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The space of morphisms on projective space

by

Alon Levy (New York)

1. Introduction and notation. A rational map from Pn to itself is
determined by an (n+ 1)-tuple of polynomials in n+ 1 variables, all homo-
geneous of the same degree d. If this map is a morphism, it will be finite
of degree dn. In the rest of this paper, we will refer to a rational map de-
fined by such polynomials as a degree d map on Pn by abuse of terminology.
The space of degree d maps on Pn is projective, with homogeneous coordi-
nates coming from monomials of degree d. There are

(
n+d
d

)
such monomials,

so that this space has dimension
(
n+d
d

)
(n + 1) − 1. We write Nn

d for the
dimension of this space, or N when d and n are clear.

The case of interest is morphisms on Pn. In what follows, we refer to the
polynomials defining the map as q0, q1, . . . , qn. Then a map (q0 : . . . : qn)
is a morphism if and only if the qi’s share no common geometric root. The
qi’s only share a common root if (q0 : . . . : qn) lies on a hypersurface of PN ,
which we call the resultant subvariety and which is defined over Z; we denote
its complement by Homn

d .
The space PN of rational maps comes equipped with an action of

PGL(n+1) by conjugation. The conjugation action A ·ϕ = AϕA−1 fixes the
resultant, which gives an action of PGL(n+ 1) on Homn

d . In this paper, we
mainly study the quotient of this action, which we denote Mn

d , or Md when
n = 1. We will show that this quotient is geometric in the sense of geomet-
ric invariant theory [9], and compute the largest stable and semistable loci
Homn,s

d and Homn,ss
d , which satisfy Homn

d ⊂ Homn,s
d ⊂ Homn,ss

d ⊂ PN .
Knowing that the quotient Mn

d is well-behaved is often necessary to an-
swer questions about the geometry of families of dynamical systems. In [11],
Petsche, Szpiro, and Tepper prove that Mn

d exists as a geometric quotient
in order to show that isotriviality is equivalent to potential good reduction
for morphisms of Pn over function fields, generalizing previous results in the
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one-dimensional case. In [3], DeMarco uses the explicit description of the
space M2 in order to study iterations of quadratic maps on P1, and one can
expect similar results in higher dimension given a better understanding of
the structure of Mn

d .
By now the theory of morphisms on P1 is the standard example in dy-

namical systems. For a survey of the arithmetic theory, see [15]; also see a
recent paper by Manes [6] about moduli of morphisms on P1 with a marked
point of period n, which functions as a dynamical level structure. In the
complex case, see an overview by Milnor [8], and the work of DeMarco [2],
[3] about compactifications of the space Md that respect the iteration map.
Despite this, the higher-dimensional theory remains understudied. The only
prior result in the direction of moduli of morphisms on Pn is the proof in
[11] that Mn

d exists as a geometric quotient. Unfortunately, the proof does
not lend itself well to finding the stable and semistable spaces for the action
of PGL(n+1) on PN , nor does it bound the size of the finite stabilizer group
uniformly on Homn

d .
The first two tasks in this paper are then to construct alternative proofs

of the fact that the quotient Mn
d is geometric, first by explicitly describing

the stable and semistable loci, and second by finding a uniform bound for the
size of the stabilizer group in PGL(n+1). The former we will do in Section 2,
using the Hilbert–Mumford criterion for stability and semistability. We will
see that the complements of both Homn,s

d and Homn,ss
d are finite unions

of linear subvarieties and their PGL(n + 1)-conjugates; this contrasts with
the n = 1 case, when the complement is the PGL(2)-orbit of only one linear
subvariety. In Section 3 we will study the stabilizer groups, proving a uniform
bound on their sizes, valid over all fields and rings of definition, depending
only on n and d. This will strengthen previous results in this direction for
n = 1 in [13].

Most results in this paper are a natural generalization of the study of
morphisms on P1 in [14], which refers to the space of morphisms as Ratd and
its quotient as Md, and which proves that M2

∼=Spec Z A2 using the theories
of fixed points and multipliers. Specializing to the case where n = 1, we will
prove in Section 4 that Md is rational for all d. This is new even in the case
of d = 3. The proof in this paper is based on showing that Md is birational
to a vector bundle over the space M0,d+1 of d + 1 unmarked points on P1,
which is known to be rational.

Unfortunately, we do not see any easy generalization of rationality to Mn
d .

The obstruction is that the space of unmarked points on Pn is not known to
be rational. Clearly Homn

d is rational, so Mn
d is unirational, which for some

applications, such as the density of points defined over a number field K, is
enough. However, in order to investigate the structure of Mn

d we need more
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than that. We do not expect a result along the lines of [14], that M2
∼= A2,

but we do expect rationality of Mn
d .

2. The spaces Homn
d and Mn

d . The space Homn
d of degree-d morphisms

on Pn arises as the subset of PN = {(q0 : q1 : . . . : qn)} defined by the
condition that the qi’s share no common root. In order to give this space
an algebraic structure, we investigate its complement. We will show the
following result, proven by Macaulay [5] and reinterpreted here in modern
language (see also [4] for a more complete treatment):

Theorem 2.1. The maps on Pn of degree d such that the qi’s share a
nonzero root form a closed, irreducible subvariety of PN of codimension 1,
which is defined over Z.

Proof. Consider the variety V = Pn×PN . We think of V as representing
a set of polynomials (q0 : q1 : . . . : qn) acting on the point (x0 : x1 : . . . : xn).
Consider the resultant subvariety U ⊂ V defined by the condition that
qi(x) = 0 for all i. This variety clearly has codimension at most n + 1.
If we denote the variables defining PN as ai

ji
0j

i
1...j

i
n

with ji0 + · · · + jin = d,

representing the xj
i
0

0 · · ·x
ji
n
n monomial of qi, then we see that U is defined by

equations that are bihomogeneous of degree 1 in the aiJ ’s and d in the xi’s.
We claim that U is irreducible. The claim follows from a generalization

of the fact that a primitive polynomial is irreducible over a domain whenever
it is irreducible over its fraction field. More precisely, let R be a domain with
fraction field K, and let I be an ideal of R[y1, . . . , ym] that is not contained
in any prime of R. We have a natural map f from SpecK[y1, . . . , ym] to
SpecR[y1, . . . , ym]. If V (I) is reducible over R, say V (I) = V1 ∪ V2 with Vi
nonempty, then either V (I) is reducible over K, or one f−1(Vi), say f−1(V1),
is empty. In the latter case, I(V1) may not contain nonconstant polynomials,
so it contains at least one prime constant. This contradicts the assumption
that I is not contained in any prime of R; hence, V (I) is reducible over K.

