (GJn(A)), then Φf ∈
J cusp
l,m (Γ Jn ). Furthermore we have

Lemma 2.2. The map Jl,m(GJn(A)) 3 f 7→ Φf ∈ Jl,m(Γ Jn ) induces C-lin-
ear isomorphisms Jl,m(GJn(A)) ∼= Jl,m(Γ Jn ) and Jcusp

l,m (GJn(A)) ∼= Jcusp
l,m (Γ Jn ).

Proof. Since it is straightforward, we omit the proof.

2.3. Standard L-functions attached to Jacobi forms. In this sub-
section we study Shintani’s standard L-functions attached to Jacobi forms.
In particular, we derive an explicit formula for the standard L-function at-
tached to the Jacobi Eisenstein series of index 1. It might be given in a
classical way, but here we treat it adelically.

Let p be an arbitrary rational prime. For simplicity, we write GJp , Gp,
KJ
p , Kp and ZJp instead of GJn(Qp), Gn(Qp), GJn(Zp), Gn(Zp) and ZJn (Qp),

respectively. We denote by Ψp and | ∗ |p the restriction of ΨA to Qp and the
p-adic valuation of Qp normalized as |p|p = p−1, respectively. Let Hp =
H (GJp ,K

J
p ;Ψp) be the C-algebra consisting of C-valued functions ϕ on GJp

satisfying the following two conditions:

(i) The equation
ϕ([(0, 0), κ]kgk′) = Ψp(κ)ϕ(g)

holds for any κ ∈ Qp, k, k′ ∈ KJ
p and g ∈ GJp .

(ii) The function ϕ is compactly supported modulo ZJp .

We note that Hp forms a C-algebra with the convolution product

(ϕ1 ∗ ϕ2)(g) :=
�

ZJp \GJp

ϕ1(gx−1)ϕ2(x) dx (ϕ1, ϕ2 ∈Hp),

where dx is a Haar measure on ZJp \ GJp normalized by
	
ZJp \ZJpKJ

p
dx = 1.

The algebra Hp is called the Hecke algebra of (GJp ,K
J
p ) with respect to the

additive character Ψp.
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We put

NJ
p := {[(0, µ), 0]dn(A)nn(S) ∈ GJp | µ ∈ Qn

p , A ∈ Un,p, S ∈ Symn(Qp)},
Tp = T (Qp) := {dn(t1 ⊥ · · · ⊥ tn) ∈ Gp | ti ∈ Q×p }

and T (Zp) := Tp ∩Kp, where Un,p ⊂ GLn(Qp) is the group of upper unipo-
tent matrices. We fix Haar measures dn and dt on NJ

p and Tp respectively
normalized by �

NJ
p ∩KJ

p

dn = 1 and
�

T (Zp)

dt = 1.

We define the module δNJ
p

(t) of t ∈ Tp to be the ratio d(tnt−1)/dn. For any
α = (α1, . . . , αn) ∈ Zn, we put

πα = pα1 ⊥ · · · ⊥ pαn ∈ GLn(Qp).

We easily see that
δNJ

p
(πα) = p−

Pn
i=1(2n+3−2i)αi .

Let X0(Tp) be the group of unramified characters of Tp, that is,

X0(Tp) := {χ ∈ Hom(Tp,C×) | χ is trivial on T (Zp)}.

In particular, if n = 1, then X0(Tp) coincides with the group X0(Q×p ) con-
sisting of all unramified characters of Q×p . For any χ ∈ X0(Tp) and ϕ ∈Hp,
we define the zonal spherical function ω̂χ(ϕ) by

ω̂χ(ϕ) :=
∑
α∈Zn

χ−1(dn(πα))ϕ̃(dn(πα)),

where
ϕ̃(t) := δJN,p(t)

−1/2
�

NJ
p

ϕ(nt) dn (t ∈ Tp).

It was shown by Murase that the map ϕ 7→ ω̂χ(ϕ) gives a C-algebra homo-
morphism of Hp to C and that every C-algebra homomorphism of Hp to
C is given by ϕ 7→ ω̂χ(ϕ) for some χ ∈ X0(Tp) (cf. Proposition 4.10 and
Theorem 4.15 in [20]).

On the other hand, for any χ ∈ X0(Tp), let φχ be the C-valued function
on GJp defined by

φχ([(0, 0), κ]nt[(λ, 0), 0]k) = Ψp(κ)(χδ−1/2

NJ
p

)(t) charZnp (λ)

for any κ ∈ Qp, n ∈ NJ
p , t ∈ Tp, λ ∈ Qn

p and k ∈ KJ
p , where we denote by

charZnp the characteristic function of Znp . Here we note that each χ ∈ X0(Tp)
can be written in the form

χ(dn(t1 ⊥ · · · ⊥ tn)) = χ(1)(t1) · · ·χ(n)(tn),
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with uniquely determined n unramified characters χ(1), . . . , χ(n) ∈ X0(Q×p ).
In that case, we simply write χ=(χ(1), . . . , χ(n)). For each χ=(χ(1), . . . , χ(n))
∈ X0(Tp), we easily see that

(2.6) φχ([(0, 0), κ]nt[(λ, 0), 0]k) = Ψp(κ)
n∏
i=1

χ(i)(ti)|ti|(2n+3−2i)/2
p charZnp (λ)

for any κ ∈ Qp, n ∈ NJ
p , t = dn(t1 ⊥ · · · ⊥ tn) ∈ Tp, λ ∈ Qn

p and k ∈ KJ
p .

For each rational prime p, we define the action of the Hecke algebra Hp

on the space Jl,1(GJn(A)) as follows: for any f ∈ Jl,1(GJn(A)) and ϕ ∈Hp,

(f ∗ ϕ)(g) :=
�

ZJp \GJp

f(gx−1)ϕ(x) dx (g ∈ GJn(A)).

A Jacobi form f ∈ Jl,1(GJn(A)) is called a Hecke eigenform if it is a common
eigenfunction of all elements of

⊗
p Hp, that is, for any rational prime p and

ϕ ∈Hp, the equation
f ∗ ϕ = λf (ϕ)f

holds with some λf (ϕ) ∈ C. Since, for each p, the map λf : Hp → C gives
a C-algebra homomorphism of Hp to C, it determines a χf ∈ X0(Tp) such
that

λf (ϕ) = ω̂χf (ϕ)

for any ϕ ∈Hp. Then the Satake p-parameter of f is defined to be the orbit
of χf = (χ(1)

f , . . . , χ
(n)
f ) in X0(Tp) under the action of the Weyl group Wn

of type Cn isomorphic to the semi-direct product of Sn and {±1}n. We also
call the vector (χ(1)

f (p), . . . , χ(n)
f (p)) ∈ (C×)n/Wn the Satake p-parameter

of f . Then, for a Hecke eigenform f ∈ Jl,1(GJn(A)), we define the standard
L-function attached to φ by

L(s, f,St) :=
∏
p

n∏
i=1

{(1− χ(i)
f (p)p−s)(1− χ(i)

f (p)−1p−s)}−1,

which was introduced by Shintani in his unpublished paper, and afterwards
was studied by Murase (cf. [20, 21]).

