ACTA ARITHMETICA
145.3 (2010)

Infinite Hilbert 2-class field tower of quadratic number fields
by

A. MouHiB (Taza)

1. Introduction. Let k£ be a number field. We will denote the ideal
class group of k in the wide sense by Cj. Let k' be the Hilbert 2-class field
of k (i.e., the maximal abelian unramified 2-extension of k), and for n > 2,
let k™ be the Hilbert 2-class field of k"~!. Then

kcklck®*c---ck"c.-
is the Hilbert 2-class field tower of k. We say that the tower is finite if
k" = k™! for some n, and infinite otherwise.

We define the 2-rank of C} as the dimension of the elementary abelian
2-group Cy/ C,% viewed as a vector space over Fo:

ranks(Cy,) = dimp, (Cy,/C3),
where [y is the finite field with two elements. We define the 4-rank of Cj by
rank,(Cy) = ranks(C?) = dimg, (C7/CP).

Assume k is an imaginary quadratic number field. It is well known that
if ranks(C%) > 5, then the Hilbert 2-class field tower of k is infinite [5]. In
the case where ranky(Cy) = 2 or 3, the Hilbert 2-class field tower of k may
be finite ([9], [10]), and if ranks(C}%) = 1 then the Hilbert 2-class field tower
of k is finite of length 1. It has been conjectured that if ranks(Cy) = 4, then
k has infinite Hilbert 2-class field tower [10]. We mention that Hajir proved
that if Cj contains a subgroup isomorphic to Z/4Z x Z/AZ x Z/AZ, then k
has infinite Hilbert 2-class field tower ([6], [7]).

Now suppose that ranks(Cy) = 4 and the discriminant of £ is divisible
by exactly one negative prime discriminant. In [2], under some conditions
on the 4-rank of C} and the Kronecker symbols of the primes dividing the
discriminant of k, the author proves that k& has infinite Hilbert 2-class field
tower. Y. Sueyoshi proves the same result under some conditions on the
Rédei matrix [14].
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In Section 3 of this article, we investigate Martinet’s question and the
above conjecture by generalizing the preceding results. We prove the follow-
ing theorem:

THEOREM. Let k be an imaginary quadratic number field whose discrim-
inant is divisible by at most one negative prime discriminant and rankg(Cy)
= 4. Then the Hilbert 2-class field tower of k is infinite.

Also, in Section 3, we show that a positive proportion of imaginary
quadratic number fields with the class group of 2-rank equal to 2 and 4-rank
equal to 1 have infinite Hilbert 2-class field towers.

2. Known results

2.1. Golod and Shafarevich inequality. Let k be a number field, Cj,
be the class group of k& and Ej be the group of units of k. Then, from [3]
p. 233], we know that the Hilbert 2-class field tower of & is infinite if

(%) ranks(Cy) > 2 + 24/ranks(E)) + 1,

where ranks(F})) is exactly the number of infinite primes of k.

REMARKS. If k is an imaginary quadratic number field, then ranky(FEy)
= 1. Suppose ranky(C%) > 5. Then the inequality (x) is satisfied and k has
infinite Hilbert 2-class field tower.

If k is an imaginary biquadratic number field, then ranks(FEj) = 2. Sup-
pose ranky(Cg) > 6. Then the inequality (x) is satisfied and k has infinite
Hilbert 2-class field tower.

If k is an imaginary triquadratic number field, then ranks(E})) = 4, and
the inequality (x) is satisfied whenever ranks(Cy) > 7.

2.2. Genus theory. Let K be a quadratic extension of a number field k.
By classical results of genus theory [§], we have

rankg(C'K) > ram(K/kJ) — dim[g‘Q (Ek/Ek N NK/k(K*)) -1,
where ram(K/k) is the number of primes that ramify in the extension K/k,
and N/, is the norm map in the extension K/k. In the case where the class
number of k is odd, the preceding inequality becomes an equality (see for
instance [1]).
We note that

. [k:Q] if k totally real,
dlIIlIE‘2 (Ek/Ek N NK/k(K*)) <

3k : Q] if not.
Now let k be a quadratic number field of discriminant d, and ¢ be the number
of primes that ramify in k. By genus theory, we have

ranky (Cy,) = {

t —2 if d is positive and not a sum of two squares,

t—1 otherwise.
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3. Main results

3.1. Proof of the Theorem. We let the notations be as in Section 2. In
this section we investigate Martinet’s conjecture, we give a proof of the The-
orem and we show that a positive proportion of some imaginary quadratic
number fields have infinite Hilbert 2-class field tower. We begin with the
following two lemmas.