With the above generalization, suppose that U is reducible. Then it is
also reducible as a subvariety of An+1 × AN+1. Further, by letting R =
Z[x0, . . . , xn] and K be its fraction field, we see that either U is contained
in a prime of R, or U is reducible in AN+1

K . The former case is impossible
since U is not contained in any prime of Z or any relevant prime ideal of the
ring of polynomials over Z, and the latter is impossible since it is defined
by linear equations in the aiJ ’s. Either way this is a contradiction, so U is
irreducible and the claim is proven.

Finally, the maps on Pn of degree d whose polynomials have a common
nonzero root arise as the projection of U onto the second factor of Pn×PN .
It is irreducible because the projection map is surjective. It is closed because
the map is proper. It has codimension at most 1 because almost all polyno-
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mials in U share just one root, so that the dimension of U and its image are
equal. It has exact codimension 1 because some maps, for instance qi = xdi ,
are morphisms. And it is defined over Z because every construction we have
made in this proof is defined over Z.

We call the image of U the resultant subvariety of PN ; we call its gener-
ating polynomial the Macaulay resultant and denote it by Resnd . Macaulay
proved the theorem by constructing the resultant explicitly for homoge-
neous polynomials pi of arbitrary degrees, and showing that it has integer
coefficients and is irreducible. His explicit construction shows that if the
polynomials p0, p1, . . . , pn are homogeneous of degrees d0, d1, . . . , dn, then
the resultant is (n + 1)-homogeneous in the coefficients of each polynomial
pi of degree

∏
j 6=i dj . In our case, all the degrees are equal to d, so that the

resultant is (n+ 1)-homogeneous in the coefficients of each qi of degree dn.
In particular, the resultant subvariety is a hypersurface of degree (n+ 1)dn.

Theorem 2.1 shows that the space of morphisms is the complement of
the resultant subvariety, and is therefore affine and of dimension N ; we will
refer to it as Homn

d , and to the resultant subvariety as Resnd by abuse of
notation. Silverman [14], who only considers the case n = 1, denotes the
space of morphisms by Ratd, and Petsche, Szpiro, and Tepper [11] denote
the space of morphisms by Endnd .

The action of PGL(n+ 1) on Pn leads to a conjugation action on Homn
d ,

wherein A ∈ PGL(n+ 1) acts on a rational map ϕ by sending it to AϕA−1.
The property of being ill-defined at a point is stable under both the left
action mapping ϕ to Aϕ and the right action mapping ϕ to ϕA−1; hence,
the conjugation action is well-defined on Homn

d . The space of endomorphisms
of Pn defined by degree-d polynomials may be regarded as the quotient of
Homn

d by the conjugation action.
A priori, we only know that over an algebraically closed field, the quo-

tient exists as a set. In order to give it algebraic structure, we need to pass to
the stable or semistable space in geometric invariant theory [9]. Fortunately,
we have the following result:

Theorem 2.2. Every ϕ ∈ Homn
d is stable.

Proof. We use the Hilbert–Mumford criterion, as described in Chapter 2
of [9]. To do that, we pull back the action of PGL(n+1) on PN to the action
of SL(n+ 1) on AN+1, and consider one-parameter subgroups of SL(n+ 1).
The criterion states that a point lies in the stable space Homn,s

d (respectively,
the semistable space Homn,ss

d ) iff for every such subgroup, its action on the
point can be diagonalized with diagonal elements taI , and at least one aI is
negative (resp. nonpositive).

Note that the action of A ∈ SL(n+ 1) on ϕ ∈ AN+1 is conjugate to the
action of BAB−1 on BϕB−1. In particular, it will have the same eigenvalues,



The space of morphisms on projective space 17

so the action of a one-parameter subgroup G = Gm will have the same aI ’s.
Therefore, we may conjugate G to be diagonal, which will be enough to give
us criteria for stability and semistability up to conjugation. So from now
on, we assume G is the diagonal subgroup whose ith diagonal entry is tai ,
ai ∈ Z. Here we label the rows and columns from 0 to n, in parallel with the
labels for the qi’s. We have a0 + · · ·+an = 0. We may also assume that a0 ≥
a1 ≥ · · · ≥ an, after conjugation if necessary, and that the ai’s are coprime.

The action of G on AN+1 is already diagonal. We denote the xd coeffi-
cient of qi by cd(i); then G multiplies cd(i) by tait−(a0d0+···+andn). A point ϕ
is not stable (resp. unstable) if for some choice of G, all the cd(i)’s for which
a0d0 + · · ·+andn > ai (resp. a0d0 + · · ·+andn ≥ ai) are zero. Let us observe
that this means that, for d > 1, every xd0 coefficient has to be zero, as we
will have da0 > a0 ≥ ai for every i. This means that ϕ has no xd0 term, so
that the qi’s have a nontrivial zero at (1 : 0 : . . . : 0), and ϕ /∈ Homn

d . The
property of not being a morphism is preserved under conjugation, proving
the theorem.

Since Homn
d is stable, it has a natural geometric quotient induced by

the PGL(n + 1) action on PN , which we denote by Mn
d ; as Homn

d is affine,
Mn
d is affine, with structure sheaf OSL(n+1)

Homn
d

. We may also write Mn,s
d for the

quotient of the stable space and Mn,ss
d for the quotient of the semistable

space. The latter quotient is only categorical, rather than geometric, but
will be proper over Spec Z (all spaces in question, as well as SL(n+ 1), are
defined over Z; hence, so are the quotients).

Let us now describe the not-stable and unstable spaces more explicitly.
In the n=1 case, G depends only on a0, which may be taken to be 1. This
gives us only one criterion for stability (resp. semi-stability), which means
that the not-stable (resp. unstable) space is irreducible (in fact, it will be a
linear subvariety and its orbit under PGL(2)-conjugation). When n > 1, this
is no longer true: G depends on multiple variables, and we can find many
infinite families of coprime ai’s that sum to 0 and are in decreasing order.

However, the not-stable (resp. unstable) space will still be a union of
finitely many linear subvarieties and their orbits under conjugation by
PGL(n+ 1), where the number of linear subvarieties generally grows with d
and n. This is because there are only 2N+1 linear spaces defined by conditions
of the form cd(i) = 0 for a collection J of (d, i) pairs. For each such space,
either there exists a G such that (d, i) ∈ J if and only if a0d0+· · ·+andn > ai
(resp. a0d0 + · · ·+ andn ≥ ai), or there does not. Of course, a given J may
correspond to infinitely many G, which will in general have ratios a0 : . . . : an
that are close in the archimedean metric.