By Lemma 2.2, for each f ∈ Jl,1(GJn(A)), we obtain the associated ele-
ment Φf ∈ J cusp

l,1 (Γ Jn ). Then we easily have the following relation between
the action of the Hecke algebra Hp on f and the operation Φf |l,1Γ JnMΓ Jn
for some M ∈ Gn(Z[p−1]):

Lemma 2.3. Let f ∈ Jl,1(GJn(A)). For any α = (α1, . . . , αn) ∈ Zn with
0 ≤ α1 ≤ · · · ≤ αn, we have

Φf∗ϕα = Φf |l,1Γ Jn dn(πα)Γ Jn .
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Here ϕα is the element of Hp defined by

ϕα(g) =
{
Ψp(κ) if g ∈ ZJpKJ

p dn(πα)KJ
p and g = [(0, 0), κ]kdn(πα)k′,

0 otherwise,
where κ ∈ Qp and k, k′ ∈ KJ

p . In particular, if f is a Hecke eigenform, then
Φf is also a Hecke eigenform in the sense of §2.2.1.

Let φ ∈ Jl,1(Γ Jn ) be the Hecke eigenform corresponding to a Hecke eigen-
form f ∈ Jl,1(GJn(A)) via the mapping defined in (2.5), that is, φ = Φf . By
Lemma 2.3, we naturally define the standard L-function attached to φ as
L(s, φ,St) := L(s, f,St), that is,

L(s, φ,St) :=
∏
p<∞

n∏
i=1

{(1− χ(i)
φ (p)p−s)(1− χ(i)

φ (p)−1p−s)}−1,

where we put χ(i)
φ (p) = χ

(i)
f (p) for i = 1, . . . , n.

If φ is a cuspidal Hecke eigenform, the following analytic properties of
L(s, φ,St) have been shown by Murase ([21]):

Lemma 2.4 (cf. [21]). If φ ∈ Jcusp
l,1 (Γ Jn ) is a Hecke eigenform, then the

standard L-function L(s, φ,St) has a meromorphic continuation to the entire
complex plane C. More precisely, the function

L∗(s, φ,St) =
n∏
i=1

ΓC(s+ l − 1/2− i)L(s, φ,St),

with ΓC(s) := 2(2π)−sΓ (s), is meromorphic on C and satisfies the functional
equation

L∗(1− s, φ,St) = εnL
∗(s, φ,St),

where

εn =
{
−1 if n ≡ 1, 2 (mod 4),
1 otherwise.

Remark. Murase derived similar properties for the standard L-functions
attached to more general cuspidal Jacobi forms whose index is a matrix.

In the rest of this subsection we consider the standard L-function at-
tached to the Jacobi Eisenstein series E

(n)
l,1 ∈ Jl,1(GJn(A)).

For any quasi-character ξ : Q×\A× → C×, we define a C-valued function
φ̃ξ on GJn(A) by

φ̃ξ([(0, µ), κ]g[(λ, 0), 0]k∞kfin) = ξ(det(A))ϕ0(λ)j(k∞,
√
−1 1n)−l

for any κ ∈ A, g =
(
A B
C D

)
∈ GJn(A), k∞ ∈ K∞ and kfin ∈ KJ

fin, where
ϕ0 =

∏
v ϕ0,v,

ϕ0,v(λ) =
{

charZnp (λ) if v = p <∞,
exp(−2πλ tλ) if v =∞.
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Then we define the Eisenstein series Eξ on GJn(A) associated with ξ by

Eξ(g) :=
∑

γ∈PJn (Q)\GJn(Q)

φ̃ξ(γg) (g ∈ GJn(A)).

In particular, we denote by E(n)
l,1 the Eisenstein series on GJn(A) associated

with a special character ξl(x) = |x|lA (x ∈ A×). We easily see that E(n)
l,1 is

an element of Jl,1(GJn(A)) and corresponds to the Jacobi Eisenstein series
E

(n)
l,1 ∈ Jl,1(Γ Jn ) in the same manner as in Lemma 2.2. Hence we also call

E(n)
l,1 the Jacobi Eisenstein series of weight l and index 1. Then we have

Proposition 2.2. The Jacobi Eisenstein series E(n)
l,1 ∈ Jl,1(GJn(A)) is a

Hecke eigenform, that is, for any ϕ ∈
⊗

p Hp,

E(n)
l,1 ∗ ϕ = λE(ϕ)E(n)

l,1

with λE(ϕ) ∈ C×. Moreover, the Satake p-parameter of E(n)
l,1 is taken to be

of the form
(pl−(n+1)+i−1/2)1≤i≤n

up to the action of the Weyl group Wn.

Proof. For any quasi-character ξ of Q×\A×, we take a χ=(χ(1), . . . , χ(n))
∈ X0(Tp) such that

(2.7) χ(i)(ti) = ξ(ti)|ti|−(2n+3−2i)/2
p (ti ∈ Q×p )

for each 1 ≤ i ≤ n. Then, by (2.6) and the definition of φ̃ξ, we have φ̃ξ = φχ.
Therefore it suffices to prove that for any ϕ ∈Hp and λ ∈ Qn

p ,

(2.8) (φχ ∗ ϕ)([(λ, 0), 0]) = c · charZnp (λ)

with some c ∈ C×. Indeed, if λ 6∈ Znp , there exists 0 6= µ ∈ Znp such that
Ψp(λ tµ) 6= 1. Thus we have

(φχ ∗ ϕ)([(λ, 0), 0]) = (φχ ∗ ϕ)([(λ, 0), 0] · [(0, µ), 0])
= (φχ ∗ ϕ)([(λ, µ), λ tµ])
= (φχ ∗ ϕ)([(0, µ), λ tµ] · [(λ, 0), 0])
= Ψp(λ tµ) (φχ ∗ ϕ)([(λ, 0), 0]),

and (φχ ∗ ϕ)([(λ, 0), 0]) = 0. Now we have proved that the Eisenstein series
Eξ is a Hecke eigenform. Moreover, it follows from (2.8) that

c = (φχ ∗ ϕ)(1GJp ) =
�

ZJp \GJp

φχ(g)ϕ(g−1) dg = ω̂χ(ϕ)
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and hence the eigenvalue λE(ϕ) coincides with the zonal spherical function
ω̂χ(ϕ). Therefore it follows from (2.7) that

χ(i)(ti) = ξl(ti)|ti|−(2n+3−2i)/2
p = |ti|l−(2n+3−2i)/2

p

for each i. By substituting ti = p, we obtain χ(i)(p) = p−l+(2n+3−2i)/2 and
complete the proof.

