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Units in real Abelian fields
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Roman Marszałek (Opole)

1. Introduction. In this paper we consider the Galois module structure
of the group of units of real absolutely Abelian number fields. Let N be such
a field with Galois group Γ = Gal(N/Q), let EN be its unit group, and
denote by EN the torsion-free part of EN , i.e. EN = EN/{±1}. Moreover
hN will be the class number of N .

We shall by A denote the natural order, i.e. the factor ring of the integral
group ring ZΓ by the ideal I generated by

∑
γ∈Γ γ. This class of fields

contains all Abelian fields of prime degree as well as certain fields of odd
prime power degree with at most two ramified primes (A. Fröhlich [9], see
also [4]). There are only a few results in the literature about the global Galois
module structure for real Abelian fields (see [3], [6], [9] and [16]).

The aim of this paper is to describe the class of EN in the locally free
class group of the order A using the so called Hom description of the class
group, introduced by A. Fröhlich [7].

To this end we introduce in Section 4 the logarithmic resolvent, which
will play a central role in our paper. This tool enables us to represent the
class of EN in A as a homomorphism on the group of characters of Γ . This
representation involves a unit of finite index in EN and certain semilocal
units generating Zp⊗EN (Theorem 4.5). In Theorem 4.6 we shall eliminate
the global unit replacing it by Gaussian sums and values of Dirichlet and
p-adic L-functions at 1.

In Section 5 we focus on real tame cyclic extensions N/Q of prime degree.
In Propositions 5.2 and 5.3 we replace the semilocal generators of Zp ⊗ EN
with generators of the full ZpΓ -modules of semilocal units of N , and subse-
quently in Proposition 5.5 with semilocal generators of the ring of integers
of N . Finally in Theorem 5.6 we obtain a representation of the class of EN
in which Galois Gauss sums, Qp-irreducible characters and the orders of the
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Jordan–Hölder factor modules of the p-Sylow subgroups of the ideal class
group of N will appear.

As an example of our approach we shall prove in Section 6 the following
necessary and sufficient conditions for a real tame Abelian field N of prime
degree to have a Minkowski unit (i.e. EN ∼= A):

Theorem 6.1. Let N/Q be a real, tame and cyclic extension of prime
degree l > 2, and assume that l is regular, i.e. does not divide the class
number hl of the lth cyclotomic field. Then N has a Minkowski unit if and
only if

νp(hχp )Φµ,p(1) = νp(hµp )Φχ,p(1)

for any χ, µ ∈ Γ̂ \ {1Γ }, and for any prime p |hN , p 6= l, where Φχ,p is a
Qp-irreducible character of Γ with χ as a summand and hχp is the order of
the Φχ,p-component of the class group of N .

Applying this theorem we get simple sufficient conditions for the existence
of Minkowski units:

Corollary 6.2. Let N/Q be a real, tame and cyclic extension of prime
degree l > 2 and let l be regular. Then N has a Minkowski unit in the
following two cases:

(i) hN = 1,
(ii) any prime p dividing hN is a primitive root of unity modulo l.

This leads to new examples of fields having Minkowski units, like Q(ζ47)+,
Q(ζ59)+, Q(ζ83)+, Q(ζ107)+ (Corollary 6.3(i), (ii)) and at least 611 fields
derived from Schoof’s tables in [18] (Corollary 6.3(iii), (iv)).

2. Notation and definitions. We shall adopt the standard notation
from the book [20].

We shall deal with finite Abelian extensions L/Q of the rationals. For
every such extension we shall fix its generator θL and denote by ΓL its
Galois group and by dL its discriminant. The maximal real subfield of L will
be denoted by L+. If K is a subfield of L, then NL/K will denote the norm
map L→ K.

For a finite or infinite prime p we shall denote by ∆L,p the corresponding
decomposition group and by TL,p a set of representatives for the cosets of
∆L,p in ΓL. The ring of integers of L will be denoted by OL, EL will be its
unit group, and EL will denote the factor group EL/{±1} in the case when
L is real.

The algebraic closure of the p-adic field Qp will be denoted by Qp, νp will
be the exponential valuation of Qp satisfying νp(p) = 1, and Rp(L) and dl
will denote the p-adic regulator of L.
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J(L) and U(L) will denote the group of ideles of L and the group of unit
ideles of L, respectively.

By a prime of L we understand an equivalence class of valuations of L.
A prime will be called infinite if it contains an Archimedean valuation, and
finite otherwise. The infinite prime of Q will be denoted by ∞.

Let pL be a fixed prime of L lying above p. Then for any t ∈ TL,p we
shall denote by Lt(pL) the completion Qp(t(θL)) of L at t(pL). For t ∈ TL,p
we shall also denote by Ut(pL) and U1

t(pL) the units and the principal units of
Lt(pL), respectively.

If p lies above the infinite prime, then Lt(pL) is either R or C, Ut(pL) is
either R∗ or C∗, and U1

t(pL) is either R∗+ or C∗, R∗+ being the multiplicative
group of positive real numbers.

By |X| we shall denote the cardinality of the set X. For a positive in-
teger m, ζm will be a primitive mth root of unity. For any ring R, we shall
denote by R∗ its group of units.

For any finite Abelian group G we put Ĝ = Hom(G,C∗). For any prime
number p, any χ ∈ Ĝ will be considered also as a character with values in Qp,
via a suitable embedding of the algebraic closure of Q into Qp.

RG will be the free additive group having Ĝ for its set of free generators,
and R′G will denote the free subgroup of RG generated by Ĝ\{1G}, 1G being
the trivial character.

For any character χ ∈ Ĝ we put

eχ =
1
|G|

∑
g∈G

χ(g−1)g.

If Λ is the automorphism group of a field containing {χ(g) : g ∈ G,

χ ∈ Ĝ}, then one defines an action of Λ on the group Ĝ by putting

χδ(g) = δ(χ(g)) for δ ∈ Λ.

Let Φ be a Qp-valued character of Γ which is irreducible over Qp. This
character is the sum of Qp-irreducible and conjugate characters of Γ . If a
character µ is a summand of Φ we shall write µ |Φ.

If we treat χ 6= 1Γ as a Qp-valued character, then Φχ,p will be an irre-
ducible character of Γ over Qp having χ as a summand.

Let Hp be the p-Sylow subgroup of the class group of N . As Hp is a
ZpΓ -module we can define hχp to be the order of the Φχ,p-component of Hp,
i.e. the order of eΦχ,pHp where eΦχ,p is the idempotent corresponding to Φχ,p.

If R is a commutative ring, we put G̃ =
∑

g∈G g ∈ RG. Then for any
RG-module M , the submodule M0 = {m ∈ M : G̃m = 0} can be regarded
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as an RG/(G̃)-module with(∑
g∈G

xg g̃
)
m =

(∑
g∈G

xgg
)
m

for xg ∈ R and m ∈M , where g̃ = g mod (G̃).
For any R-module M the submodule of all R-torsion elements of M will

be denoted by torR(M).
For any prime p (finite or infinite) we define the following three submod-

ules of J(L):

Lp =
∏

t∈TL,p

Lt(pL), UL,p =
∏

t∈TL,p

Ut(pL), U1
L,p =

∏
t∈TL,p

U1
t(pL).