We omit the calculation of the linear subvarieties that occur as the not-
stable (resp. unstable) space for each d and n, as well as the number of
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such varieties. We will just note that there are far fewer than 2N+1 such
varieties: for a start, we have already seen that ((d, 0, . . . , 0), i) ∈ J for all i.
One more constraint that follows trivially from the definition of the ai’s is
that if (d, i) ∈ J , then so is (d, j) for j > i. Put another way, not being
stable (resp. instability) imposes more conditions on qj than on qi for j > i.
It may also be shown that for each G the number of conditions is roughly
between one half and e−1 times N ; we omit the proof, as this result will not
be relevant in the remainder of this paper.

Finally, when n = 1, the only G has a0 = 1, a1 = −1, so a0d0 + a1d1 =
d0− d1 = 2d0− d. When d is even, 2d0− d is always even, so the conditions
a0d0+a1d1 > ai and a0d0+a1d1 ≥ ai coincide, and the stable and semistable
spaces are the same; this was shown in [14]. We will show that this will never
be the case for higher n. First, observe that if we set a0 = 1, an = −1, and
ai = 0 for i 6= 0, n, we obtain a0d0+· · ·+andn = d0−dn, which may take any
value between −d and d inclusive. Hence, the conditions a0d0 + · · · + andn
> ai and a0d0 + · · ·+ andn ≥ ai will not coincide.

Now, suppose that ϕ is a point that is not stable, with cd(i) = 0 if
and only if d0 − dn > ai with ai as above. If ϕ is unstable, then we can
find some G such that if a0d0 + · · · + andn ≥ a0 then d0 − dn > 1, and if
a0d0 + · · ·+ andn ≥ ai for i 6= 0, n, then d0 − dn > 0. If for that G we have
a1 ≥ 0, then looking at the x0x

d−1
1 monomial, we get a0d0 + · · · + andn =

a0 + (d − 1)a1 ≥ a0 but d0 − dn = 1, a contradiction. If a1 < 0, then we
must have ai < 0 for all i > 0, so a0 + an > 0. For d = 2k + 1, we consider
the xk+1

0 xkn monomial, for which a0d0 + · · · + andn = k(a0 + an) + a0 > a0

but d0 − dn = 1; for d = 2k, we consider the xk0x
k
n monomial, for which

a0d0 + · · · + andn = k(a0 + an) > 0 > a1 but d0 − dn = 0. Either way, we
have a contradiction, so ϕ is semistable but not stable. This proves:

Proposition 2.3. For all d, n > 1, we have Homn,s
d ( Homn,ss

d .

We will conclude this section with the following strict containment:

Proposition 2.4. Homn
d ( Homn,s

d .

Proof. Observe that the linear subvarieties defined above are invariant
under conjugation by every upper triangular matrix, at least when we ensure
a0 ≥ a1 ≥ · · · ≥ an. Hence, the codimension of the not-stable space is equal
to the codimension of the largest linear subvariety, minus n(n + 1)/2. It
suffices to show this codimension is more than 1, or, in other words, that
every linear subvariety has codimension at least n(n + 1)/2 + 2. We will
consider two cases.

Case 1: a1≥0. When d0>0, the xd00 x
d1
1 monomial has a0d0+a1d1>a1,

so it is zero for all qi’s except q0; when d0 > 1 it is also zero for q0, since
a0d0 +a1d1 ≥ 2a0. This gives us a total codimension of n2 +(n−1), which is
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larger than n(n+ 1)/2 + 1 for all n ≥ 2. When n = 1 this case is impossible
because we need to have a0 + a1 = 0.

Case 2: a1 < 0. We have a0 = −(a1 + · · ·+an) > −ai for all i; therefore,
the xd−1

0 xi monomial is zero in every qj except q0; the xd0 monomial is always
zero. This gives us a codimension of n2 + n + 1, which is large enough for
all n.

Remark 2.5. The larger spaces Homn,s
d and Homn,ss

d are more inter-
esting in the study of moduli spaces than in that of dynamical systems.
The problem is that we cannot always iterate rational maps which are not
morphisms, even if they are stable: the image may not be dense, and may
eventually map to a locus on which the map is ill-defined. A map of the
form (q : 0 : 0 : . . . : 0) with q(1, 0, . . . , 0) = 0 will be impossible to iter-
ate. For general q, it will also be stable for large d, because we will have
a0d0 + · · · + andn > a0 for many different d’s no matter how we choose
the ai’s, even after conjugation. When n = 1, it suffices to have d ≥ 4, be-
cause then ϕ is unstable only if it is of the form (p : q) with p and q sharing
a common root of multiplicity at least (d − 1)/2, and we may pick a map
(q : 0) with q having distinct roots. For one approach for giving a completion
of Homn

d in a way that permits iteration at the boundary, see [2].

3. Stabilizer groups. Each morphism in Homn
d , and more generally

each rational map, has a well-defined stabilizer group in PGL(n + 1). This
group remains well-defined up to conjugation after descent to Mn

d , or more
generally Mn,ss

d . This stabilizer will be finite, at least on Mn,s
d , from standard

facts from geometric invariant theory. We will study the possible subgroups
of PGL(n + 1) that may occur as stabilizers of morphisms. We gain very
little by assuming Theorem 2.2, so we might as well not assume it a priori ;
this will provide an alternative proof for it.

Note that the resultant is a PGL(n+1)-invariant section of a PGL(n+1)-
linearizable divisor on PN that is nonzero on Homn

d . Therefore, on Homn
d

stability is equivalent to having closed fibers, which is equivalent to having
a stabilizer group of the lowest possible dimension (see Chapter 1 of [9]).
Hence, to provide a second proof of Theorem 2.2, it suffices to show that the
stabilizer of every ϕ ∈ Homn

d is finite. This was done in [11]. We will prove
a stronger result:

Theorem 3.1. The stabilizer of every point in Homn
d , d > 1, is a finite

group of order bounded in terms of n and d.

Proof. Note that if A ∈ Stab(ϕ), then BAB−1 ∈ Stab(BϕB−1). There-
fore, when considering individual stabilizing matrices, we may assume they
are in Jordan canonical form. We use the following result:
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Lemma 3.2. If A ∈ Stab(ϕ), and ϕ is not purely inseparable, then A is
diagonalizable.

