ACTA ARITHMETICA
146.2 (2011)

Some identities for multiple Dedekind sums
attached to Dirichlet characters

by

Kazunito Kozuka (Miyazaki)

1. Introduction. For any rational number x, we denote by [z] the great-
est integer not exceeding x and put

x — [x] —1/2 if z is not an integer,

@ ={a-t=Y . ;
0 otherwise.

For integers h and k with k& > 0, the classical Dedekind sum s(h, k) is defined

by @ hp
s(h, k)= = — ).
wn= 3 (B
In [5] Dedekind obtained the identity
p—1
s(ph. k) + Y s(h + bk, pk) = (p+ 1)s(h, k)
b=0

for any prime number p ((28) of [5], (2.8) of [13]). In [7], Knopp extended
this as

d—1
(1) >N s(ah + bk, dk) = o(n)s(h, k)
ad=n b=0
d>0
for any positive integer n, where o(n) = 3, d. This identity was also

extended to higher-order Dedekind sums in [12] and to Dedekind type sums
n [1], [II] and [g].

It is known that (1) is equivalent to the following identity due to Sub-
rahmanyam ([16]):

n—1
(2) > s(h+bk,nk) = p(d) < > (dh, k)
b=0 din
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for any positive integer n, where u(n) is the Mobius function ([6], [§],
[11], [14]). In [I1], Nagasaka extended identities (1) and (2) and their
equivalence to Dedekind type sums attached to Dirichlet characters. In [§],
the author obtained somewhat more generalized results by elementary meth-
ods. In addition, making use of the generalized Euler numbers, he also de-
duced explicit extensions of (1) and (2) and their equivalence to higher-order
Dedekind sums attached to Dirichlet characters.

In this paper, we generalize the above results to multiple Dedekind sums
attached to Dirichlet characters. For that purpose, following mainly the
methods in Section 3 of [8], we deduce an expression of multiple Dedekind
sums by Euler numbers and obtain identities of certain rational functions,
which will be transformed into our main results.

Throughout the paper, we denote by @, Z and N, the rational number
field, the ring of integers of Q and the set of positive integers respectively,
as usual. We put N = NU {0}. For any m,n € Z, we denote by 6(m,n) the
greatest common divisor of m and n.

2. Definition of multiple Dedekind sums. Let B, and B,,(X) be
the mth Bernoulli number and polynomial, respectively, defined by

t > tm tetX
= B,— and —— =
et —1 m)! et —1

For z € Q, we put {z} = x — [2] and define B,,(x) = By, ({z}).
For any primitive Dirichlet character ¢, we denote by fy the conductor
of 9. For any x € Q with denominator relatively prime to f,, we can define

the value ¥ (x) by multiplicativity. We define the twisted Bernoulli function
By, () attached to ¢ by

Cp({a) + jeldebr & tm
Z efwt — 1 Z
m=0
or equivalently
o m— N\ T €T —'I_ ]
Q Buy(@) = 77 Y vl + B ()

jmod fy,

(cf. p. 301 of [15]).

Let P = (p1,...,pn,p) € N**U H = (hy,...,h,) € Z" and k € N. In
addition, let ¥ = (¢1,...,%n, %) be an (n + 1)-tuple of primitive Dirichlet
characters, put fo = ([[;_, fy,) [y and assume that §(k, fo) = 1. We define
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the multiple Dedekind sums attached to ¥ by

L. a; ~ arhy + -+ aphy
S(P,H,k,¥) = Z <HBpi7wi<k>>prw< L >
1

ai,....,apmodk *i=

Note that if P = (1,1), H = (h) and ¥ = (1,1), then S(P, H,k,¥) =
s(hyk)+1/4. If P=(m+r—1,r) withm >r>1, H= (h) and ¥ = (x,v),
then S(P,H,k,¥) equals the higher-order Dedekind sum Sgll(x,w,h, k)
of [8]. We also note that in [3], Carlitz considered the case where P =
(1,...,1) e N**L H = (hy,...,hy) and ¥ = (1,...,1) to extend the well-
known reciprocity formula for Dedekind sums, and that its further general-
izations are studied in [4] and [9].

3. Expressions by Euler numbers. For a parameter u, we put
u
R(T,u) = ——.
(Tyw) 14T —u
As in [10], we define the modified Euler numbers E,,(u) by

¢ u E_i(u) > tm

R(e' —lLu) = —— = ——+ > B (1) —.
m=0

Note that E_1(u) # 0 only if u = 1, and that we have E_;(1) = 1 and

mE,,—1(1) = By, for m € N. It is known that

(@) B (§) =m X Bna(0)c”

¢k=1
for a € Z and k,m € N ((6.4) of [2]). In [8, (3.8)], we obtained a gener-
alization of (4) for By, (). Let us recall some basic formulas around it.
For any primitive Dirichlet character v, we define the numbers E,, ,(u)
(modifications of the generalized Euler numbers of [17]) by

fwil _ t [e'e]
Y(a)ulv =% E_q 4, (u) tm
5) efv - T Z Em,w(wfr
0 m=0

t— yfe t m!