By Proposition 2.2, we obtain the following conclusion:

Corollary. Let l be a positive even integer such that l > n+ 2. Then

L(s, E(n)
l,1 , St) = L(s,E(n)

l,1 ,St) =
n∏
i=1

ζ(s− l + 1/2 + i)ζ(s+ l − 1/2− i).

In particular, L(s, E(n)
l,1 ,St) and L(s,E(n)

l,1 ,St) converge absolutely for Re(s)
> l−n−1/2. In addition, they have meromorphic continuations to the entire
complex plane C and satisfy functional equations under s 7→ 1− s.

Remark. Let k and n be positive even integers such that k > n+ 1. As
mentioned in §2.1, E

(n−1)
k,1 coincides with the first Fourier–Jacobi coefficient

e
(n−1)
k,1 of the Siegel Eisenstein series E(n)

k ∈Mk(Γn) of degree n and weight k.
Thus it follows from the Corollary to Proposition 2.2 that

L(s, e(n)
l,1 ,St)

=
∏
p

n−1∏
i=1

{(1− pk−(n+1)/2 p−s+i−n/2)(1− (pk−(n+1)/2)−1p−s+i−n/2)}−1

=
n−1∏
i=1

L(s+ k − 1/2− i, E(1)
2k−n),

where E(1)
2k−n ∈M2k−n(Γ1). Moreover, replacing e(n−1)

k,1 by the first Fourier–
Jacobi coefficient φ1 ∈ Jcusp

k,1 (Γ Jn−1) of a Siegel cusp form F ∈ Sk(Γn) which
is connected to a normalized Hecke eigenform f ∈ S2k−n(Γ1) via a lifting
procedure due to Ikeda (cf. [12]), we also obtain a similar explicit formula
for the standard L-function attached to φ1 (cf. [10]).

2.4. Eichler–Zagier–Ibukiyama correspondence between Jacobi
forms and Siegel modular forms of half-integral weight. For later
use, we recall that there exists a natural C-linear correspondence from the
space of Jacobi forms of even integral weight and of index 1 into that of
Siegel modular forms of half-integral weight.
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For any (τ, z) ∈ Hn × Cn and (r1, r2) ∈ Qn ⊕ Qn, we define the theta
series of characteristic (r1, r2) by

θ(r1,r2)(τ, z) = θ
(n)
(r1,r2)(τ, z) :=

∑
λ∈Zn

e((τ/2)[ t(λ+ r1)] + (λ+ r1) t(z + r2)).

In particular, for any r ∈ Zn, we put θr(τ, z) = θ
(n)
r (τ, z) := θ

(n)
(r/2,0)(2τ, 2z).

We note that the function θr(τ, z) depends only on rmod 2Zn. For a fixed
τ ∈ Hn, it is known that (θr(τ, z))r∈Zn/2Zn forms a basis of the C-vector

space Θ(n)
τ consisting of all C-valued holomorphic functions θ(z) on Cn which

satisfy
θ(z + λτ + µ) = e(− tr(τ [tλ] + 2 tλz))θ(z)

for any λ, µ ∈ Zn.
For any τ ∈ Hn, we put

θ(τ) = θ(n)(τ) := θ
(n)
(0,0)(2τ, 0) =

∑
λ∈Zn

e(τ [tλ]).

Then, for any M =
(
A B
C D

)
∈ Γ (n)

0 (4), we define Shimura’s factor of auto-
morphy by

J(M, τ) = J (n)(M, τ) :=
θ(n)(M〈τ〉)
θ(n)(τ)

.

As is well-known,

J(M, τ)2 = (−1)(detD−1)/2 det(Cτ +D).

For any l ∈ Z, a holomorphic function F (τ) on Hn is called a Siegel
modular form of degree n and weight l− 1/2 if it satisfies the following two
conditions:

(i) F (M〈τ〉) = J(M, τ)2l−1F (τ) for any M ∈ Γ (n)
0 (4).

(ii) For any M =
( ∗ ∗
C D

)
∈ Γn, the function det(Cτ +D)−l+1/2F (M〈τ〉)

possesses a Fourier expansion of the form

det(Cτ +D)−l+1/2F (M〈τ〉) =
∑

B∈Sym∗n(Z)≥0

CF,M (B)e(tr(Bτ)/4),

where det(Cτ + D)−l+1/2 is an appropriately defined single-valued
function of τ. We note that such a F possesses a usual Fourier ex-
pansion

F (τ) =
∑

B∈Sym∗n(Z)≥0

CF (B)e(tr(Bτ)).

In particular, a Siegel modular form F is called a cusp form if it satis-
fies the stronger condition CF,M (B) = 0 unless B > 0 (positive definite).
We denote by Ml−1/2(Γ (n)

0 (4)) and Sl−1/2(Γ (n)
0 (4)) the C-vector spaces of
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Siegel modular forms and Siegel cusp forms of degree n and weight l− 1/2,
respectively.

We now define the generalized Kohnen plus space M+
l−1/2(Γ (n)

0 (4)) to

consist of all elements F ∈Ml−1/2(Γ (n)
0 (4)) whose Fourier coefficients CF (B)

satisfy the condition

CF (B) = 0 unless B ≡ (−1)l+1 trBrB mod 4Sym∗n(Z) for some rB ∈ Zn−1,

and put S+
l−1/2(Γ (n)

0 (4)) := M+
l−1/2(Γ (n)

0 (4)) ∩ Sl−1/2(Γ (n)
0 (4)). These spaces

were introduced by Kohnen ([19]) for n = 1, and by Ibukiyama ([11]) for
general n.

Now, we recall an important fact that if l is even, then there exists a
C-linear isomorphism between the space Jl,1(Γ Jn ) of Jacobi forms of index 1
and the generalized Kohnen plus space M+

l−1/2(Γ (n)
0 (4)) defined as follows.

Let φ ∈ Jl,1(Γ Jn ) possess a Fourier expansion of the form

φ(τ, z) =
∑

T∈Sym∗n(Z), r∈Zn
4T−trr≥0

cφ(T, r)e(tr(Tτ) + r tz).