LEMMA 3.1. Let p1, p2, ps and py be distinct prime numbers Z —1

(mod 4) and K = Q(y/P1, /P2, /D3, /P1). Then ranky(Cx) > 2.
Proof. See [11, Theorem 5.3]. =

LEMMA 3.2. Let p be a prime number and L/K be a Galois extension
of algebraic number fields whose Galois group G is an elementary p-group.
Then for each place P of K unramified in L, the number of P-places of L
is equal to [L : K] or (1/p)[L : K].

Proof. We know that if P is unramified in the extension L/K, then
the decomposition group of P is a cyclic subgroup of G. Since G is an
elementary p-group, the decomposition group of P is of order 1 or p, proving
the lemma. =

Proof of the Theorem. By hypotheses, we have ranks(C%) = 4 and the
discriminant d of k is divisible by at most one prime = —1 (mod 4). So,
denote by p1,ps2,p3,ps and p distinct prime numbers dividing d such that
pi # —1 (mod4), 1 < i < 4andp =2or p= —1(mod4). We put
K = Q(y/p1, /P2, /P3,+/P1) and let M be the decomposition field of p in K.
From Lemma 3.2, M = K or K/M is a quadratic extension. Let F' be the
composite field of M and k which is a totally complex quadratic extension
of the totally real field M.

Suppose that M = K. Then the extension F'/M is ramified at all archi-
median places and p-adic places of M, so ram(F'/M) = 2[M : Q] = 32. We
have dimp, (Ey/En N Npp(F)) < [M : Q] and ranke(Er) = [M : Q]
= 16. Hence one can readily verify that

ram(F/M) — dimp, (Enr/Env O Npjpg(F7)) — 1> 2 + 24/ranks(Ep) + 1.
By Section 2.2, we have
ranks(Cr) > ram(F/M) — dimp, (Ep /Ep O Npjp(FF)) — 1,

so the extension F'/M satisfies the inequality (*) of Section 2.1, and con-
sequently F' has infinite Hilbert 2-class field tower. Therefore, since F/k is
unramified, k£ has infinite Hilbert 2-class field tower.

Suppose that K /M is a quadratic extension. In the case where K/M is
ramified, there exists a unique i € {1,2,3,4} such that the p;-adic places
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of M are ramified in K. So the extension F'/M is ramified at all archi-
median places, p-adic places and p;-adic places of M. Moreover, we have
ram(F/M) = 3[M : Q] = 24 or ram(F/M) = 2[M : Q] + 3[M : Q] = 20
respectively if p; is totally decomposed in M or not. Therefore, as in the
preceding case, we show that the Hilbert 2-class tower of k is infinite. It
remains to study the case where K /M is an unramified quadratic extension.

Suppose that K /M is unramified. By Lemma 3.1 we have ranks(Cx) > 2,
so the 2-part of the class group of M can never be trivial or cyclic. This
implies that ranks(Cys) > 2. Let M be the maximal elementary unrami-
fied extension of M. One can verify that M is normal over Q. Denote by
F the composite field of M and k which is a totally complex quadratic
extension of the totally real field M. The extension F/M is ramified at
all archimedian places and p-adic places of M. By Lemma 3.2, each p-adic
place of M is totally decomposed or decomposed into %[M : M] places

in M, so ram(F/M) > [M : Q] + S[M : Q]. On the other hand since
ranky(Er) = [M : Q] and [M : Q] > 32, one can obtain

ram(F/M) — dimg, (Ej; /Ey 0 Ng (F*)) = 1> 2+ 2y/ranks(Er) + 1,

hence the extension F satisfies the inequality (x), and consequently F' has
infinite Hilbert 2-class field tower. The fact that F'/k is unramified implies
that k has infinite Hilbert 2-class field tower. m

3.2. The positive proportion of imaginary quadratic number
fields k£ with 2-rank of Cj equal to 2. It is well known that every
number field whose 2-part of its class group is isomorphic to Z/27 x Z/27
has finite Hilbert 2-class field tower that terminates in at most two steps [9].

In [I0], J. Martinet asked the following question: is there any imaginary
quadratic number field with 2-class group of rank 2 and infinite Hilbert
2-class field tower?