Proof. In characteristic zero, this is trivial given Theorem 2.2. However,
it is not trivial in characteristic p; the proof works for every characteristic,
so we lose nothing from not using Theorem 2.2.

We will assume that A is not diagonalizable and derive a contradiction.
It suffices to assume that A is a Jordan matrix whose largest Jordan block
is of size r > 1. After conjugation and scaling, we may assume that the
first Jordan block is also the largest, and has eigenvalue 1. We will label
the rows and columns from 0 to n, in parallel with the labels for the qi’s.
We will also write ϕ = (q0 : q1 : . . . : qn), ki = aii for the eigenvalue in the
ith position, and ri for the size of the Jordan block containing aii. We have
r0 = r, k0 = 1, ri ≤ r.

Note that the inverse of the first Jordan block is the matrix with zeroes
below the main diagonal and aij = (−1)i−j on or above it. Therefore, each
vector x = (x0, x1, . . . , xn) is transformed to

x′ =
(
x0 − x1 + · · · ± xr−1, x1 − x2 + · · · ∓ xr−1, . . . , xr−1, . . . ,

1
kn
xn

)
.

We write q′i(x) = qi(x′). Similarly, A transforms ϕ = (q0, . . . , qn) to

ϕ′ = (q′0 + q′1, q
′
1 + q′2, . . . , q

′
r−1, . . . , knq

′
n).

Since A stabilizes ϕ, we need ϕ′ to be a scalar multiple of ϕ.
For each d ∈ Zn+1, we denote the xd coefficient of qi (respectively q′i)

by cd(i) (resp. c′d(i)). We suppress trailing zeroes for simplicity, so that
cd denotes the xd0 coefficient. We are looking for the largest i such that
cd(i) 6= 0; such an i exists, or else (1 : 0 : . . . : 0) is a common root of all
the qi’s. As the only xd0 term in x′d comes from x′d0 , we have c′d(j) = cd(j)
for all j. Now in ϕ′, the ith term is either q′i or q′i + kiq

′
i+1, so that its xd0

coefficient is kicd(i). This implies that the scaling factor is ki, i.e. ϕ′ = kiϕ.
Now, assume that i is not at the beginning of its Jordan block, that

is, ai−1,i = 1. Then ki−1 = ki, and the fact that ϕ′ = kiϕ implies that
ki−1c

′
d(i−1)+ c′d(i) = kicd(i−1). This reduces to cd(i) = 0, a contradiction.

Therefore, i is at the beginning of its Jordan block.
Let us now consider the xd−1

0 x1 coefficients, and assume throughout that
all indices are in the same Jordan block as i. We have c′d−1,1(j) = cd−1,1(j)−
dcd(j). For j > i, this reduces to c′d−1,1(j) = cd−1,1(j). Conversely, the
term corresponding to cd−1,1 in ϕ′ = kiϕ will be kic′d−1,1(j) + c′d−1,1(j + 1)
= kicd−1,1(j). When j > i, this implies that c′d−1,1(j + 1) = 0, so that
cd−1,1(j) = 0 for j > i + 1; conversely, for i + 1, we obtain kic

′
d−1,1(i) +

c′d−1,1(i + 1) = kicd−1,1(i), which reduces to cd−1,1(i + 1) = kidcd(i) 6= 0.
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This shows that i+ 1 is the largest index with a nonzero xd−1
0 x1 coefficient,

at least in the Jordan block containing i.

We may apply induction on s(d) = d1 + 2d2 + · · ·+ (r− 1)dr−1, and find
that in the Jordan block containing i, the largest index with a nonzero xd

coefficient is i+s(d). Note that the Jordan block has ri ≤ r elements, but the
number of monomial indices attached to the first Jordan block is (r−1)d+1,
which is strictly greater than r when d, r > 1. This is a contradiction: the
last element of the Jordan block has kic′d = kicd for all d, i.e. cd(i+ri−1)′ =
cd(i + ri − 1), but that last equality is only true when s(d) ≤ ri, which is
not the case for all d. Since we are assuming d > 1, we must have r = 1,
and we are done.

The careful reader may note that the proof that i+s is the largest index
with a nonzero xd coefficient for s(d) = s makes an assumption about the
characteristic we are working in. In characteristic zero, d 6= 0 and there is no
problem. In characteristic p, we need to treat separately the case when p < d.
Then for example we may have p | d, so that c′d−1,1(j) = cd−1,1(j) for all j,
and cd−1,1(i + 1) may be zero. Note that the number of monomial indices
containing xd−2

0 attached to the first Jordan block is 2(r − 1) + 1, which
is strictly greater than r when r > 1; when p - d(d − 1), we may restrict
ourselves to such monomials, and the proof proceeds as in characteristic
zero.

When p | d− 1, we may restrict ourselves to monomials containing xd−1
0 ,

and proceed with the proof. We will only encounter an obstruction if ri = r
and only at the end of the Jordan block, where the existence of a nonzero
xd−1

0 xr−1 monomial does not guarantee that of xd−2
0 x1xr−1. However, the

action of A on qi+r−1 takes it to kiq′i+r−1, and we must have c′d(i+ r− 1) =
cd(i+r−1) for all d. If we write d−1 = plm, m - p, then we see that xd−1

0 xr−1

is transformed to ki(x0−x1+· · ·±xr−1)d−1xr−1 = ki(x
pl

0 −· · ·±x
pl

r−1)mxr−1,

which shows that the xp
l(m−1)

0 xp
l

1 monomial does not satisfy c′d(i+ r− 1) =
cd(i+ r − 1). This yields a contradiction.

Finally, when p | d, we may write d = plm. When m > 1, we apply exactly
the same proof as in characteristic zero, except that we write m instead of d
and mj = dj/p

l instead of dj ; then we define s(d) = m1 + · · ·+ (r− 1)mr−1,
and in the Jordan block containing i, the largest index with a nonzero xd

coefficient is i + s(d). As m > 1, we have (r − 1)m + 1 > r for r > 1,
and we have the same contradiction as in the characteristic zero case. Note
that when m = 1, we may derive the same contradiction from any nonzero
monomial not of the form xdj , which must exist if ϕ is not purely inseparable.
Hence, if ϕ has a nondiagonalizable stabilizer then it is purely inseparable
and we are done.
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With the above lemma, we know that any abelian subgroup of Stab(ϕ) ∈
GL(n+1) will be simultaneously diagonalizable. We will prove the following
uniform bound on the size of abelian stablizing subgroups:

Lemma 3.3. Every diagonal subgroup stabilizing ϕ ∈ Homn
d is of size at

most dn+1.