Note that F_; (u) # 0 only if u is a primitive fyth root of unity. Let ¢y
be an arbitrarily chosen primitive fyth root of unity and put

(W, Cp) = Y Y()E
Jjmod fy

the Gauss sum attached to 1 and (y.
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LEMMA 3.1. Let k € N with §(k, f;) =1 and m € N. Then

(6) > R(T,p)=kR(1+T)" —1,u),

pE=u
(7)) Emp(w) Z vt ),
f¢ jmod fy
(8) Z B (p) = K™ (k) By, (w),
(9) w(k)kmBm¢< )—mZEm 10(Q)¢*  for m>1 and a € Z.
¢k=1

Proof. In general, for any polynomial f(X) with degree less than k, we
have

fX
(10) Xk _qy Z
p’“*u
Formula (6) follows from (10) by taking X =147 and f(X) = ku.
In order to prove (7), we first note that replacing k and u by f,, and ulv

respectively in (10) and taking f(X) = ZC{U’B (a)uft=2X? we obtain

fyp—1 fo—a(rJ,\a
2 p(ayulva ¢up(a)ulv=(¢u)
fyp—1
1 C,/,
=7 Y(a)Cl
¥ Jfr;fw ‘IZO VX - Cl/)
_T(¥,Gy) 3 U ()Cu
Ty jmod £, ngfpu '

By taking X = €', formula (7) follows from the definitions of FE,,(u) and
Em,w (u)
Next taking 7' = e* — 1 in (6), we see that

>
et —p ekt -1’

pE=u

which means

> Em(p) = k" Ep(u).

pk=u
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Then by (7), we deduce

S Bpylp) = W’ S oyt >2Em<<f;,p>

pk=u jmod fy
f1l1 jmod fy
(¢, Cw k.m+1
= W(k T )
Jo Jgfw
= k" (k) By (w).

Thus we obtain (8).
Finally let us prove (9). By (3), (4) and (7), we see that

m a m pm—1 a -\ D a+k]
e Bm,w(k) - 3 o5 +3)Ba( ")
TN platki) Y Enoa(€)erth
¥ jmod f, efuk=1
fyp—1
TN pat k) Y S Bt (GOCT ¢,
%modfw i=0 (k1

When j runs through all the residue classes modulo fy,, so does a+kj. Hence
the above equals

(4, ¢) A <
Sm Y N i) Y Enea(GOCT,
fo i=0 Ch=1

which also equals the right hand side of (9) on account of (7). This completes
the proof.

As seen in the proof of (7), we have the following equation equivalent
to (7):

(11) T(ﬁf’) S TR - 1,0)

j mod f¢,

7(¥,Cy) v @G B ,w
= oY . + E,
fw jrr%fw et — qpu Z 7/)

Making use of (9), we can easily generalize formula (3.9) of [§] to multiple
Dedekind sums as follows:
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PROPOSITION 3.2. Let P = (p1,...,pn,p) € N*L H = (hy,... h,)E Z"
and k € N. Let W = (11, ...,%n, ) be an (n+1)-tuple of primitive Dirichlet
characters and assume that 6(k, fg) = 1. Then

P14 o) (B)S(P, H, kW)

LD Y (HE i—l,wi(Chi))Ep—w(C*l)-

Ck=1 =1
For any m € N, we put mH = (mhy,...,mh,). By Proposition 3.2 and
formula (8) and by direct calculation, we also obtain

COROLLARY 3.3. Let P, H, k,¥ be as above. For any m € N with 6(m, fy)
=1, we have

mPE T ) (m) S(P mH, m, W) = S(P, H, k, ¥).

Note that Corollary 3.3 contains formula (2.3) of [5] (or equivalently
(2.7) of [13]) and (4.1) of [2] as special cases (cf. [8, (2.3)] for the case of
Dedekind type sums).