Since, for each τ ∈ Hn, φ(τ, z) belongs to the space Θ
(n)
τ generated by

(θr(τ, z))r∈Zn/2Zn , φ can be expressed as

φ(τ, z) =
∑

r∈Zn/2Zn
hr(τ)θr(τ, z)

with some 2n holomorphic functions (hr(τ))r∈Zn/2Zn on Hn whose Fourier
expansion is of the form

hr(τ) =
∑

T∈Sym∗n(Z)
4T−trr≥0

cφ(T, r)e(tr((T − trr/4)τ)).

Then we put

σ(φ)(τ) =
∑

r∈Zn/2Zn
hr(4τ).

The following statement was shown by Eichler and Zagier ([7]) in the case
n = 1 and by Ibukiyama for general n:

Proposition 2.3 (cf. Theorems 1, 2 in [11]). If l is even, then the map
φ 7→ σ(φ) gives a C-linear isomorphism

Jl,1(Γ Jn ) ∼= M+
l−1/2(Γ (n)

0 (4)),

which is compatible with the actions of Hecke operators. Furthermore, its
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restriction to the space Jcusp
l,1 (Γ Jn ) also induces a C-linear isomorphism

Jcusp
l,1 (Γ Jn ) ∼= S+

l−1/2(Γ (n)
0 (4)).

We call it the Eichler–Zagier–Ibukiyama correspondence.

Remark. When l is odd, the space Jl,1(Γ Jn ) is not isomorphic to the
Kohnen plus space M+

l−1/2(Γ (n)
0 (4)). However, we note that a similar claim

is also valid for the space J skew
l,1 (Γ Jn ) of skew holomorphic Jacobi forms,

which was shown by Skoruppa ([26, 27]) in the case n = 1 and by Arakawa
([2]) and Hayashida ([9]) for general n.

We easily see by the definition that the Fourier expansion of σ(φ) can
be expressed in terms of Fourier coefficients of φ as

σ(φ)(τ) =
∑

B∈Symn(Z)≥0

cφ((B + trBrB)/4, rB)e(tr(Bτ)),

where rB denotes an element of Zn such that B + trBrB ∈ 4Sym∗n(Z). We
note that rB is uniquely determined by B modulo 2Zn, and furthermore
cφ((B+ trBrB)/4, rB) does not depend on the choice of the representative of
rB mod 2Zn. Moreover, if φ coincides with the first Fourier–Jacobi coefficient
of a Siegel modular form F ∈Ml(Γn+1), we have

σ(φ)(τ) =
∑

B∈Symn(Z)≥0

AF (B(1))e(tr(Bτ)),

where B(1) ∈ Sym∗n+1(Z) denotes the matrix defined in §1, and AF (B(1)) is
the B(1)th Fourier coefficient of F . In particular, let n and k be positive even
integers such that k > n+1 and take φ = e

(n−1)
k,1 ∈ Jk,1(Γ Jn−1). Then we have

the following explicit formula for the Fourier coefficients of the associated
form σ(e(n−1)

k,1 ) ∈M+
k−1/2(Γ (n−1)

0 (4)):

Proposition 2.4. Under the same assumption as in Proposition 2.1, let
σ(e(n−1)

k,1 ) possess a Fourier expansion

σ(e(n−1)
k,1 )(τ) =

∑
B∈Symn(Z)≥0

C
(n−1)
k−1/2(B)e(tr(Bτ)).

Then, for each B ∈ Sym∗n−1(Z)>0 satisfying the condition (1.1), we have

C
(n−1)
k−1/2(B)

= ξ(n, k)L(1− k + n/2, χB(1))f(B(1))k−(n+1)/2
∏

p|f(B(1))

F̃ (1)
p (B; pk−(n+1)/2).

Proof. If B = 4T − trr with T ∈ Sym∗n−1(Z) and r ∈ Zn−1, we have
C

(n−1)
k−1/2(B) = c

(n−1)
k,1 (T, r). Thus the assertion follows from Proposition 2.1.



Andrianov-type identity for Jacobi forms 253

3. Andrianov-type identity for power series attached to Jacobi
forms. Throughout this section, let n and k be positive even integers such
that k > n+ 1, and fix a rational prime p. For a subring R of Zp, we denote
by Symn−1(R)(1) the subset of Symn−1(R)× consisting of all elements which
satisfy the condition (1.1) in §1:

Symn−1(R)(1)

= {B ∈ Symn−1(R)× | B + trBrB ∈ 4Sym∗n−1(R) for some rB ∈ Rn−1}.

As mentioned in §1, with each B ∈ Symn−1(R)(1) we can associate an ele-
ment

B(1) =
(

1 rB/2
trB/2 (B + trBrB)/4

)
∈ Sym∗n(R)×.

For B ∈ Symn−1(Zp)(1), we define a modified local Siegel series b(1)
p (B; t) as

follows. For each R ∈ Symn−1(Zp[p−1]) and r ∈ Zn−1
p , if R ∈ p−lSymn−1(Zp)

with l ≥ 0, we put

ω(R; r) = p−(n−1)lµp(R)1/2
∑

x∈Zn−1
p /plZn−1

p

ep(−R[tx] + rR tx/2 + xR tr/2),

where µp(R) = [Zn−1
p R + Zn−1

p : Zn−1
p ], and the right-hand side does not

depend on the choice of l. Suppose that B ∈ Symn−1(Qp) is of the form
B = 4T − trr with T ∈ Symn−1(Qp) and r ∈ Zn−1

p . We put

b(1)
p (B; t) =

∑
R∈Symn−1(Zp[p−1])/Symn−1(Zp)

ω(R; r)ep(−tr(TR))tordp(µp(R)).

We note that this series coincides with α1(B, t) of [23] if p 6= 2 and r = 0.
As will be shown later, the above definition does not depend on the choice
of T and r (cf. Proposition 3.1 below).