Proof. A diagonal matrix A with diagonal entries (a0, a1, . . . , an) acts on
each qi by multiplying cd(i) by ai/(ad00 . . . adn

n ). Our case of interest will be
the xdj coefficients. Each has to be nonzero for at least one i, which induces
the equation ai = adj . Note that we may set the scaling factor k to be 1,
since the scalar matrix k1/(1−d) multiplies every coefficient by k.

Now, we have at least n + 1 different relations ai = adj . We may drop
relations until each j has just one i such that such a relation holds; dropping
relations will increase the size of the group, so by bounding the size of the
larger group, we will bound the size of any automorphism group.

We obtain a function j 7→ i. If the function is bijective, we may write
it as a product of disjoint cycles, and conjugate to get the cycles to be
(0 1 . . . s1 − 1) . . . (n − sk + 1 . . . n). Denote by ri the length of the ith
cycle (which has nothing to do with the definition in Lemma 3.2). Then
ad

r1

0 = a0 and a0 is a root of unity of order dividing dr1 − 1, the choice
of which uniquely determines ai, 0≤ i ≤ r1 − 1. We have similar results for
ar1 , . . . , an−rk+1; since

∑
ri=n+1, this bounds the size of the group by dn+1.

In general, of course, the function j 7→ i may not be bijective, so we
can only write it as a product of precycles, whose cycles are disjoint. Here a
precycle means a cycle and zero or more tails. The above discussion applies
to the cycles. For the tails, suppose without loss of generality that (0 1 . . . r)
is a tail where r and no element before it is part of a cycle; then the choice
of ar determines a choice of d possibilities for ar−1 and in general ds for
ar−s subject to the obvious compatibility condition. This clearly respects
the bound of dn+1: if m is the total number of elements in cycles, then we
have at most mn+1 possibilities for the cycles, each of which gives us exactly
(d−m)n+1 possibilities for the tails.

The bound dn+1 works for abelian stabilizing subgroups in the purely
inseparable case as well. We may view a purely inseparable ϕ as the action
of raising every coefficient to the dth power followed by the matrix B. Then
AϕA−1 = ϕ if and only if ABA−1

d = B, where Ad is the image of the matrix
A under the homomorphism of raising every entry to the dth power; we need
to show the group of such A, which we will write as Stab(B), is finite. Since
A and Ad are conjugate, all eigenvalues of A are in Fd.

We may conjugate an abelian stabilizing subgroup G to obtain a block
diagonal group with each block upper triangular and with its (i, j) entry
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depending only on j − i. We may also fix one element, C, to be in Jordan
canonical form, in which case we will have Cd = C and thus BC = CB.
Then B is in block form; labeling the blocks by r, s and the rth block of C
by Cr, we see that the Brs is nonzero if and only if the blocks r and s are
of the same size and equal for every element of Stab(B), and in any case
Brs commutes with Cr = Cs, so it is upper triangular with its (i, j) entry
depending only on j − i. In particular, it commutes with every Ar = As,
so that B commutes with G. Hence for all A ∈ G, we have AB = BA and
ABA−1

d = B, so that A = Ad and A has entries in Fd. Furthermore, for each
block in G of size r, we have r positive possibilities for j − i, inducing dr

possible blocks, and dn+1 possible matrices in G.
Note that we may have additional stabilizing matrices in PGL(n + 1).

These occur when there exists an automorphism of the set {0, 1, . . . , n} that
does not leave the diagonal vector a = (a0, . . . , an) ∈ An+1 fixed, but does
fix a = (a0 : . . . : an) ∈ Pn. Since the automorphism has to fix a0a1 . . . an, we
see that it must send each ai to ζai where ζ is a root of unity of order at most
n+ 1; hence there are at most n+ 1 possibilities for such an automorphism,
modulo automorphisms that fix a ∈ An+1 and are hence simultaneously
block-diagonalizable with A.

We will rely on one final bound, due to G. A. Miller [7]:

Proposition 3.4. The size of a finite group is bounded in terms of the
size of its largest abelian subgroup.

Proof. It suffices to show this for p-groups. For each n, we let k(n) be
the minimal exponent of the largest abelian subgroup of any p-group of
exponent n. Furthermore, for each l ≤ n, we let k(n, l) be the minimal
exponent subject to the restriction that Z = Z(G) have exponent l, so that
k(n) = min{k(n, l)}. It is enough to show that limn→∞ k(n) =∞.

It is trivial to show that k(2) = 2. In general, for a p-group of exponent n
and center of exponent l, let g be such that g /∈ Z, gp ∈ Z, and gZ ∈ Z(G/Z).
Unless G is abelian, in which case the result is trivial, we may take g to be
a preimage of a nontrivial element in the socle of G/Z. For every h ∈ G,
hgh−1 = gz for some z ∈ Z; we obtain a group homomorphism h 7→ z
from G to Z. The homomorphism has kernel K of exponent at least n − l
and center containing 〈Z, g〉. Any abelian subgroup of K will be an abelian
subgroup of G, so that we obtain k(n, l) ≥ k(n − l, l + 1). It easily follows
that k(n) ≥ 2

√
n.

The bound in the above proposition is very weak. It is known that for
odd p we have k(n) ≤ (n + 4)/3 and for p = 2 we have k(n) ≤ 2(n + 3)/5
(see [1]), but little more. However, we can show

Proposition 3.5. The bound in Theorem 3.1 is subexponential in dn+1.
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Proof. The fact that k(n) ≥ 2
√
n is equivalent to the fact that for a

fixed r = k(n), n ≤ r(r + 1)/2. Now if G is a finite group, and for every
p dividing the order of G, the largest abelian p-subgroup of G has size prp ,
then |G| ≤

∏
prp(rp+1)/2. Trivially, we have rp ≤ log2 p

rp ≤ log2 |G|, and
also trivially

∏
prp ≤ |G|; therefore, |G| is bounded by (

∏
prp)(1+log

Q
prp )/2.

Now, let us return to the notation of the main theorem, where n is the
ambient dimension rather than the exponent of a group. We list all the
primes dividing n + 1, d, and di − 1 for 1 ≤ i ≤ n + 1, together with the
maximal multiplicities with which they could divide the order of an abelian
stabilizer that is bounded by (n + 1)dn+1. It would be enough to list the
primes and multiplicities dividing (n + 1)dn+1

∏
ij≤n+1(di − 1)j . Now, we

have

(n+ 1)dn+1
∏

ij≤n+1

(di − 1)j ≤ (n+ 1)dn+1d(n+1)(1+1/2+···+1/(n+1))

≤ (n+ 1)d(n+1)(2+logn).