Let Vr be the set of real embeddings of L into C, and Vc the set of non-
conjugate complex embeddings of L into C. Then

L∞ =
∏
v∈Vr

Rv

∏
v∈Vc

Cv and U1
L,∞ =

∏
v∈Vr

R∗+v
∏
v∈Vc

C∗v

where Rv = R, Cv = C and R∗+v is the multiplicative group of positive real
numbers. Now we define an action of ΓL on Lp as follows:

For any w, t ∈ TL,p we define wt ∈ TL,p and δw,t ∈ ∆L,p so that wt =
δw,twt. Now for γ = δw and u = (ut)t∈TL ∈ Lp, δ ∈ ∆L,p, w ∈ TL,p we put

γ(u) = (δδw,t(uwt))t
where the automorphisms from ∆L,p are extended to Lt(pL) by continuity.

We shall use the following observation which is a consequence of the
action of ΓL on Lp:

Remark 2.1. Let L be an Abelian field containing the values of all char-
acters of a finite Abelian group G and let p be a prime. Let f : R′G → Lp be
a homomorphism such that f(χ) = (f0(χt))t∈TL,p where f0 ∈Hom(R′G, LpL).
Then

f ∈ HomΓL(R′G, Lp) if and only if f0 ∈ Hom∆L,p(R
′
G, LpL).

Note that by the normality of L/Q the fields Lt(pL) do not depend on
the ideal pL chosen, so f is defined correctly.

We shall need the following extension of the logarithm:

Logp :
∏

t∈TL,p

L∗t(pL) → Lp, Logp((at)t)=(logp(at))t for (at)t∈
∏

t∈TL,p

L∗t(pL)

where logp is the Iwasawa p-adic logarithm (see e.g. [20]).
For the infinite prime we define

Log∞ : L∗∞ → L∞ by Log∞((uv)v) = (log∞ |uv|)v,
where log∞ denotes the usual logarithm defined for positive reals.
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Let Γ be a finite Abelian group. We define the orders A = ZΓ/(Γ̃ ),
Ap = ZpΓ/(Γ̃ ),A∞ = RΓ/(Γ̃ ) in the algebras A = QΓ/(Γ̃ ), Ap = QpΓ/(Γ̃ ),
RΓ/(Γ̃ ), respectively, and we shall write γ̃ = γ mod (Γ̃ ) in A or Ap. We also
put U(A) =

∏
p A∗p.

For any order U in a semisimple finite-dimensional algebra we shall denote
by Cl(U) the locally free class group of U and by (X)U the element of Cl(U)
corresponding to the module X.

If F is an Abelian field containing {χ(γ) : γ ∈ Γ, χ ∈ Γ̂} and Ω = ΓF =
Gal(F/Q), then we define a ZΩ-embedding ip : F → Fp by

ip(b) = (t(b))t with t ∈ TF,p.

3. Auxiliary results. In this section we state some results needed later.
First we introduce the main ingredient of the Hom description of the class
group, the notion of general determinant defined on the algebras Ap, ZpΓ
and RΓ (see [7]).

For any a =
∑

γ∈Γ aγ γ̃ ∈ A and χ ∈ Γ̂ \ {1Γ } we put

Detχ(a) =
∑
γ∈Γ

aγχ(γ).

Observe that if a ∈ A∗, then Detχ(a) ∈ F ∗ (Detχ(ab) = Detχ(a) Detχ(b) for
a, b ∈ A). If µ 6= 1Γ is another character we put

Detχ+µ(a) = Detχ(a) Detµ(a),

obtaining a homomorphism

Det(a) : R′Γ → F ∗, Det(a)(χ) = Detχ(a).

This also gives a homomorphism

Det: A∗ → HomΩ(R′Γ , F
∗),

which can be extended to the homomorphism

Det: A∗p → HomΩ(R′Γ , F
∗
p )

defined by Detχ(
∑

γ∈Γ aγ γ̃) =
∑

γ∈Γ aγip(χ(γ)) for aγ ∈ Qp.
After restricting from A∗p to A∗p, we obtain

Det: A∗p → HomΩ(R′Γ , UF,p),

and finally we have

Det: U(A)→ HomΩ(R′Γ , J(F )).

We shall also need the determinant map for the algebras ZpΓ and RΓ
defined by Detχ(

∑
γ∈Γ aγγ) =

∑
γ∈Γ aγip(χ(γ)) for aγ ∈ Qp or R. We shall
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also use Det to denote the above map because of the evident identity

(3.1) Detχ
(∑
γ∈Γ

aγγ
)

= Detχ
(∑
γ∈Γ

aγ γ̃
)

for aγ ∈ Qp or R and χ 6= 1Γ .

Now we can state

Theorem 3.1. Let X be a locally free A-module of rank one. Choose a
free generator v of Q⊗X over A and for each prime p choose a free generator
xp of Zp ⊗ X over Ap. Then both v and xp are free generators of Qp ⊗ X
over Ap, and so

xp = λpv, λp ∈ A∗p.

(i) Let h = (hp) ∈ Hom(R′Γ ,
∏
p F
∗
p ) be defined by hp(χ) = h(χ)p =

Detχ(λp) for all p and χ ∈ R′Γ . Then h ∈ HomΩ(R′Γ , J(F )) and
its class [h] modulo HomΩ(R′Γ , F

∗) Det(U(A)) depends only on the
isomorphism class of X.

(ii) There is a unique isomorphism

Cl(A) ∼= HomΩ(R′Γ , J(F ))/[HomΩ(R′Γ , F
∗) Det(U(A))]

so that for every locally free rank one module X, the class (X)A maps
onto the corresponding class [h] as constructed above.

Proof. Modify slightly the proof of the analogous theorem for orders in
the group ring QΓ ; see Theorem 1 in [7] and also [8].

Remark 3.2. If f ∈ HomΩ(R′Γ , J(F )), then its component fp at the
infinite prime p =∞ is an element of Det(A∗∞). Moreover the map f ′ defined
by f ′p(χ) = fp(χ) for finite p and f ′∞(χ) = 1 for χ 6= 1Γ has the same class
[f ′] modulo HomΩ(R′Γ , F

∗) Det(U(A)) as f .

Proof. Define f̄∞ ∈ HomΩ(RΓ , F ∗∞) by f̄∞(χ) = f∞(χ) for χ 6= 1Γ and
f̄∞(1Γ ) = 1. According to Proposition 2.2 of [7] one has HomΩ(RΓ , F ∗∞) ⊆
Det((RΓ )∗) and so there is α ∈ (RΓ )∗ such that f̄∞(χ) = Detχ(α) for any
χ ∈ Γ̂ . Now the first part of our assertion follows by noting that f∞(χ) =
Detχ(ᾱ) where ᾱ denotes the image of α in A∗∞ (Det(α) defined on RΓ has
the same values as Det(ᾱ) defined on A∞).