On the other hand, if m>1, for each S ∈ Sym∗m−1(Zp), T ∈ Symn−1(Qp),
r ∈ Zn−1

p and e ∈ Z>0, we put

Ae(S, T, r)

:=
{
X ∈ Mm,n−1(Zp)/peMm,n−1(Zp)

∣∣∣∣ (−1⊥ S)[X] + trxxx1/2

+ txxx1r/2− T ∈ peSym∗n−1(Zp)

}
,

where xxx1 ∈ Zn−1
p denotes the first row of X. We easily check that it is

well-defined. Furthermore, if both S and
( 1 r/2
tr/2 T

)
are non-degenerate, then

pe(−m(n−1)+n(n−1)/2)#Ae(S, T, r) has the same value for each

e ≥ ordp

(
det
(

1 r/2
tr/2 T

))
;
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this value will be denoted by α
(1)
p (S, T, r). We note that α(1)

p (S, T, r) coin-
cides with the usual local density αp(−1 ⊥ S, T ) if r = 0. Then we obtain
the following lemmas:

Lemma 3.1. Suppose that B ∈ Symn−1(Qp)× is of the form B = 4T−trr
with T ∈ Symn−1(Qp) and r ∈ Zn−1

p . Then

b(1)
p (B; p−k+1/2) = αp(Hk−1, T, r),

where

Hk−1 = H ⊥ · · · ⊥ H︸ ︷︷ ︸
k−1

with H =
(

0 1/2
1/2 0

)
∈ Sym∗2(Zp).

In particular, b(1)
p (B; t) = 0 unless B ∈ Symn−1(Zp)(1).

Proof. By Lemma 3.4 of [24], we have

b(1)
p (B; p−k+1/2)

=
∑

R∈Symn−1(Zp[p−1])/Symn−1(Zp)

∑
x∈Zn−1

p /plZn−1
p

ep(−R[tx] + rR tx/2 + xR tr/2)

× p−(k−1) ordp(µp(R))p−(n−1)lep(−tr(TR))

=
∑
R

∑
x

ep(−R[tx] + rR tx/2 + xR tr/2)p−(n−1)lep(−tr(TR))p−2l(k−1)n

×
∑

Y ∈M2k−2,n−1(Zp)/plM2k−2,n−1(Zp)

ep(tr(Hk−1[Y ]R))

=
∑
R

∑
x

∑
Y

ep(tr((− txx+Hk−1[Y ] + trx/2 + txr/2−T )R))p−l(2k−1)(n−1)

= #Al(Hk−1, T, r)p−l((2k−1)(n−1)−n(n−1)/2).

Thus the assertion holds.

Lemma 3.2. Suppose that B ∈ Symn−1(Qp)× is of the form B = 4T−trr
with T ∈ Symn−1(Qp) and r ∈ Zn−1

p . Then

αp(Hk, B
(1)) = (1− p−k)αp(Hk−1, T, r).

Proof. The proof is similar to that of Proposition 2.4 in [14]; we give a
sketch. For each ξ = (ξi) ∈ Z2k

p , we put

Ae(Hk, B
(1)) = {X ∈ M2k,n(Zp)/peM2k,n(Zp) | Hk[X]−B(1) ∈ peSym∗n(Zp)}

and

Ae(Hk, B
(1); ξ)

= {X = (xij) ∈ Ae(Hk, B
(1)) | xi1 ≡ ξi (mod pe) for 1 ≤ i ≤ 2k}.
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We easily see that Ae(Hk, B
(1); ξ) 6= ∅ only if ξ ∈ Ae(Hk, 1). Fix such

a ξ. Then ξ 6≡ 0 (mod pZ2k
p ). Thus by Lemma 2.3 in [14], we can take

U ∈ GL2k(Zp) and K ∈ Sym∗2k−2(Zp) such that

(i)
(

1 1/2
1/2 0

)
⊥K = Hk[U ]; (ii) K ∼Zp Hk−1; (iii) U−1ξ =


1
0
...
0

 .

For each X ∈ Ae(Hk, B
(1); ξ), we write X = (tξ | Y ) with Y ∈ M2k,n−1(Zp),

and

Y =

yyy1

yyy2

Y3

 with yyy1, yyy2 ∈ Zn−1
p and Y3 ∈ M2k−2,n−1(Zp).

Then, by an easy calculation, we have

yyy1 + yyy2/2− r/2 ∈ peZn−1
p

and

−tyyy1yyy1 +K[Y3] + tyyy1yyy2/2 + tyyy2yyy1/2− T ∈ peSym∗n−1(Zp).
Thus we have

−tyyy1yyy1 +K[Y3] + tryyy1/2 + tyyy1r/2− T ∈ peSym∗n−1(Zp),

that is,
( yyy1
Y3

)
∈ Ae(Hk−1, T, r). Moreover, we easily see that Y 7→

( yyy1
Y3

)
induces a bijection between Ae(Hk, B

(1); ξ) and Ae(Hk−1, T, r). Thus

pe(−2kn+n(n+1)/2)#Ae(Hk, B
(1))

= pe(−2k+1)#Ae(Hk, 1)pe(−(2k−1)(n−1)+n(n−1)/2)#Ae(Hk−1, T, r)

= αp(Hk, 1)αp(Hk−1, T, r) = (1− p−k)αp(Hk−1, T, r).
Hence the assertion holds.

Now, by combining Lemmas 3.1 and 3.2, we obtain the following:

Proposition 3.1. For each B ∈ Symn−1(Zp)(1) and s ∈ C, we have

b(1)
p (B; p−s+1/2) = (1− p−s)−1 bp(B(1); s).

Proof. It is well-known that for each B′ ∈ Sym∗n(Zp)× with n < 2k, the
Siegel series bp(B′; s) in §1 satisfies the equation

bp(B′; k) = αp(Hk, B
′).

Hence, by Lemmas 3.1 and 3.2, we have

b(1)
p (B; p−k+1/2) = (1− p−k)−1bp(B(1); k)

for infinitely many k, and hence the assertion follows.
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Remark. The definition of the series b(1)
p (B; t) for B = 4T − trr with

T ∈ Symn−1(Qp) and r ∈ Zn−1
p does not depend on the choice of T and r.

Indeed, if T ∈ Sym∗n−1(Zp), the vector r is uniquely determined by B mod-
ulo 2Zn−1

p , and the matrix
( 1 r/2
tr/2 T

)
is uniquely determined by B up to

GLn(Zp)-equivalence. Thus, by Proposition 3.1, b(1)
p (B; t) is uniquely de-

termined by B. If T 6∈ Sym∗n−1(Zp), we have b(1)
p (B; t) = 0. Furthermore, if

B = 4T ′−tr′r′ is another expression, then T ′ does not belong to Sym∗n−1(Zp)
either. This proves that b(1)

p (B; t) is well-defined.

Now we put

b̃(1)
p (B; t) :=

∑
D∈GLn−1(Zp)\D(n−1)

p (Zp)

πp(D) b(1)
p (B[D−1]; t) (pn−1 t2)ordp(detD).

Then, by Proposition 3.1, we obtain the following rationality theorem for
the polynomial B(1)

p (B; t) defined in §1:

Proposition 3.2. For each B ∈ Symn−1(Zp)(1), we have

B(1)
p (B; pn−1/2t)̃b(1)

p (B; p1/2t) =
n−1∏
i=1

(1− p2it2).