Using the bound for a general G above, we can bound the stabilizer by

((n+ 1)d(n+1)(2+logn))(1+log((n+1)d(n+1)(2+log n)))/2.

The logarithm of this expression grows roughly as log2((n+1)d(n+1)(2+logn)),
which grows more slowly than dn+1. Hence the bound is subexponential.

Note that there is no way to make the bound polynomial in d without
improving the bound in Proposition 3.4 to k(n) ≥ n/r for a fixed r.

Note also that Proposition 3.4 does not show a priori that the group
has to be finite, only that if it is finite then its size is bounded. We may
use Theorem 2.2 and finish. However, with little additional effort, we may
prove finiteness directly, providing an alternative proof that all morphisms
are stable. The fact that finite implies uniformly bounded means that it is
enough to show that every finitely generated stabilizing subgroup is finite.
More precisely:

Proposition 3.6. Every finitely generated subgroup of PGL(n) con-
tained in finitely many finite-order conjugacy classes is finite.

Proof. Let R be the Z-algebra generated by the finitely many coefficients
of the generators. Then the group is contained in PGL(n,R), and we may
project it into the finite group PGL(n,R/m) where m is a maximal ideal
in R; we will show the map can be chosen to be injective. In fact, each
nonunipotent conjugacy class i contains two different eigenvalues, ai1 , ai2 ;
therefore, if we choose m not to contain ai1−ai2 , which we can since there are
only finitely many such elements, then the map will have unipotent kernel.
In characteristic 0, the only finite-order unipotent matrix is the identity, so
the map is injective and we are done.
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In characteristic p, we obtain a finite-index and hence finitely generated
unipotent group. We may conjugate it by some matrix P to be upper trian-
gular; then matrix multiplication is equivalent to addition of the (r, r + 1)
entry for any r, and the finite generation implies that the set of all (r, r+ 1)
entries lies in a finitely generated Z/pZ-vector space, which is finite. For the
matrices with all (r, r + k) entries zero for all k 6= l, matrix multiplication
corresponds to addition of (r, r + l + 1) entries, and we may add those en-
tries to our vector space, which will remain finite. We may now construct
m to avoid the finite vector space and the determinant of P , as well as the
eigenvalue differences described above. The map will then be injective.

Now we finish the proof of Theorem 3.1. Note that in the proof of Propo-
sition 3.6 we make no assumption on the base ring. Of course, the argument
in the proposition applies to GL(n+1), and shows that the answer to Burn-
side’s problem, which asks whether a finitely generated group of bounded
exponent is necessarily finite, is yes when restricted to subgroups with faith-
ful finite-dimensional representations over some field.

For each stabilizer group G ∈ PGL(n + 1), there is a closed subscheme
Fix(G) ∈ Homn

d consisting of all ϕ with stabilizer group containing G. The-
orem 3.1 states that every G with nonempty Fix(G) is finite and of bounded
order. Furthermore, each nontrivial stabilizing matrix is, up to conjugation,
one of the dn+1 possibilities for each of the (n+ 1)n+1 functions on the set
{0, 1, . . . , n}. We may strengthen this result as follows:

Corollary 3.7. There are only finitely many G with nonempty Fix(G)
up to conjugation. In particular, on an open dense set of Homn

d which de-
scends to Mn

d , the stabilizer group is trivial.

Remark 3.8. The statement that there are only finitely many such G
up to conjugation is stronger than the statement that there are only finitely
many G up to isomorphism, which follows trivially from the bound on the
size of G.

Proof of Corollary 3.7. Since the size of G is bounded, it suffices to
show that each stabilizing subgroup has finitely many projective (n + 1)-
dimensional representations up to conjugacy. This is always true when the
representation is completely reducible, which will be true if the ambient char-
acteristic p does not divide |G|. But when Fix(G) is not purely inseparable,
every element will be diagonalizable, so it will have order not divisible by p,
so that G has order not divisible by p. In the purely inseparable case, we have
PGL(n+1) acting on itself stably and with finite stabilizers, so that each or-
bit is of dimension (n+1)2−1 and thus consists of all of PGL(n+1). In other
words, every purely inseparable map is, up to conjugation, (xd0 : . . . : xdn), so
that its stabilizer group is conjugate to PGL(n+ 1,Fd).
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It remains to be shown that the complement of
⋃
G⊃I Fix(G) is dense; its

openness follows from the fact that the condition AϕA−1 = ϕ is closed. It
suffices to show that each Fix(G) is a proper subset of Homn

d . We lose noth-
ing if we ignore purely separable maps. From the proof of Lemma 3.3, each of
the finitely many elements that may occur in G, a diagonal matrix with ith
entry ai, multiplies cd(i) by ai/ad, and hence induces the relation cd(i) = 0
outside a set of (d, i)’s for which ai/ad is constant. If ai/ad is constant for
all (d, i), then we have ai = kad; choosing a constant d, we see that ai is
constant, so A is a scalar matrix. Hence no nontrivial A fixes all of Homn

d .

Note that when n = 1, [14] has an explicit bound on the size of Stab(ϕ)
of n1!n2!n3!, where the ni’s are indices for which there exist periodic points
for ϕ of exact order ni. The technique in this paper improves on that bound.
Following the proof of Lemma 3.3, we have three possibilities for the map
j 7→ i up to conjugation: (1, 2) 7→ (1, 2), (1, 2) 7→ (2, 1), and (1, 2) 7→ (1, 1).
In the first case, a0 = ζid−1 and a1 = ζjd−1, where we use ζi to denote an ith
root of unity; modulo multiplying both a0 and a1 by some ζd−1, we obtain a
cyclic group of order d− 1. In the second case, we have a0 = ζid2−1, a1 = ad0,
and modulo multiplying both by ζd+1

d2−1
, we obtain a cyclic group of order

d + 1. In the third case, a0 = ζd−1 and ad1 = a0, and modulo multiplying
both by ζd−1, we obtain a cyclic group of order d.

Thus every diagonalizable abelian subgroup A of Stab(ϕ) will be cyclic
of size dividing d− 1, d, or d+ 1. Furthermore, the only nondiagonalizable
element commuting with A can be the matrix M corresponding to the au-
tomorphism permuting x0 and x1; we have M−1 = M and MAM = A in
PGL(2) if and only if a1/a0 = a0/a1, or equivalently, ai = ±1 for i = 0, 1.
In other words, the only possible nondiagonalizable abelian subgroup A is
Z/2Z× Z/2Z.