Schmithals showed that the quadratic number field k¥ = Q(v/—25355)
with ranks(Cy) = 2 has infinite Hilbert 2-class field tower [13].

In the following proposition we show that a positive proportion of imag-
inary quadratic number fields with 2-rank of its class group equal to 2 and
its 4-rank equal to 1 have infinite Hilbert 2-class field towers.

PROPOSITION 3.3. Let p1 and pa be distinct prime numbers such that the
class number of Q(\/p1p2) is divisible by 16. Then for each prime number
p = —1 (mod 4) such that (B2) = —1, the Hilbert 2-class field tower of

Q(v/—p1p2p) is infinite. g

Proof. From genus theory, the 2-class group of k = Q(\/pip2) is cy-
clique. Since by hypotheses, the class number of k is divisible by 4, we

have (%) = 1 [12]. Moreover, (%) = —1 and thus the Rédei matrix of
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Q(v/—p1p2p) has rank 1, which implies that the 4-rank of the class group
of Q(v/—p1p2p) is equal to 1 [4]. Now let k! be the Hilbert 2-class field of k
and F be the composite field of k! and Q(y/—p) which is a totally complex
quadratic extension of the totally real field k!. It is clear that F//Q(y/—p1p2p)
is unramified. Then proving the theorem is reduced to proving that F' has
infinite Hilbert 2-class field tower.

The prime number p is inert in the extension k/Q, since (1%) = —1.
Thus the p-adic place of k is principal. So by the reciprocity law applied in
the extension k!/k, the p-adic place of k is totally decomposed in k'. Note
that the number of p-adic places that ramify in F/k! is equal to [k! : k].
Thus ram(F/k') = 3[k! : k]. From Section 2.2, we have

ranky(Cr) > ram(F/k') — dimp, (Ej1 /Eg N Npji (F*)) =1

and since dimg, (Eg1 /Ep NNp i (F*)) < 2[k! : k], it follows that ranks(Cr)
> [k : k] — 1 > 15. On the other hand, since ranks(Er) = 2[k! : k] and
one can verify that [k!: k] —1 > 2+ 2,/2[k! : k] + 1, by the inequality (x)
of Section 2.1 we deduce that the Hilbert 2-class field tower of F' is infinite.
Hence Q(v/—pip2p) has infinite Hilbert 2-class field tower. m

By the distribution of prime numbers in an arithmetic progression, there
exist infinitely many primes p satisfying the conditions of the preceding
proposition. Thus the proposition shows that a positive proportion of the
imaginary quadratic number fields with 2-rank of the class group equal to 2
and 4-rank equal to 1 have infinite Hilbert 2-class field towers.

From the following proposition we construct imaginary quadratic number
fields k£ such that ranks(Cj) = ranks(Cy) = 2 and k has infinite Hilbert
2-class field tower.

PROPOSITION 3.4. Let d be a positive integer such that d # 1 (mod 4)
and k = Q(v/d). Suppose that 8 divides the order of C). Then for every
prime number p = —1 (mod 4) such that the equation x* — dy* = p has
a solution in Z X 7, the imaginary quadratic number field Q(/—pd) has
infinite Hilbert 2-class field tower.

Proof. The equation z? — dy? = p having a solution in Z x Z implies
that p is decomposed into two distinct primes P; and Po in k. We have
pop = P1Pa = (a—bVd)(a+bVd)oy, where a and b are two positive integers
and o the ring of integers of k. Then the places P; and Po are principal.
Therefore, P; and P, are totally decomposed in the Hilbert 2-class field
k' of k, so p is totally decomposed in k'. The extension k!(y/—p)/k! is
ramified at the archimedian and the p-adic places of k', hence it is easy to
see that k'(,/—p) satisfies the equality (*), so the Hilbert 2-class field tower
of k*(\/=p) is infinite. The fact that k'(,/=p)/Q(y/—pd) is unramified proves

the example. =
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Let d = 226 and p = 367. The class number of k = Q(v/d) is equal to 8.
Since 492 — 32d = p, from the preceding proposition Q(v/—pd) has infinite
Hilbert 2-class field tower.

Let d = 226 and p = 503. The class number of & = Q(v/d) is equal to 8.
Since 272 — d = p, from the preceding proposition Q(y/—pd) has infinite
Hilbert 2-class field tower.
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