4. Main theorem. For any m, N € N and any (n+ 1)-tuple of primitive
Dirichlet characters ¥ = (¢1,...,1%n, 1), we set

Oma(N) =Y d™ (1 Pn)(d).
d|N
For any d € N, we put Iy = {(b1,...,b,) € Z" | 0 < by,...,b, < d— 1}.
Now we state our main
THEOREM 4.1. Let P = (p1,...,pn,p) € N**L H € Z" and k, N € N.
Let U = (31, ...,¢n, ) be an (n+ 1)-tuple of primitive Dirichlet characters

and assume that 0(kN, fg) = 1. Put s(P) =p1+ -+ pp+p—n. Then we
have

(12) NPy gp)(N) D Y dP " (d)S(P,aH + kB, dk, V)
ad=N Be€ly,
>0 = O-S(P),!I/(N)S(]%Hakaw)a

where we put aH + kB = (ahy + kby,...,ahy, + kby) for H = (hy, ..., hy)
and B = (by,...,by). We also have

(13)  N*PI(yy - pyp)(N) > S(P,H + kB, Nk, ¥)
Bely

N
= S @)1 ) DE Py (d>s<P, dH. kD)
dIN

Furthermore (12) and (13) can be deduced from each other.
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In order to prove the theorem, we show the following

PROPOSITION 4.2. Let H = (hy,...,h,) € Z™ and k, N € N. We have
the following equalities of rational functions in indeterminates 11, ..., T, T":

W > > X (H; ((1+T)° 1,C“hi+kbi))R(T,g—1)

ad=N (dk=1 (by,...,bn)EI,4

a>0
= S (TLR T~ 1,¢™)) Rz g )

d‘N Cdk:1 =1

and

15 > <H %R(Ti, chﬁ’“”i)) R(T,¢7)

(NE=1 (b1,....bn)EIN i
=3 outd) 30 5 (TTA+ 2y 1.6 eR(O+ 1) =107,
d|N c|N 2

Furthermore (14) and (15) can be deduced from each other.

Proof. For each m € N, we choose a primitive mth root of unity in such
a manner that ¢ , = ,, for any m,m’ € N. Note that for any m,k € N,
we have

16 {(@.0) | dlm =1} = {(.cly ) [0 < w1, aloGm ) .

By applying (16) for m = N, the left-hand side of (14) equals

Nk—-1 n a ]
OED DD I O I s ) Lt

J=0 ald(N,j) (b1,..., bn)EIN/a i=1

Nk—1 n n N/a—1
-3 3 (§) (T X mo+mr -1t o) red)
J7=0 a|6(N i=1 b=0

Note that Q{,{’ is an N/§(N, j)th root of unity and that when b runs through
the integers with 0 < b < N/a — 1, CJ]\? runs through all the N/§(N, j)th
roots of unity #/ﬁ,j) times. It follows that the left-hand side of (14) equals

X3 () (I x moemrogo)acan

5=0 " al§(N,j) i=1 CN/S(NG) =1
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hi jahi sy
Taking u = (C]a C) =l

iy z( >n<ﬁJZR(1+T T 1, ) R G

in (6), we see that this equals

J=0 ald(N,j5) i=1
Nk—1 n |
s ([
J=0 a|§(N.j)

When a runs through the integers with a | 6(N, j), so does §(N, j)/a. Hence,
by applying (16) again, (17) equals the right-hand side of (14), that is, (14)
holds.

Next, similarly to the way we have deduced (17), we see that the left-hand
side of (15) equals

Nk—1 n N-—1 hatbk) A
18) Y o (T R ™) (T, i)
7=0 i=1 b=0
& 1 - ihiN/6(N,j i
7=0 i=1
& ih; /6(N,j §(N
(LT RO+ V509 1 GO R, G0,
7=0 i=1

We also see that the right-hand side of (15) equals

> wd Y (TTR@+T)N —1,¢M)) 3 RTE!
ge=C

N1|N 6(3:]8[1 Ckzl i=1
> n
=> dn A (IR +T)M = 1,MM) ) R(T, 7).
C
Ni|N c|Ny geb=1 i=1

By applying (16) for m = N; and taking £ = CJlelw this equals
Nik—1

19 > > X wa(TIRO+1)Y —1.6")RT.G)

Ni|N j=0 a|d6(N1,j)

-y ¥ (ﬁR((HTi)Nl—LCZhi))R(Tsz_vfk)'

N1|N 0<j<Nik—1 i=1
§(N1,j)=1
Note that

={(N1,j) [ N1|N,0<j <Nk —1, 6(Ny,j) = 1}
Hence, (18) equals (19), that is, (15) holds.
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Now, let us prove the equivalence between (14) and (15). We first note
that substituting Nk for k transforms (14) into

(20) Z Z Z (ﬁ é 1 _|_T -1, Ca(h¢+b¢dk))> R(T, Cil)

ad=N (ANk=1 (by,...,bn)Ely4
d>0 n
=3 > (TR +T)=1.¢™)) R,
d|N ¢dNk=1 i=1
Conversely, by substituting N - H = (Nhq,...
in (20) and noting that
> RECH = NR(A TN -1,
(CH)N=p~1

(20) gets transformed into

>N Z <ﬁ; (14+7T;) 1,p“hi+bik)>NR((1+T)N—17p_1)

ad=N pdk=1 (by,....bn)El,

d>0
-y ¥ (H (1+T)" - 1,pdhi))NR((1 +T)N —1,p7h).