To prove the secondpart it suffices to observe that ff ′−1 lies inDet(U(A)).

Now let N be a real Abelian field of finite degree over Q with Γ =
ΓN = Gal(N/Q). For this field we specify our notations in the following
way: ∆p = ∆N,p, Tp = TN,p, p = pN , Up = UN,p and U1

p = U1
N,p. For a

prime p we shall denote by ep, fp and gp = |Tp| the ramification index, the
residue class degree of p in N and the number of prime ideals in ON above
p respectively.
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In the case of a finite prime p we put

E1
N,p = {ε ∈ EN : (t(ε))t∈Tp ∈ U1

p },
EN,p = dp(Zp ⊗ EN ) = dp(Zp ⊗ E1

N,p) ⊂ U1
p

where dp : Zp⊗E1
N,p → U1

p , dp(a⊗ ε) = (t(ε)a)t∈Tp for a ∈ Zp and ε ∈ E1
N,p.

Since N is real, the decomposition group of the infinite prime in N is
trivial, hence T∞ = Γ . We define the totally positive units by

E+
N = {ε ∈ EN : (γ(ε))γ∈Γ ∈ U1

∞}

and we put
EN,∞ = d∞(R⊗ E+

N ) = d∞(R⊗ EN ) ⊂ U1
∞

where d∞ : R ⊗ E+
N → U1

∞, d∞(a ⊗ ε) = (γ(ε)a)γ∈Γ for any a ∈ R and
ε ∈ E+

N .

Theorem 3.3. Let N be a real Abelian field. Then for a finite prime p,

|torZp(U
1
p /EN,p)|

p
=
pepRp(N)
b
√
dNnp

,

where np is the absolute norm of
∏
t∈Tp t(p), b = 1 unless p = 2 and −1

is not a norm in Np for p | 2, in which case b = 2. The relation p
= means

equality up to a p-adic unit factor. If p =∞, then |tor(U1
∞/EN,∞)| = 1.

Proof. For finite p it suffices to apply Corollary 2.6.1(ii)2, Theorem 2.6.4
and Remark 2.6.5(i) in [11, Chapter III]. If p = ∞, then T∞ = Γ and the
Γ -homomorphism

(uγ)γ 7→
∑
γ∈Γ

log(uγ)γ−1

gives U1
∞/EN,∞

∼= RΓ/(RΓ )0, whence torR(U1
∞/EN,∞) = {1}.

Theorem 3.4 (Ramachandra units). Let n 6≡ 2 mod 4, and let n =∏s
i=1 p

ei
i be its prime factorization. Let I run through all proper subsets of

{1, . . . , s}, and let nI =
∏
i∈I p

ei
i . For 1 < a < 1

2n with (a, n) = 1 define

ξa = ζ lan
∏
I

1− ζanIn

1− ζnIn
where la =

1
2

(1− a)
∑
I

nI .

Then the elements ξa form a set of multiplicatively independent units gene-
rating a subgroup of finite index in the group of units of Q(ζn)+.

Proof. This is Theorem 8.3 in [20].

Theorem 3.5. Let χ be an even nontrivial primitive Dirichlet charac-
ter of conductor f and let m be an integer not divisible by f . Let τ(χ) =
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a=1 χ(a)ζaf be the Gauss sum. Then

f∑
a=1

(a,f)=1

χ̄(a) logp(1− ζamf ) =
pf

τ(χ)
χ(m)

χ(p)− p
Lp(1, χ) for a prime number p.

For the infinite prime
f∑
a=1

(a,f)=1

χ̄(a) log∞ |1− ζamf | = −
χ(m)fL(1, χ)

τ(χ)
.

Proof. In the case of finite p and (m, f) = 1 this is Leopoldt’s original
formula (for a proof see Theorem 5.18 in [20]).

Thus we may confine ourselves to the case (m, f) > 1 and f - m. Ob-
serve that as χ(m) = 0 in this case, it suffices to show that the sum also
vanishes. Write m = m1d where d = (m, f). Then after putting c = am1 we
obtain

f∑
a=1

(a,f)=1

χ̄(a) logp(1− ζamf ) = χ(m1)
f∑
c=1

(c,f)=1

χ̄(c) logp(1− ζcdf ).

Since χ is primitive and d | f (1 < d < f), there is an integer b such
that b ≡ 1 (mod f/d), (b, f) = 1, and χ(b) 6= 1 (see [1, Theorem 2 on
p. 469]).

As b ≡ 1 (mod f/d) one has ζcdf = ζbcdf and so after a suitable change of
the summation index we have

f∑
c=1

(c,f)=1

χ̄(c) logp(1− ζcdf ) =
f∑
c=1

(c,f)=1

χ̄(c) logp(1− ζbcdf )

= χ(b)
f∑
c=1

(c,f)=1

χ̄(c) logp(1− ζcdf ).

Since χ(b) 6= 1 it follows that
f∑
c=1

(c,f)=1

χ̄(c) logp(1− ζcdf ) = 0

and this completes the proof for finite primes.
If p = ∞ it suffices to apply the preceding argument to the well known

classical formula (for a proof see Theorem 4.9 in [20]).

We shall also need the following technical result:
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Lemma 3.6. Let p be a prime number and let Φ be an irreducible char-
acter of Γ over Qp. Let a ∈ ZpΓ and put a =

∑
µ∈ bΓ aµeµ with aµ ∈ Zp[ζn],

where n is the exponent of Γ . Then

(i) The elements of {aµ : µ | Φ} are all conjugate over Qp(ζn), and the
values νp(aµ) are equal for all µ |Φ.

(ii) If aµ 6= 0 for µ |Φ, then

νp(|eΦ(ZpΓ/ZpΓa)|) = νp(aχ)Φ(1),

where χ is any summand of Φ.

Proof. (i) Let a =
∑

γ∈Γ bγγ with bγ ∈ Zp. Observe that, for any µ ∈ Γ̂ ,
aµ =

∑
γ∈Γ bγµ(γ), and if µ and χ are summands of Φ then µ = χσ for some

σ ∈ Gal(Qp(ζn)/Qp). Thus by the above equation we get aµ = σ(aχ). The
second part of (i) is an immediate consequence of the first.

(ii) Note that |eΦ(ZpΓ/ZpΓa)| = |eΦZpΓ/eΦ(ZpΓa)|. Since eΦ(ZpΓa) is
the image of eΦZpΓ under the Qp-linear transformation L : x 7→ ax, it fol-
lows that |eΦZpΓ/eΦ(ZpΓa)| modulo Z∗p is equal to det(L). Thus calculating
the determinant of the matrix of L relative to the basis {eµ : µ |Φ} we
obtain

|eΦ(ZpΓ/ZpΓa)|Zp =
∏
µ|Φ

aµZp = pΦ(1)νp(aχ)Zp

where the last equality follows from (i) and the fact that Φ is the sum of
Φ(1) irreducible characters over Qp.