Next, we study the standard L-function attached to a Hecke eigenform
and some power series related to it. For a Hecke eigenform φ ∈ Jcusp

k,1 (Γ Jn−1),

and D ∈ D(n−1)
p (Z), let

φ|k,1Γ Jn−1dn−1(D)Γ Jn−1 = λφ(D)φ

with λφ(D) ∈ C. Then we define a power series Zp(t, φ) by

Zp(t, φ) :=
∑

D∈ED
(n−1)
p (Z)

λφ(D)tordp(detD),

where ED(n−1)
p (Z) denotes the set of all elementary divisors of the form

pα1 ⊥ · · · ⊥ pαn−1 with 0 ≤ α1 ≤ · · · ≤ αn−1. The following statement is
shown by Murase and Sugano:

Proposition 3.3 (cf. Lemma 6.5 in [22], see also Theorem 5.5 in [3]).
Let φ ∈ Jk,1(Γ Jn−1) be a Hecke eigenform whose Satake p-parameter is of the
form (χ(1)

φ (p), . . . , χ(n−1)
φ (p)) ∈ (C×)n−1/Wn−1. Then

Zp(t, φ) =
n−1∏
i=1

1− p2it2

(1− χ(i)
φ (p)pn−1/2t)(1− χ(i)

φ (p)−1pn−1/2t)
.
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Let

Z (n−1)
p :=

{(
V

W

)
∈ M2n−2,n−1(Z)

∣∣∣∣V,W ∈ D(n−1)
p (Z), gcd(V,W ) = 1

}
,

where gcd(V,W ) = 1 means that V and W are coprime to each other. For
each

(
V
W

)
∈ Z

(n−1)
p , R ∈ Symn−1(Z[p−1]) and (λ1, λ2) ∈ Zn−1 ⊕ Zn−1, we

put

MV,W,R :=
( tW−1 tV tW−1RV −1

0n−1 WV −1

)
∈ Gn−1(Z[p−1])

and

[λ1, λ2] := [(λ1, λ2), λ1
tλ2] =


1 λ1 0 λ2

0 1n−1
tλ2 0n−1

0 0 1 0
0 0n−1 − tλ1 1n−1

 ∈ Hn−1(Z).

By combining Lemma 2.1 and some easy calculation (cf. [5]), we obtain the
following:

Lemma 3.3. We have

Γ Jn−1Gn−1(Z[p−1])Γ Jn−1 =
⋃

D∈ED
(n−1)
p (Z)

Γ Jn−1dn−1(D)Γ Jn−1

=
⊔(
V
W

) ⊔
R

⊔
(λ1,λ2)

Γ Jn−1[MV,W,R] · [λ1, λ2],

where
(
V
W

)
, R and (λ1, λ2) run respectively over

• (1n−1 ⊥ GLn−1(Z)) \Z
(n−1)
p /GLn−1(Z),

• Symn−1(Z[p−1])/tWSymn−1(Z)W , and
• (Zn−1 ⊕ Zn−1) + (Zn−1 ⊕ Zn−1)MV,W,R/(Zn−1 ⊕ Zn−1)MV,W,R.

Furthermore, if MV,W,R ∈ Γ Jn−1dn−1(D)Γ Jn−1 with D ∈ ED(n−1)
p (Z), we

have ordp(detD) = ordp(detV detW µp(R)).

Therefore, we get the following explicit formula for the actions of Hecke
operators:

Corollary. For each φ ∈ Jk,1(Γ Jn−1), we have∑
D∈ED

(n−1)
p (Z)

(φ |k,1Γ Jn−1dn−1(D)Γ Jn−1)(τ, z) =
∑(
V
W

)∑
R

p(−2n+3)δV,W,R detV k−1
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× detW−k
∑

(λ1,λ2)∈(Zn−1⊕Zn−1)/p
δV,W,R (Zn−1tV⊕Zn−1)

e(τ [ tλ1] + 2λ1
tz)

× φ(τ [VW−1] +R[W−1], (z + λ1τ + λ2)VW−1),

where
(
V
W

)
and R run over the sets stated in Lemma 3.3, and δV,W,R =

ordp(detV detWµp(R)).

Proof. For each
(
V
W

)
∈ Z

(n−1)
p and R ∈ Symn−1(Z[p−1]), we have

Γ Jn−1MV,W,RΓ
J
n−1 = Γ Jn−1dn−1(D)Γ Jn−1

for some D = pα1⊥ · · ·⊥pαn−1 ∈ ED(n−1)
p (Z). Then we have

(Zn−1 ⊕ Zn−1) + (Zn−1 ⊕ Zn−1)MV,W,R/(Zn−1 ⊕ Zn−1)MV,W,R

' (Zn−1 ⊕ Zn−1) + (Zn−1 ⊕ Zn−1)dn−1(D)/(Zn−1 ⊕ Zn−1)dn−1(D)

' Zn−1/Zn−1D.

It follows from Lemma 3.3 that #(Zn−1/Zn−1D) = pδV,W,R and α1, . . . , αn−1

≤ δV,W,R. Thus we have a natural surjection

π : (Zn−1 ⊕ Zn−1)/pδV,W,R(Zn−1 tV ⊕ Zn−1)→ Zn−1/Zn−1D,

and #ker(π) = p(2n−3)δV,W,R detV. Thus the assertion holds.

By the above corollary, we obtain the following conclusion:

Proposition 3.4. Suppose that φ∈Jk,1(Γ Jn−1) is a Hecke eigenform and
the associated form σ(φ) ∈ M+

k−1/2(Γ (n−1)
0 (4)) under the Eichler–Zagier–

Ibukiyama correspondence possesses a Fourier expansion

σ(φ)(τ) =
∑

B∈Sym∗n−1(Zp)≥0

Cσ(φ)(B)e(tr(Bτ)).

Then, for each B ∈ Symn−1(Z)(1)
>0, we have

n−1∏
i=1

1− p2it2

(1− χ(i)
φ (p)pn−1/2t)(1− χ(i)

φ (p)−1pn−1/2t)
Cσ(φ)(B)

=
∑(
V
W

) b(1)
p (B[tV −1]; t)Cσ(φ)(B[tV −1][W ])

× p−(k−n−1) ordp(detW )pk ordp(detV )tordp(detV detW ),

where
(
V
W

)
runs over the set stated in Lemma 3.3.