Now, the only finite subgroups of PGL(2) are, up to conjugation, cyclic,
dihedral, tetrahedral, octahedral, or icosahedral [13]. The last three groups
are of order at most 60; only the first two are infinite families. Since the
largest abelian subgroup of the dihedral group of order 2k is of order k, we
see that for large d, the order of Stab(ϕ) is bounded by 2(d+ 1).

We conclude this section with a remark that Mn
d (k), consisting of

all k-rational points in Mn
d (k), is not the same as Homn

d (k)/PGL(n+ 1, k).
The latter parametrizes morphisms of Pnk up to conjugation defined over k,
the former up to conjugation defined over k. There exist maps defined over
k which are conjugate over k but not over k itself. For examples, see [14]
and §§4.7–4.10 of [15].

4. Rationality of Md. In this section, we show that when n = 1, the
variety Md = M1

d is rational. This partly generalizes Silverman’s result in [14]
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that M2 ≡ A2 over Z. We do so by parametrizing fixed points of ϕ. The fixed
point set of ϕ, Fix(ϕ), is the intersection of two curves in P1×P1, the graph
Γϕ and the diagonal embedding ∆. As ∆ is irreducible and not contained
in Γϕ for d > 1, this is a proper intersection of divisors of type (1, 1) and
(d, 1), so it has d+ 1 points, counting multiplicity. We have:

Theorem 4.1. Md is birational to the total space of a rank-d vector
bundle on M0,d+1, the space of unmarked d + 1 points on P1. Since M0,d+1

is rational, it follows that Md is rational.

Proof. We explicitly write ϕ(x : y) = (p : q) where p(x, y) = adx
d +

· · ·+a0y
d and q(x, y) = bdx

d+ · · ·+ b0y
d. The fixed points of ϕ are those for

which (p : q) = (x : y), which are the roots of the homogeneous degree-(d+1)
polynomial py − qx. The polynomial py − qx induces a map from Ratd to
(P1)d+1/Sd+1 where Sd+1 acts by permutation of the factors. We will call
this map Fix. We use the following lemma:

Lemma 4.2. The map Fix is surjective, and has rational fibers.

Proof. A point (x : y) is fixed if and only if we have py = qx, i.e.
adx

dy + · · · + a0y
d+1 = bdx

d+1 + · · · + b0xy
d. This is a homogeneous linear

condition in the coefficients of ϕ, and we have d+1 such conditions compared
with 2d + 2 variables. From elementary linear algebra, we have a solution
space of linear dimension d + 1, or projective dimension d. It is a linear
subvariety of P2d+1, so it is rational.

We can also show that this dimension-d space will not be contained in
the resultant locus. We fix a set of fixed points and write r for the polyno-
mial having those fixed points as roots. We need to show r is of the form
py− qx for some p and q sharing no common root. By conjugating, we may
assume neither (0 : 1) nor (1 : 0) is a root of r, so that it has a nonzero
xd+1 coefficient, which we may take to be 1, and a nonzero yd+1 coefficient.
Now we let q = −xd so that r+ qx is divisible by y, yielding p = (r+ qx)/y.
Now r + qx has a nonzero yd+1 coefficient, so p has a nonzero yd coef-
ficient; therefore, p does not have (0 : 1) as a root, so it shares no root
with y.

Now, Fix descends to a rational map Fix′ : Md → (P1)d+1/Sd+1 PGL(2)
where PGL(2) acts diagonally; we are restricting to the open set of Md whose
fixed points are in the stable space of the action of PGL(2) on (P1)d+1/Sd+1.
With this restriction, the image is M0,d+1, so it suffices to show the general
fiber of Fix′ is rational. Lemma 4.2 says that the fiber of Fix is rational,
so it suffices to show that the automorphism group of the general point in
(P1)d+1/Sd+1 is small enough that the quotient of the fiber by it is still
rational. Using Noether’s problem [10], [12], we will show a stabilizer of
size 4 or 6 is small enough.
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Lemma 4.3. Let d > 1. The automorphism group of a general configu-
ration of d+ 1 unmarked points in P1 is trivial, unless d = 2, in which case
it is S3, or d = 3, in which case it is Z/2Z× Z/2Z.

Proof. We will use inhomogeneous coordinates. For d = 2, we can con-
jugate the three points to be 0, 1,∞; the set is then stabilized by every
permutation in S3, so it has size 6. For d > 3, we will show that the stabi-
lizer is generically trivial, and on the way show that for d = 3 the stabilizer
is generically of order 4, consisting of all elements in S4 of cycle type (2, 2).
This will be enough to prove the theorem.

First, note that if a (d + 1)-cycle stabilizes the set of points, then by
conjugation we may assume it sends 0 to 1, 1 to λ, µ to∞, and∞ to 0. The
cycle, regarded as an element of PGL(2), is of the form (ax + b)/(cx + e);
then b/e = 1, a = 0, (a + b)/(c + e) = λ, and cµ + e = 0. These equations
together imply that λ = e/(c+ e) = e/(e− e/µ) = µ/(µ− 1). For a generic
choice of µ, λ, this can never happen, so no (d+ 1)-cycle is in the stabilizer.
This remains true for d = 3, in which case we are forced to have λ = µ,
since generically λ 6= λ/(λ− 1).

Observe that if an automorphism of cycle type (c1, . . . , ck) stabilizes
the set, then each subset corresponding to the ith cycle is stabilized by a
ci-cycle. Therefore, the above discussion shows that no cycle of length 4 or
more stabilizes a generic set. We have reduced to the case when all cycles
are of size 1, 2, or 3. Now, if we have a stabilizing automorphism which
includes a 3-cycle, we may conjugate the 3-cycle to be (0 1 ∞), forcing it to
act on P1 as 1/(1− x). Generically, if λ is a fourth point, none of the points
in the set (including λ) will be 1/(1 − λ). We are left with cycles of size 1
or 2. If we have a stabilizing automorphism with two 2-cycles, then up to
conjugation we may assume the element acts on four points as (0 ∞)(1 λ),
so that it maps x to λ/x. If d = 3 then this will stabilize the set regardless
of what λ is. If d > 3 then we have an additional point µ, and generically
λ/µ will not be in our set.