4. Logarithmic resolvent. From now on we assume that F ⊇ N ∪
{χ(γ) : γ ∈ Γ, χ ∈ Γ̂}, and for any prime p, we choose a set of represen-
tatives for the decomposition group of p in the extension F/Q (recall that
Gal(F/Q) = Ω) in the following way.

Let Sp be a set of coset representatives of the decomposition group for
the prime pF over a prime p of N in the extension F/N . Let Ťp ⊆ Ω be a
set of extensions of elements of the set Tp such that each t ∈ Tp has exactly
one extension ť in Ťp. In this way ŤpSp is a set of coset representatives of
the decomposition group for pF over p in the extension F/Q. Therefore we
can write

Fp =
∏
t∈Tp

∏
s∈Sp

Fťs(pF ) for finite p,

F∞ =
∏
t∈T∞

∏
s∈S∞

Cť,s where Cť,s = C.

Using these sets of representatives we define the ZΩ-embeddings
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jp : Np =
∏
t∈Tp

Nt(p) → Fp by

jp((at)t) = (aťs)ťs where aťs = at ∈ Nt(p) for any t ∈ Tp, s ∈ Sp.

We need to define Det on the rings NpΓ/(Γ̃ ) and NpΓ . This can be done
by putting

Detχ
(∑
γ∈Γ

bγ γ̃
)

=Detχ
(∑
γ∈Γ

bγγ
)

=
∑
γ∈Γ

jp(bγ)ip(χ(γ)) for bγ∈Np,χ 6=1Γ ,

where ip was defined at the end of Section 2.

Lemma 4.1. Let p be a prime, u ∈ (U1
p )0 and y ∈ Ap. Then∑

γ∈Γ
Logp(γ(yu))γ̃−1 = y

∑
γ∈Γ

Logp(γ(u))γ̃−1.

Proof. Put y =
∑

δ∈Γ yδ δ̃. Since Logp(wa) = aLogp(w) and yw =∏
δ∈Γ γ(w)yδ , for any a ∈ Zp or a ∈ R and w ∈ U1

p , we get∑
γ∈Γ

Logp(γ(yu))γ̃−1 =
∑
γ∈Γ

Logp
(
γ
∏
δ∈Γ

δ(u)yδ
)
γ̃−1

=
∑
γ∈Γ

∑
δ∈Γ

yδ Logp(δγ(u))γ̃−1.

On the other hand

y
∑
γ∈Γ

Logp(γ(u))γ̃−1 =
∑
γ∈Γ

∑
δ∈Γ

yδ Logp(γ(u))δ̃γ̃−1

=
∑
δ∈Γ

∑
α∈Γ

yδ Logp(αδ(u))α̃−1 after substituting α = γδ−1.

Proposition 4.2. Let p be a finite or infinite prime and let u ∈ E0
N,p

generate an Ap-submodule of finite index in EN,p. Then∑
γ∈Γ

Logp(γ(u))γ̃−1 ∈ (NpΓ/(Γ̃ ))∗.

Proof. First assume that u = (t(ε))t, where ε ∈ E0
N generates an Ap-

submodule of finite index in EN . It suffices to find an element
∑

δ∈Γ xδ δ̃ ∈
NpΓ/(Γ̃ ) such that∑
δ∈Γ

xδ δ̃
∑
γ∈Γ

Logp(γu)γ̃−1 = 1̃, that is,
∑
δ∈Γ

xδδ
∑
γ∈Γ

Logp(γu)γ−1 = 1+xΓ̃

with x ∈ Np. Hence after substituting α = δγ−1 we obtain∑
α∈Γ

(∑
δ∈Γ

xδ Logp(δα
−1u)

)
α = 1 + xΓ̃ .
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This is equivalent to the system of equations∑
δ∈Γ

xδ Logp(δα
−1(u))− x = 0 for α 6= 1,∑

δ∈Γ
xδ Logp δ(u)− x = 1.

By putting u = (t(ε))t, xδ = (xδ,t)t ∈ Np and x = (xt)t ∈ Np with t ∈ Tp,
we get systems of equations (one for each t ∈ Tp)∑

δ∈Γ
xδ,tlogp(tδα

−1(ε))− xt = 0 for α 6= 1,∑
δ∈Γ

xδ,tlogp(tδ(ε))− xt = 1.

Thus after subtracting we get∑
δ∈Γ

xδ,tlogp(tδα
−1(ε)/tδ(ε)) = −1 for α 6= 1,∑

δ∈Γ
xδ,tlogp(tδ(ε))− xt = 1.

According to Leopoldt’s conjecture which is known to be true for Abelian
fields and by the independence of {γ(ε) : γ ∈ Γ \ {1}} in the Archimedean
case we get

det[logp(δα
−1(ε))]α,δ∈Γ\{1} 6= 0.

Using this and Lemma 5.26 of [20] with
∑

δ∈Γ logp(δ(ε)) = 0 we arrive at

det[logp(δα
−1(ε)/δ(ε))]α,δ∈Γ\{1} 6= 0,

showing that the systems of equations have solutions, which proves our
proposition for u = (t(ε))t.

Now we turn to the general case. Let v ∈ E0
N,p generate the Ap-module

of finite index in EN,p and choose ε ∈ E0
N generating an Ap-submodule of

finite index in EN . Then u = (t(ε))t also generates a module of finite index
in EN,p and therefore for suitable m ∈ Z and y ∈ Ap we get vm = uy. By
Lemma 4.1 we have

m
∑
γ∈Γ

Logp(γ(v))γ̃−1 = y
∑
γ∈Γ

Logp(γ(u))γ̃−1.

Similarly um′ = vz for some m′ ∈ Z and z ∈ Ap, so we obtain

m′
∑
γ∈Γ

Logp(γ(u))γ̃−1 = z
∑
γ∈Γ

Logp(γ(v))γ̃−1.
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Consequently, by combining the above equalities, we get

mm′
∑
δ∈Γ

Logp(δ(u))δ̃−1 = yz
∑
δ∈Γ

Logp(δ(u))δ̃−1.

Since
∑

δ∈Γ Logp(δ(u))δ̃−1 is a unit of (NpΓ/(Γ̃ )), as we have shown above,
the last equality implies mm′1̃ = yz and so (1/m)y ∈ (NpΓ/(Γ̃ ))∗. Thus
finally ∑

δ∈Γ
Logp(v)δ̃−1 =

1
m
y
∑
γ∈Γ

Logp(γ(u))γ̃−1 ∈ (NpΓ/(Γ̃ ))∗.

Now, for any finite or infinite prime p and χ ∈ Γ̂ \ {1Γ }, we may define
the p-logarithmic resolvent of u ∈ (Up)0 by

(u|χ)N,p = Detχ
(∑
γ∈Γ

Logp(γ(u))γ̃−1
)

=
∑
γ∈Γ

ip(χ(γ))jp(Logp(γ(u))) ∈ Fp.