Proof. We put

Λp(t) =
∑

D∈ED
(n−1)
p (Z)

Γ Jn−1dn−1(D)Γ Jn−1 t
ordp(detD).
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By the Corollary to Lemma 3.3, we have

(φ|k,1Λp(t))(τ, z) =
∑
T

∑
r

cφ(T, r)

×
∑(

V
W

)
∈(1n−1⊥GLn−1(Z))\Z (n−1)

p /GLn−1(Z)

p(k−1) ordp(detV )−k ordp(detW )tordp(detV detW )

× e(tr(T [tW−1 tV ]τ + t(r tW−1 tV )z))

×
∑

R∈Symn−1(Z[p−1])/tWSymn−1(Z)W

e(tr(T [tW−1]R)) tordp(µp(R))

×
∑

λ1∈Zn−1/p
δV,W,RZn−1·tV

p−(2n−3)δV,W,Re(tr(2 tλ1z + t(r tW−1 tV + λ1)λ1τ))

×
∑

λ2∈Zn−1/p
δV,W,RZn−1

e(tr(t(r tW−1 tV + λ1)λ2)).

Since ∑
λ2∈Zn−1/p

δV,W,RZn−1

e(tr(t(r tW−1 tV + λ1)λ2))

=
{
p(n−1)δV,W,R if r tW−1 ∈ Zn−1,
0 otherwise,

and ∑
R∈Symn−1(Z[p−1])/tWSymn−1(Z)W

e(tr(T [tW−1]R))tordp(µp(R))

=


(detW )n

∑
R∈Symn−1(Z[p−1])/Symn−1(Z)

e(tr(T [tW−1]R))tordp(µp(R))

if T [tW−1] ∈ Sym∗n−1(Z),
0 otherwise,

we have

(φ|k,1Λp(t))(τ, z)

=
∑
T

∑
r

∑(
V
W

) pk ordp(detV )+(−k+n+1) ordp(detW )tordp(detV detW )

×
∑

R∈Symn−1(Z[p−1])/Symn−1(Z)

e(tr(TR))(pt)ordp(µp(R))
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×
∑

λ1∈Zn−1/p
δV,W,RZn−1·tV

p−(n−1)δV,W,Rcφ(T [tW ], r tW )

× e(tr(t(r tV + 2λ1)z)) e(tr((T [tV ] + t(r tV + λ1)λ1)τ)).

For a fixed r0 ∈ Zn−1, we put

S1(r0) = {λ1 ∈ Zn−1/pδV,W,RZn−1 tV | 2λ1 ≡ r0 mod Zn−1 tV },
and

S2(r0) = {r ∈ Zn−1/pδV,W,RZn−1 | r tV ≡ r0 mod 2Zn−1}.
For each λ1 ∈ S1(r0), the map λ1 7→ (2λ1 − r0) tV −1 induces a bijection
between S1(r0) and S2(r0). Thus we have

(φ|k,1Λp(t))(τ, z)=
∑
T

∑
r0

∑(
V
W

)pk ordp(detV )−(k−n−1) ordp(detW )tordp(detV detW )

×
∑

R∈Symn−1(Z[p−1])/Symn−1(Z)

e(tr(TR))(pt)ordp(µp(R))p−(n−1)δV,W,R

×
∑

r∈S2(r0)

cφ(T [tW ], r tW )e(tr(tr0z))e(tr((T [tV ]+(tr0r0 − t(r tV )(r tV ))/4)τ))

=
∑
T0

∑
r0

e(tr(T0τ + tr0z))

×
∑(
V
W

) ∑
r∈S2(r0)

pk ordp(detV )−(k−n−1) ordp(detW )p−(n−1)δV,W,R

× cφ((T0 − tr0r0/4)[tV −1][tW ] + (trr/4)[tW ], r tW )

×
∑

R∈Symn−1(Z[p−1])/Symn−1(Z)

e(tr(((T0 − tr0r0/4)[tV −1] + trr/4)R))(pt)ordp(µp(R)).

Then, for a fixed r ∈ Zn−1/2Zn−1, the map

(r+ 2Zn−1) + 2pδV,W,RZn−1/2pδV,W,RZn−1 3 r+ 2u 7→ u ∈ Zn−1/pδV,W,RZn−1

is a bijection, and we have

cφ((T0 − tr0r0/4)[tV −1][tW ] + (t(r + 2u)(r + 2u)/4)[tW ], (r + 2u) tW )

= cφ((T0 − tr0r0/4)[tV −1][tW ] + (trr/4)[tW ], r tW ).

Thus we have

(φ|k,1Λp(t))(τ, z) =
∑
T0

∑
r0

e(tr(T0τ + tr0z))

×
∑(
V
W

) pk ordp(detV )−(k−n−1) ordp(detW )tordp(detV detW )
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×
∑

R∈Symn−1(Z[p−1])/Symn−1(Z)

(pt)ordp(µp(R))p−(n−1)δV,W,R

×
∑

r∈Zn−1/2Zn−1

r tV≡r0 mod 2Zn−1

cφ((T0 − tr0r0/4)[tV −1][tW ] + (trr/4)[tW ], r tW )

×
∑

u∈Zn−1/p
δV,W,RZn−1

e(tr(((T0− tr0r0/4)[tV −1]+ trr/4+ tuu+ tur/2+ tru/2)R)).

We easily see that for an element r ∈ Zn−1/2Zn−1, the sum∑
R∈Symn−1(Z[p−1])/Symn−1(Z)

(pt)ordp(µp(R))p−(n−1)δV,W,R

×
∑

u∈Zn−1/p
δV,W,RZn−1

e(tr(((T0−tr0r0/4)[tV −1]+trr/4+tuu+tur/2+tru/2)R))

equals b(1)
p ((4T0 − tr0r0)[tV −1]; t) or 0 according as (T0 − tr0r0/4)[tV −1] +

trr/4 ∈ Sym∗n−1(Z) (that is, (4T0 − tr0r0)[tV −1] ∈ Symn−1(Z)(1)) or not. In
the former case, such a vector r is uniquely determined by T0, r0, and V ,
which will be denoted by r1 = r1(T0, r0, V ). Furthermore, we have

((4T0 − tr0r0)[tV −1] + tr1r1)[tV ]

= (4T0 − tr0r0) + t(r1
tV )r1

tV ∈ 4Sym∗n−1(Zp),

and r1
tV ≡ r0 mod 2Zn−1 in that case. Thus

(φ|k,1Λp(t))(τ, z)

=
∑
T0

∑
r0

e(tr(T0τ + tr0z))
∑(
V
W

) pk ordp(detV )−(k−n−1) ordp(detW )

× tordp(detV detW )b(1)
p ((4T0 − tr0r0)[tV −1]; t)

× cφ((T0 − tr0r0/4)[tV −1][tW ] + (tr1r1/4)[tW ], r1
tW ).