d|N pik=1 =1

,Nhy) for H = (hq,...,hy)

Replacing T by (1+T)YN —1, we see that this formula is equivalent to (14).
Consequently, (14) is equivalent to (20). Similarly, (15) is equivalent to

ey Y Y ([ grmc ) )

<N2k:1 (b1,...,bn)EIN “i=1

=S u@ > > (TIRO+T) = 1,¢™))eR((1+T)° = 1,7,

AN N (Nk=1 =l

Hence, it is sufficient to prove the equivalence between (20) and (21).
The left-hand side of (20) equals

(2
Z Z Z <H:l 17€hi+bidk)> Z R(T, ¢!
1=1 Ca:£

ad= N£d2k 1(617 ,bn)efd
a>0

DIPIED> (ﬁ; T g )
dIN gd2k—1 (b1,....bn)E€lq ~i=1

X TR0+ TV 1,67,

Replacing T; with 1 <i < n by (1+T;)"Y —1 and T by (1+T)"/N —1, we
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see that (20) is equivalent to

>3 5 (Igaeeme-nes)

d|N §d2k:1 (b1, bn)ely =1
X éR((l + T)l/d _ 175—1)

—Z > (H SR((1+T)WN — 1gdh)> R(A+T)YN —1,¢7Y).

d|N ¢dNk=]

By the Mo6bius inversion formula, this is also equivalent to

Z Z <f[ %R((l + TN — 1, ChH—biNk))

¢N%k=1 (b1,.,bn) €Iy =1 )
x FRIA+T)N —1,¢7Y)

:Z“ Z Z (H (14 TN — 1, ¢ >
d|N C|N CekN/d=1 =1
R(L+T)N —1,¢7h),

that is, the left-hand side of (21) equals

Sou@dy S (TR +T)™ = 1,¢m) )R+ T)! = 1,¢7Y).
d|N c|% (ckN/d=1 =1
By (6) this also equals

Suads Y ([TRO+T)=1,6%) S R(A+T)! = 1,¢7Y)
¢o=¢

d|N C|% gkN/d=1 =1

=S udd> 3 (TR +T) = 1,6%))eR((1+T) — 1,67

d|N C|% ghN/d—1 i=1
=S u@ad] > ([IRO+T)=1,¢")S S RO+T) 1,07
d|N C|% gkN/d=1 i=1 pld=¢

=S u@ > > (TIRO+T) = 1,p™))eR(1+T)¢ = 1,p7")

d|N C|% pEN=1 i=1
= the right-hand side of (21).

Thus, we see the equivalence between (20) and (21). This completes the
proof.
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Proof of Theorem 4.1. Let F(1y,...,T,,T) be the rational function ex-
pressed by (14). Put

By taking T} = Cwﬁ eh—1,...,T, = C;j”et" —land T = C;jet— 1 for each

(J1y+-+yJn,J) € Iy, let us con81der the function

29 - T(T,D,’,C%)) T(%Cw)

22) <£[1 fu, fu

> (TIwr'G0)e T GIFG e =1, et =1, e 1),

(J1ssdnif)€ly =1

Since (1+7T;)*—1 = Clziajieati — 1 for 1 < i < n, writing ¥; ' (aj)i(a) =
¥; ' (4) and replacing tfi_l by api_ltfi_l, we see from (11) that the coefficient
of tzl’l*1 -+t~ 1p=1 in the expansion of the function (22) equals

Z Z Z dn(sz Ep 1., Cahi—&-bik))

aj N ¢dk=1 (b1,...,bn)EIly 1 -
— vt pn—n
>0 X Ep—Lw(C )apl D

= Z Z (sz plisz C hi))Ep—l,w(c_1>dp1+“'+p"_"_

d|N ¢dk=1 i=1

Then by Proposition 3.2 and Corollary 3.3, we obtain (12). Similarly (13) is
deduced from (15).

Finally let us prove the equivalence between (12) and (13). We first note
that (12) is equivalent to

23) DN @y ) (d)S(P, H + dkB, d*k, W)
d|N Bely
- US(P),!P(N)S(Pa H, NE, w)

In fact, replacing k by Nk in (12) and making use of Corollary 3.3, we obtain
(23) from (12). Conversely, (12) is deduced from (23) by replacing H =
(hi,...,hy) by N-H = (Nhy,...,Nhy) and making use of Corollary 3.3.
Similarly (13) is equivalent to

(24) NPy pyp)(N) > S(P,H + NkB,N°k,0)
Bel,

= u(d)oyp)w @7) S(P,H,Nk/d,¥).

d|N
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Now the equivalence between (23) and (24) is obvious by the Mébius inver-
sion formula. This completes the proof.
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