We also write

(ε|χ)N,p = ((t(ε))t|χ)N,p ∈ Fp for ε ∈ E0
N (or (E+

N )0).

Corollary 4.3. Let u ∈ (EN,p)0 generate an Ap-submodule of finite
index in EN,p and χ ∈ Γ̂ \ {1Γ }. Then

(u|χ)N,p ∈ F ∗p ,

and for every x ∈ Ap,

(xu|χ)N,p = Detχ(x)(u|χ)N,p.

Proof. By Proposition 4.2, there exists λ ∈ NpΓ/(Γ̃ ) such that

λ
∑
γ∈Γ

Logp(γ(u))γ̃−1 = 1̃,

and since Detχ is a ring homomorphism, the first assertion follows. The
second assertion is an immediate consequence of Lemma 4.1.

Let χ ∈ Γ̂ \ {1Γ } and for any prime p let up be an element of U0
p . We

define the logarithmic resolvent, the main tool of our paper, by

((up)p|χ)N = ((up|χ)N,p)p ∈
∏
p

F ∗p .

If ε ∈ E0
N , then we write for brevity

(ε|χ)N = ((εp|χ)N,p)p,

with εp = (t(ε))t, where t ∈ Tp. If ηp ∈ (Zp ⊗ EN )0, then we also put
(ηp|χ)N,p = (dp(ηp)|χ)N,p.
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Remark 4.4. The logarithmic resolvent can be extended to elements of
Up by putting

(u|χ)N,p = Detχ
(∑
γ∈Γ

Logp(γ(u))γ−1
)

=
∑
γ∈Γ

ip(χ(γ))jp(Logp γ(u)).

Note also that the identity in Corollary 4.3 remains valid.

We shall also need the usual resolvent introduced by A. Fröhlich (see e.g.
[7]) and used in the study of the additive Galois structure of rings of integers.
For a = (ap)p with ap ∈ Zp ⊗ ON =

∏
t∈Tp Opt , we put

[ap|χ]N,p = Detχ
(∑
γ∈Γ

γ(ap)γ−1
)

=
∑
γ∈Γ

ip(χ(γ))jp(γ(ap)) ∈ Fp

for χ ∈ Γ̂ . The resolvent of a is defined by

[a|χ]N = ([ap|χ]N,p)p.

Theorem 4.5. Let N be a real Abelian field and assume that EN is
A-locally free. Let ε ∈ E0

N generate an A-submodule of EN of finite index
and for any prime p let εp be an element of (Zp ⊗ EN )0 whose image is an
Ap-free generator of Zp ⊗ EN . Then, for χ ∈ Γ̂ \ {1Γ }, the map

χ 7→ ((εp)p|χ)N (ε|χ)−1
N

is a representative of (EN )A in

HomΩ(R′Γ , J(F ))/[HomΩ(R′Γ , F
∗) Det(U(A))].

Moreover we can choose εp in such a way that this map is equal to 1 at all
primes not dividing the index (EN : Aε).

Proof. First consider finite primes. Let ϑp : Zp ⊗EN → Zp ⊗EN denote
the ZpΓ -homomorphism mapping 1⊗ η to 1⊗ η.

Applying Theorem 3.1 to X = EN , v = 1⊗ ε, xp = ϑp(εp) we get

ϑp(εp) = λp(1⊗ ε) = λpϑp(1⊗ ε) with λp ∈ A∗p.

As ϑp restricted to (Zp⊗EN )0 is an Ap-homomorphism and there is a positive
integer m such that pmλp ∈ Ap, one has

ϑp(pmεp) = ϑp(pmλp(1⊗ ε)).
Since the kernel of ϑp is Zp-torsion we can choose a positive integer m′ ≥ m
so that pm′ kerϑp = {0} and so pm′εp = pm

′
λp(1⊗ε). Now applying Corollary

4.3 to the above equation we obtain Detχ(pm
′
λp)(1⊗ ε|χ)N,p = (pm

′
εp|χ)N,p

and finally
Detχ(λp) = (εp|χ)N,p(ε|χ)−1

N,p.

For p =∞ the map ϑ∞ : ZR⊗ EN → R⊗ EN is an isomorphism so we
obtain ε∞ = λ∞(1⊗ ε), which as above gives the required formula.
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To prove the last part of the theorem it suffices to put εp = 1 ⊗ ε for
primes not dividing (EN : Aε). Indeed, since for these primes

(Zp ⊗ EN )/Ap(1⊗ ε) ∼= (Zp ⊗ EN )/(Zp ⊗Aε) ∼= Zp ⊗ (EN/Aε) ∼= {1},

we infer that 1 ⊗ ε is a free generator of Zp ⊗ EN . Thus, by definition,
(εp|χ)N,p = (1⊗ ε|χ)N,p = (dp(1⊗ ε)|χ)N,p = (t(ε)t|χ)N,p = (ε|χ)N,p and so
we can use this special choice of εp in the representing map.

From now on we choose F to be a cyclotomic field Q(ζn) containingN and
the values of all characters from Γ̂ . Thus Ω = Gal(F/Q) = Gal(Q(ζn)/Q)
and by putting H = Gal(F/N), we obtain

(4.1) Ω/H ∼= Gal(N/Q) = Γ,

so we can identify Γ with Ω/H.
By (4.1) any character of Γ can be treated as a character of Ω which is

trivial on H. Thus for any χ ∈ Γ̂ , there is χ0 ∈ Ω̂ such that χ(gH) = χ0(g)
for any g ∈ Ω. We also identify the group Ω with (Z/nZ)∗ and hence we can
regard χ0 as a Dirichlet character modulo n. Next we assign to this character
the primitive character χ∗.

Thus χ 7→ χ∗ gives a 1-1 correspondence between Γ̂ and the group of
primitive Dirichlet characters associated with the field N .

In order to make the statement of the next theorem consistent for p =∞
we put χ∗(p) = 0 so that χ∗(p)/p − 1 = −1. We also write L∞(s, χ∗) =
L(s, χ∗).

Theorem 4.6. Let N and εp be as in Theorem 4.5. Then, for χ ∈ Γ̂ \
{1Γ }, the map

χ 7→ ((εp)p|χ)N

(
[(χ∗(p)/p− 1)τ(χ∗)]δ

Lp(1, χδ∗)

)
δ,p

with δ ∈ ŤpSp

is a representative of (EN )A in

HomΩ(R′Γ , J(F ))/[HomΩ(R′Γ , F
∗) Det(U(A))].

Proof. Let ε ∈ E0
N generate a module of finite index in EN . By definition

(ε|χ)N,p = ((t(ε))t|χ)N,p =
∑
γ∈Γ

ip(χ̄(γ))jp(Logp(γ(t(ε))t)),

whence

(4.2) (ε|χ)N,p =
(∑
γ∈Γ

χ̄ťs(γ) logp(γt(ε))
)
ťs

with t ∈ Tp and s ∈ Sp.