We are left with automorphisms that act as single 2-cycles, fixing d−1
points. For d≥4, they will fix 3 points and therefore act trivially. For d=3,
we may assume by conjugation that the element acts as (0 1) and fixes ∞;
this forces it to be the automorphism 1−x, which generically does not fix λ.
This leaves us with automorphisms consisting only of 1-cycles, i.e. the iden-
tity.

We now return to Noether’s problem. Let us work over a fixed field k.
Recall [10] that if K = k(x1, . . . , xm) is a purely transcendental field, and
G is a finite group of size 2, 3, 4, or 6 permuting the xi’s, then KG is
purely transcendental as well. In particular, if R is the graded k-algebra
k[x1, . . . , xm], and G acts on it by permutation of the xi’s, then ProjRG is
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rational. We will show this to be the case when R is the fiber of Fix in the
d = 2 and d = 3 cases, by finding an orbit y1, . . . , ym generating R over k.

When d = 2, we have a 2-dimensional fiber. Explicitly, we have six
homogeneous variables ai, bi, 0 ≤ i ≤ 2, on which the automorphism group
PGL(2) acts linearly. The fiber we are interested in consists of maps fixing
the points 0, 1,∞, corresponding to the linear conditions a0 = 0, a0 + a1 +
a2 = b0 + b1 + b2, b2 = 0, respectively. The values of a2, a1, b0 uniquely
determine that of b1, so we may write the fiber as Proj k[a2, a1, b0]. The group
S3 acts linearly and faithfully on the k-vector space spanned by a2, a1, b0.
Let us consider the action of the automorphism (0 ∞) = 1/x:

ϕ(x) =
a2x

2 + a1x

b1x+ b0
,

1
ϕ(1/x)

=
b0x

2 + b1x

a1x+ a2
,

a2 7→ b0, a1 7→ b1 = a2 + a1 − b0, b0 7→ a2.

Observe that this automorphism fixes a2+b0. Let us also consider the action
of the automorphism (0 1) = 1− x:

1− ϕ(1− x) = 1− a2(1− x)2 + a1(1− x)
b1(1− x) + b0

=
−a2(1− x)2 + (b1 − a1)(1− x) + b0

b1(1− x) + b0
,

a2 7→ −a2, a1 7→ 2a2 + a1 − b1 = a2 + b0, b0 7→ b0 + b1 = a2 + a1.

This automorphism does not stabilize a2 + b0; hence, a2 + b0 has stabilizer
of order 2, and orbit of size 3. By repeating the maps 1−x and 1/x, we can
compute the orbit as {a2 + b0, a1, a2 + a1− b0}. This generates R as long as
char k 6= 2. When char k = 2, the automorphism 1− x fixes a2, whose orbit
is then {a2, b0, a2 + a1}. In either case, we can construct the action of S3 as
an action of generators, reducing the quotient to Noether’s problem.

When d = 3, we similarly obtain a 3-dimensional fiber, fixing the points
0, 1, λ,∞. We obtain the linear conditions a0 = 0, b3 = 0, a3 + a2 + a1 =
b2 + b1 + b0, λ2a3 + λa2 + a1 = λ2b2 + λb1 + b0, and we may write R as
k[a3, a2, b1, b0]. We look at the automorphism (0 ∞)(1 λ) = λ/x:

ϕ(x) =
a3x

3 + a2x
2 + a1x

b2x2 + b1x+ b0
,

λ

ϕ(λ/x)
=

λ

a3λ
3 + a2xλ

2 + a1x
2λ

b2xλ2 + b1x2λ+ b0x3

=
b0x

3 + b1λx
2 + b2λ

2x

a1x2 + a2λx+ a3λ2
,

a3 7→ b0, a2 7→ λb1, b1 7→ λa2, b0 7→ λ2a3.

We may scale down by a factor of λ to obtain (λ−1b0, b1, a2, λa3), which is
equivalent to picking the representative function

√
λ/(
√
λ−1x). Let us also



30 A. Levy

consider the action of the automorphism (0 λ)(1 ∞) = (x− λ)/(x− 1):

ϕ

(
x− λ
x− 1

)
=
a3(x− λ)3 + a2(x− λ)2(x− 1) + a1(x− λ)(x− 1)2

b2(x− λ)2(x− 1) + b1(x− λ)(x− 1)2 + b0(x− 1)3
.

We obtain the following expression for ϕ((x−λ)/(x−1))−λ
ϕ((x−λ)/(x−1))−1 :

a3(x−λ)3 +(a2−λb2)(x−λ)2(x−1)+(a1−λb1)(x−λ)(x−1)2−λb0(x−1)3

a3(x−λ)3 +(a2−b2)(x−λ)2(x−1)+(a1−b1)(x−λ)(x−1)2−b0(x−1)3
,

a3 7→ a3 + a2 + a1 − λ(b2 + b1 + b0).

We will show the orbit of a3 generates R. But first, note that a3 +a2 +a1 =
b2+b1+b0 implies that a1 = b2+b1+b0−a2−a3, and then λ2a3+λa2+a1 =
λ2b2 + λb1 + b0 implies that (λ2 − 1)a3 + (λ− 1)a2 = (λ2 − 1)b2 + (λ− 1)b1,
that is, b2 = a3 + (a2 − b1)/(λ+ 1).

We have (x− λ)/(x− 1) mapping a3 to a3 + a2 + a1 − λ(b2 + b1 + b0) =
(1−λ)(b2+b1+b0) = (1−λ)(a3+b0+(a2+λb1)/(λ+1)). If we then apply the
map λ/x, we obtain (1−λ)(λ−1b0+λb3+(b1+λa2)/(λ+1)). The orbit is, up
to scaling, {a3, b0, a3+b0+(a2+λb1)/(λ+1), λ−1b0+λb3+(b1+λa2)/(λ+1)},
which generates R. Again, we apply Noether’s problem and obtain a rational
quotient, as desired. This finishes the proof of Theorem 4.1.

Unfortunately, this proof does not seem to generalize to Mn
d . Although

Lemma 4.3 is true for all n, d > 1, there are two significant obstructions.
First, the dimension of the target space of the map Fix will be n(1 + d+ · · ·
+dn), which is larger than Nn

d unless n and d are very small. This means that
the map will not be surjective, though the fibers are still rational whenever
they are nonempty. And second, even for small n and d the base space for
the vector bundle is not M0,d+1, which is relatively tame, but rather the
space of 1 + d+ · · ·+ dn points on Pn, a much more complex object. All we
can say at this stage is that Mn

d is unirational, which follows trivially from
the fact that it is covered by Homn

d .
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