Now we take an element B ∈ Symn−1(Z)(1) so that B = 4T0 − tr0r0 with
T0 ∈ Sym∗n−1(Z) and r0 ∈ Zn−1. Then we have

cφ(T0, r0) = Cσ(φ)(B),

cφ((T0 − tr0r0/4)[tV −1][tW ] + (tr1r1/4)[tW ], r1
tW ) = Cσ(φ)(B[tV −1][tW ]),

and
b(1)
p ((4T0 − tr0r0)[tV −1]; t) = b(1)

p (B[tV −1]; t).

Since φ|k,1Λp(t) = Zp(t, φ)φ, the assertion follows immediately from Propo-
sition 3.3.
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For each B ∈ Symn−1(Z)(1)
>0, let G̃φ,p(B; t) be the polynomial in t defined

in §1. Then, by making use of the same argument as in [5] combined with
Propositions 3.2 and 3.4, we obtain the following:

Theorem 3.1. Let n and k be positive even integers such that k > n+1.
Suppose that φ ∈ Jk,1(Γ Jn−1) is a Hecke eigenform whose Satake p-parameter
is of the form (χ(1)

φ (p), . . . , χ(n−1)
φ (p)) ∈ (C×)n−1/Wn−1. Then, for each B ∈

Symn−1(Z)(1)
>0, we have

B(1)
p (B; pn−1/2t)G̃φ,p(B; t)∏n−1

i=1 (1− χ(i)
φ (p)pn−1/2t)(1− χ(i)

φ (p)−1pn−1/2t)

=
∑

W∈GLn−1(Z)\D(n−1)
p (Z)

Cσ(φ)(B[W ])p−(k−n−1) ordp(detW )tordp(detW ).

For each D ∈ Mn−1(Z) ∩ GLn−1(Q), we define the generalized global
Möbius function π(D) as

∏
p πp(D), where πp is the local Möbius function

defined in §1. We easily see that this is a finite product. For each B ∈
Symn−1(Z)(1)

>0, we put

H̃φ(B; s) =
∑

D∈GLn−1(Z)\Mn−1(Z)∩GLn−1(Q)

π(D)Cσ(φ)(B[D−1]) detD−s+k (s ∈ C),

which is a finite sum, and H̃φ(B; s) =
∏
p G̃φ,p(B; p−s). In addition, we

also put B(1)(B; s) =
∏
pB

(1)
p (B; p−s). Then Theorem 3.1 can be restated

globally as follows:

Theorem 3.2. Under the same situation as above, we have

B(1)(B; s)L(s, φ,St)H̃φ(B; s+ n− 1/2)

=
∑

W∈GLn−1(Z)\Mn−1(Z)∩GLn−1(Q)

Cσ(φ)(B[W ])(detW )−s−k+3/2.

Moreover, by applying Theorem 3.1 to the Jacobi Eisenstein series E
(n−1)
k,1

= e
(n−1)
k,1 ∈ Jk,1(Γ Jn−1), we obtain the following conclusion:

Theorem 3.3. Let n and k be as above. For each B ∈ Symn−1(Zp)(1),

B(1)
p (B; pn−1/2t)G̃(1)

p (B; pk−(n+1)/2, p(n+1)/2t)∏n−1
i=1 (1− pj−1pk−(n+1)/2p(n+1)/2t)(1− pj−1p−k+(n+1)/2p(n+1)/2t)

=
∑

W∈GLn−1(Zp)\D(n−1)
p (Zp)

F̃ (1)
p (B[W ]; pk−(n+1)/2)(p(n+1)/2t)ordp(detW ),

where F̃ (1)
p (B;X) and G̃(1)

p (B;X, t) are polynomials defined in §1.
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Proof. Suppose that B ∈ Symn−1(Z)(1)
>0. The Bth Fourier coefficient of

σ(e(n−1)
k,1 ) ∈M+

k−1/2(Γ (n−1)
0 (4)) is expressed as

ξ(n, k)L(1− k/2 + n/2, χB(1))f(B(1))
k−(n+1)/2 ∏

p|f(B(1))

F̃ (1)
p (B; pk−(n+1)/2)

(cf. Proposition 2.4). Thus the assertion follows from Theorem 3.1 and the
Corollary to Proposition 2.2. Moreover, we easily see that it can be extended
to any B ∈ Symn−1(Zp)(1).

For each B ∈ Symn−1(Zp)(1), let R(1)
p (B;X, t) be the formal power series

in X + X−1 and t defined in §1. Eventually, we obtain the rationality for
R

(1)
p (B;X, t) as follows:

Theorem 3.4. Let n be a positive even integer. For B ∈ Symn−1(Zp)(1),
we have

R(1)
p (B;X, t) =

B(1)
p (B; pn/2−1t)G̃(1)

p (B;X, t)∏n−1
j=1 (1− pj−1Xt)(1− pj−1X−1t)

.

Proof. We write both sides of the above equation as power series in t as

R(1)
p (B;X, t) =

∞∑
i=1

Ai(X)ti,

and
B(1)
p (B; pn/2−1t)G̃(1)

p (B;X, t)∏n−1
j=1 (1− pj−1Xt)(1− pj−1X−1t)

=
∞∑
i=1

Bi(X)ti,

where for each i, Ai(X) and Bi(X) are polynomials in X +X−1. Then, by
Theorem 3.3,

Ai(pk−(n+1)/2) = Bi(pk−(n+1)/2)

for infinitely many k. Thus Ai(X) = Bi(X) for each i, completing the
proof.

Remark. For a given pair of positive even integers n and k as in Theo-
rem 3.1, let f ∈ S2k−n(Γ1) be a Hecke eigenform, which possesses a Fourier
expansion

f(z) =
∞∑
N=1

af (N)e(Nz) (z ∈ H1)

normalized by af (1) = 1. For each rational prime p, we denote by αp the
Satake p-parameter of f , that is, an algebraic number determined by the
condition αp + α−1

p = af (p) p−k+(n+1)/2 uniquely up to inversion. By sub-
stituting X = αp in the main identity of Theorem 3.4, we can also derive a
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result similar to Theorem 3.3 for a power series related to the first Fourier–
Jacobi coefficient of a Siegel cusp form F ∈ Sk(Γn) which is connected to f
under Ikeda’s lifting procedure (cf. [12]). We note that it will play an impor-
tant role in a proof of Ikeda’s conjecture on the period of such an F , which
was proposed in [13] (cf. [16, 17]).
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