To simplify notation we write (ε|χ) =
∑

γ∈Γ χ̄(γ) logp(γ(ε)) and then by
(4.2) we have (ε|χ)N,p = (t(ε)|χťs)ťs.
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Let W be a set of representatives for cosets of the subgroup H in Ω.
Then by identification (4.1) of Γ with Ω/H and by the definition of χ0 we
can write

(t(ε)|χťs) =
∑
w∈W

χ̄ťs(wH) logp(wt(ε)) =
∑
w∈W

χ̄ťs0 (w) logp(wt(ε)).

On the other hand H ⊆ kerχ0 and automorphisms of H are identities on N ,
so we get ∑

g∈Ω
χ̄ťs0 (g) logp(gt(ε)) =

∑
w∈W

∑
h∈H

χ̄ťs0 (wh) logp(wht(ε))

= |H|
∑
w∈W

χ̄ťs0 (w) logp(wt(ε))

and consequently

(4.3) (t(ε)|χťs) = |H|−1
∑
g∈Ω

χ̄ťs0 (g) logp(gt(ε)).

Let H+ be a set of coset representatives of the subgroup Gal(F/F+) in H.
Since Gal(F+/N) ∼= H/Gal(F/F+), the norm map NF+/N acts as multipli-
cation by

∑
h∈H+ h ∈ ZΩ.

As we have
E

(F+:N)
N ⊆ NF+/N (EF+) ⊆ EN ,

it follows that NF+/N (EF+) is of finite index in EN . Hence there is an integer
d and η ∈ EF+ such that εd = NF+/N (η) =

∏
h∈H+ h(η). Thus, by (4.3),

(t(ε)d|χťs) = |H|−1
∑
g∈Ω

χ̄ťs0 (g) logp
( ∏
h∈H+

gťh(η)
)

= |H−1|
∑
h∈H+

(∑
g∈Ω

χ̄ťs0 (g) logp(gťh(η))
)
,

and after substituting r = gh we get

|H−1|
∑
h∈H+

∑
r∈Ω

χ̄ťs0 (h−1r) logp(rť(η))

= |H−1| |H+|
∑
r∈Ω

χ̄ťs0 (r) logp(rť(η)) (kerχ0 ⊇ H),

whence by |H|/|H+| = 2 we obtain

(4.4) (t(ε)|χťs) =
1
2d

∑
g∈Ω

χ̄ťs0 (g) logp(gť(η)).

Let χ∗ be a primitive character for χ0 with conductor n∗ and let Ω∗ =
{δ ∈ Ω : δ ≡ 1 (mod n∗)} (we identify Ω with (Z/nZ)∗). As Ω∗ is the kernel
of the homomorphism Ω → (Z/n∗Z)∗, we have Ω/Ω∗ ∼= (Z/n∗Z)∗.
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We now show that if F∗ is the fixed field of Ω∗, then F∗ = Q(ζ∗), where
ζ∗ = ζ

n/n∗
n is a primitive n∗th root of unity. Indeed, for any σ ∈ Ω∗ we have

σ(ζ∗) = ζ∗ and hence Q(ζ∗) ⊆ F∗. On the other hand

(F∗ : Q) = |Gal(F∗/Q)| = |Ω/Ω∗| = |(Z/n∗Z)∗| = (Q(ζ∗) : Q).

Note that χts0 , χts∗ , Ω∗, n∗, ζ∗ mean the same for χts as χ0, χ, Ω∗, n∗, ζ∗
for χ.

Let R∗ be a set of representatives for cosets of Ω∗ in Ω. Since Ω∗ is
contained in the kernel of χ0 and χts0 , (4.4) gives

(4.5) (t(ε)|χťs) =
1
2d

∑
c∈R∗

χ̄ťs∗ (c) logp(cť(η∗))

where η∗ =
∏
h∈Ω∗ h(η) = NF/F∗(η) is a real unit of F∗.

For any δ ∈ ŤpSp we put δ(ζ∗) = ζδ∗∗ , δ∗ ∈ Z, and for ť ∈ Tp we also write
ť∗ = t∗.

Now applying Theorem 3.4 for n = n∗ one has, for some integer d∗,

ť(η∗)d∗ =
∏
a∈V

ť(ξa)xa =
∏
a∈V

(∏
I

ζ lat∗∗
1− ζat∗nI∗

1− ζt∗nI∗

)xa
where V = {1 < a < 1

2ϕ(n∗) − 1 : (a, n∗) = 1} and xa ∈ Z. In order
to apply Theorem 3.5 we consider characters χťs0 as functions defined on Z
with χťs0 (c) = 0 for (c, n∗) > 1. Using (4.5), logp(ζ∗) = 0 and the fact that
c ∈ (Z/n∗Z)∗ acts on ζ∗ by ζ∗ 7→ ζc∗ we obtain

(t(ε)|χťs) =
1

2dd∗

n∗∑
c=1

∑
a∈V

∑
I

xaχ̄
ťs
∗ (c) logp

(
1− ζact∗nI∗

1− ζct∗nI∗

)

=
1

2dd∗

n∗∑
c=1

∑
a∈V

∑
I

xaχ̄
ťs
∗ (c)[logp(1− ζact∗nI∗ )− logp(1− ζct∗nI∗ )]

=
1

2dd∗

∑
I

∑
a∈V

xa

( n∗∑
c=1

χ̄ťs∗ (c) logp(1− ζact∗nI∗ )−
n∗∑
c=1

χ̄ťs∗ (c) logp(1−ζct∗nI∗ )
)
.

Now we apply Theorem 3.5 with f = n∗, m = at∗nI for a ∈ V or a = 1 and
nI 6= 1. Hence

n∗∑
c=1

χ̄ťs∗ (c) logp(1− ζact∗nI∗ ) = 0 (χťs∗ (at∗nI) = 0).

Thus

(t(ε)|χťs) =
1

2dd∗

∑
a∈V

xa

( n∗∑
c=1

χ̄ťs∗ (c) logp(1−ζact∗∗ )−
n∗∑
c=1

χ̄ťs∗ (c) logp(1−ζct∗∗ )
)
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and once again using Theorem 3.5,

(t(ε)|χťs) = A(p, ťs)
χťs∗ (t∗)
τ(χťs∗ )

n∗
2dd∗

∑
a∈V

xa(χťs∗ (a)− 1)

where

A(p, ťs) =

{
pLp(1, χťs∗ )/(χťs∗ (p)− p) if p is finite,
−L(1, χťs∗ ) if p is infinite.

Since (ε|χ)N,p = (t(ε)|χťs)ťs and the map

χ 7→
(
ťs

(
n∗

2dd∗

∑
a∈V

xa(χ∗(a)− 1)
))

ťs

is an element of HomΩ(R′Γ , F
∗) it follows from Theorem 4.5 that the map

(4.6) R : χ 7→ ((εp)p|χ)N

((
(χťs∗ (p)− p)τ(χťs∗ )
pLp(1, χťs∗ )χťs∗ (t∗)

)
ťs

)
p

is a representative of (EN )A in

HomΩ(R′Γ , J(F ))/[HomΩ(R′Γ , F
∗) Det(U(A))].

For s ∈ Sp we put s(ζn) = ζs
′
n where s′ ∈ Z. Since s(ζ∗) = ζ

s∗n/n∗
n , it fol-

lows that s′ ≡ s∗ (mod n∗). As χ∗(x mod n∗) = χ0(x) one has H mod n∗
⊆ kerχ∗, whence Sp mod n∗ ⊆ kerχ∗ because Sp ⊆ Gal(F/N) = H. There-
fore χ∗(s′ mod n∗) = 1 for s′ representing s ∈ Sp and we get

χ∗((ťs)∗) = χ∗(ť∗)χ∗(s∗) = χ∗(t∗)χ∗(s′ mod n∗) = χ∗(t∗).

On the other hand for any δ ∈ ŤpSp one has τ(χδ∗) = χδ∗(δ∗)δ[τ(χ∗)]. Now
it follows that τ(χts∗ )/χts∗ (t∗) = ťs(τ(χ∗)), which together with (4.6) shows
that R is the required homomorphism.

5. Cyclic fields. From now on we assume that the field N is a tame
cyclic extension of Q of prime degree l 6= 2 with Γ = Gal(N/Q) = 〈γ0〉.
Observe that the conductor of N is a square-free integer q such that φ(q) ≡ 0
(mod l), where φ denotes the Euler function, and q is also the conductor of
χ∗ for χ ∈ Γ̂ \ {1Γ }. Thus we put F = Q(ζlq).

Our strategy is to replace the logarithmic resolvent of εp in Theorem 4.6
by the logarithmic resolvent of a suitable element of U1

p , and then by the
resolvent of a ZpΓ -generator of Zp ⊗ ON .

In order to calculate the p-logarithmic resolvent, for any prime p, we have
to consider separately two cases: gp = 1 and gp = l.

In case gp = 1 we have∆p = Γ and so Tp = {id}, Np = Np, and U1
p = U1

p .
Thus, for any u ∈ U1

p and ap ∈ Zp ⊗ ON = Op, one has
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(5.1)

(u|χ)N,p = (u|χs)s =
(∑
γ∈Γ

χ̄s(γ) logp γ(u)
)
s
,

[ap|χ]N,p =
(∑
γ∈Γ

χ̄s(γ)γ(ap)
)
s

with s ∈ Sp.

In case gp = l we have ∆p = {id}, so Tp = Γ and hence Nγ(p) = Qp,
U1
p =

∏
γ∈Γ U

1
γ(p) with U1

γ(p) = 1 + pZp. For any u = (uγ)γ ∈ U1
p and

ap = (aγ)γ ∈ Zp ⊗ ON =
∏
γ∈Γ Zp using the definition of the action of Γ on

Np, we obtain

(u|χ)N,p =
(∑
γ∈Γ

ťs(χ̄(γ)) logp uγt
)
ťs

=
(∑
γ∈Γ

χ̄ťs(γ) logp uγt
)
ťs

and respectively

(ap|χ)N,p =
(∑
γ∈Γ

ťs(χ̄(γ))aγt
)
ťs

=
(∑
γ∈Γ

χ̄ťs(γ)aγt
)
ťs
.

By changing the summation variables we get

(5.2)

(u|χ)N,p = (χťs(t))ťs
(∑
γ∈Γ

χ̄ťs(γ) logp uγ
)
ťs
,

[ap|χ]N,p = (χťs(t))ťs
(∑
γ∈Γ

χ̄ťs(γ)aγ
)
ťs

with t ∈ Tp and s ∈ Sp.

For p = ∞ one has g∞ = l and ∆∞ = {id}, so T∞ = Γ and hence
Nγ(p) = R, U1

∞ =
∏
γ∈Γ R∗+. For any u = (uγ)γ ∈ U1

∞ and a∞ = (aγ)γ ∈
R⊗ ON =

∏
γ∈Γ R we get

(u|χ)N,∞ = (χťs(t))ťs
(∑
γ∈Γ

χ̄ťs(γ) log∞ uγ
)
ťs
,

[a∞|χ]N,p = (χťs(t))ťs
(∑
γ∈Γ

χ̄ťs(γ)aγ
)
ťs

with t ∈ T∞ and s ∈ S∞.
Now we examine the structure of U1

p as a ZpΓ -module.

Proposition 5.1. Let N/Q be a tame real Abelian extension with an
odd prime degree l. Then the module U1

p is ZpΓ -free for any prime p 6= 2
and U1

2
∼= Z2Γ ⊕ (Z/2Z)g2 where Γ acts trivially on Z/2Z, and g2 is the

number of prime ideals above 2 in N .

Proof. First consider the case gp = 1 where U1
p = U1

p .
Let p 6= 2. If ζps ∈ Np and s ≥ 1, then we would have

ps−1(p− 1) | (Np : Qp) = l,
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which is impossible, so s = 0. Thus Np is regular (i.e. does not contain pth
roots of unity). Consequently, by Théorème 17 in [14], U1

p is ZpΓ -free.
If p = 2 and g2 = 1, then the only 2sth roots of unity in Np are ±1. Since

NNp/Qp(−1) = −1, Theorem 1 of [2] implies that U1
p
∼= Z2Γ ⊕ (Z/2Z).

In the case of finite p, gp = l and p 6= 2, we have U1
p =

∏
γ∈Γ U

1
γ , where

U1
γ = 1 + pZp. As logp : 1 + pZp ∼= pZp, the mapping

Ψ : (uγ)γ 7→
1
p

∑
γ∈Γ

logp(uγ)γ−1, where uγ ∈ 1 + pZp,

establishes an isomorphism U1
p
∼= ZpΓ .

For infinite p the mapping Ψ∞ defined by Ψ∞((uγ)γ) =
∑

γ∈Γ log(uγ)γ−1

for uγ ∈ R∗+ shows that U1
∞
∼= RΓ .

If p = 2 and g2 = l, let (ϕ1, ϕ2) : 1+2Z2 = (1+4Z2){±1} → Z2⊕(Z/2Z)
be an isomorphism (ϕ1 = 1

4 log2). Then the mapping

(uγ)γ 7→
(∑
γ∈Γ

ϕ1(uγ)γ−1, (ϕ2(uγ))γ
)

gives U1
2
∼= Z2Γ ⊕ (Z/2Z)l.

Proposition 5.2. Let N/Q be a tame real Abelian extension with a
prime degree l and let γ0 be a generator of Γ . Let EN,l be an Al-free module
with generator εl and let ul be a ZlΓ -free generator of U1

l . Then for any
χ ∈ Γ̂ \ {1Γ },

(εl|χ)N,l = Detχ(1− γ̃0)ml(ul|χ)N,l Detχ(ρl)

where ρl ∈ A∗l , ml = νl(lRl(N)/
√
dNnl)+1 and nl is defined in Theorem 3.3.

Proof. Let Ψl : U1
l → ZlΓ be a ZlΓ -isomorphism. Since l 6= 2 one has

EN,l ⊆ (U1
l )0, hence Ψl(EN,l) is a submodule of (ZlΓ )0 = (1− γ0)ZlΓ .

Since every nontrivial submodule of (1 − γ0)ZlΓ equals (1 − γ0)k+1ZlΓ
with some k ≥ 0, we get

Ψ(EN,l) = (1− γ0)kl+1ZlΓ for some integer kl ≥ 0,

and so
U1
l /EN,l

∼= ZlΓ/(1− γ0)kl+1ZlΓ.

Because ZlΓ = (1− γ0)ZlΓ ⊕ Zl as Zl-modules, we have

torZl(U
1
l /EN,l) ∼= torZl{[(1− γ0)ZlΓ ⊕ Zl]/(1− γ0)kl+1ZlΓ}

∼= torZl [(1− γ0)ZlΓ/(1− γ0)kl+1ZlΓ ].

Since (1− γ0)ZlΓ is isomorphic to Zl[ζl] as a ZlΓ -module, we get

|torZl(U
1
l /EN,l)| = |Zl[ζl]/(1− ζl)klZl[ζl]| = pkl .
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On the other hand, Theorem 3.3 gives

(5.3) kl = νl

(
lRl(N)
b
√
dNnl

)
.

Since εl and ul are ZlΓ -generators for EN,l and U1
l respectively, Ψl(εl)

and (1 − γ0)kl+1Ψl(ul) are ZlΓ -generators of (1 − γ0)kl+1ZlΓ . This implies
that there exist x, y ∈ ZlΓ such that Ψl(εl) = (1− γ0)kl+1xΨl(ul) as well as
(1− γ0)kl+1Ψl(ul) = yΨl(εl), hence εl = (1− γ0)kl+1xul and

(5.4) (1− γ0)kl+1up = yεl.

Thus εl = xyεl, so εl = x̄ȳεl, where x̄, ȳ are the images of x, y in Al. As εl
is an Al-free generator of EN,l, we get x̄ȳ = 1, hence x̄, ȳ ∈ A∗l .

Now by (5.4) we obtain (ȳεl|χ)N,l = ((1 − γ0)kl+1ul|χ)N,l and applying
Corollary 4.3 and Remark 4.4 one has

Detχ(ȳ)(εl|χ)N,l = Detχ(1− γ0)kl+1(ul|χ)N,l,

hence
(εl|χ)N,l = Detχ(x̄) Detχ(1− γ0)kl+1(ul|χ)N,l.

Finally using (5.4) with Detχ(1 − γ0) = Detχ(1 − γ̃0), and putting ρl = x̄,
we arrive at the required formula.

In the proof of the next proposition we shall use results in which two
types of cyclotomic units of an Abelian field appear.

First we define the group of formal cyclotomic units of N (see [12])

CN = 〈±NQ(ζnK )/K(1− ζanK ) : K ⊆ N, (a, nK) = 1〉 ∩ EN
where K runs over all nontrivial cyclic subfields of N , nK denotes the con-
ductor of K and 〈 : 〉 denotes the subgroup of N∗ generated by elements and
their conjugates. The second kind of cyclotomic units are the Sinnott units
([19]), which could be defined (see [15]) by

C ′N = 〈±NQ(ζr)/Q(ζr)∩N (1− ζar ) : 1 < r | q, (a, r) = 1〉 ∩ EN
where q is the conductor of N .

Generally these groups of units are not always equal but in the case of
prime degree of N/Q we have C ′N = CN . Indeed, since nK | q, the inclusion
⊇ follows from

NQ(ζnK )/K(1− ζanK ) = NQ(ζnK )∩N/K(NQ(ζnK )/Q(ζnK )∩N (1− ζanK )).

To get the inverse inclusion note that Q(ζr)∩N is either N or Q and so the
generators of C ′N are of two types

NQ(ζq)/N (1− ζaq ) or NQ(ζq)/Q(1− ζaq ).

The former are also generators of CN and the latter can only generate ±1
so C ′N ⊆ CN .
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Proposition 5.3. Let N/Q be a tame real Abelian extension with odd
prime degree l. For any odd prime number p 6= l let EN,p be an Ap-free
module with generator εp and let up be a ZpΓ -free generator of U1

p . Let
EN,2/torZ2(EN,2) be an A2-free module with free generator ε2 torZ2(EN,2) and
let u2 ∈ U1

2 be such that its image is a free Z2Γ -generator of U1
2 /torZ2(U1

2 ).
Then for any prime number p 6= l and any χ ∈ Γ̂ \ {1Γ },

(εp|χ)N,p = (pdp,χδ )δ(up|χ)N,p Detχ(ρp), where
dp,χ = νp(Lp(1, χ∗))− νp(hχp )/Φχ,p(1) for odd primes p,

d2,χ = ν2(L2(1, χ∗))− 1− ν2(hχ2 )/Φχ,2(1) and ρp ∈ A∗p,

Φχ,p is a Qp-irreducible character of Γ with summand χ and hχp is the order
of the Φχ,p component of the class group for N .

Proof. Let p be an odd prime and let up generate U1
p . Let Ψp be an

isomorphism U1
p
∼= ZpΓ such that Ψp(up) = 1.

Since p 6= 2 one has Γ̃ εp = 1 (EN,p ⊆ (U1
p )0) so we can put

(5.5) εp =
∑
µ 6=1Γ

prµtµeµup with tµ ∈ Zp[ζl]∗ and integers rµ ≥ 0.

Hence we obtain

(5.6) Ψp(εp) =
∑
µ6=1Γ

prµtµeµ =
∑
µ 6=1Γ

prµeµ
∑
µ6=1Γ

tµeµ.

Since
∑

µ6=1Γ
prµtµeµ ∈ ZpΓ , it follows from Lemma 3.6 that rµ = rϑ are

equal, and tµ and tϑ are conjugate over Qp(ζl) provided the characters µ and
ϑ are summands of the same irreducible character of Γ over Qp.

Thus for any Qp-irreducible character Υ of Γ and σ ∈ Gal(Qp(ζl)/Qp)
one has σ(

∑
µ|Υ tµµ̄(γ)) =

∑
µ|Υ tµσ µ̄

σ(γ), whence
∑

µ|Υ tµµ̄(γ) ∈ Zp. Con-
sequently, we have∑

µ6=1Γ

tµeµ =
1
l

∑
γ∈Γ

(∑
µ6=1Γ

tµµ̄(γ)
)
γ =

1
l

∑
γ∈Γ

(∑
Υ

∑
µ|Υ

tµµ̄(γ)
)
γ ∈ ZpΓ

where Υ runs over all nontrivial irreducible characters of Γ over Qp.
Since

∑
µ6=1Γ

tµeµ
∑

µ6=1Γ
t−1
µ eµ = 1− (1/l)Γ̃ and t−1

µ ∈ Zp[ζl], the image
of
∑

µ 6=1Γ
tµeµ in Ap is a unit in A∗p. Then according to (5.5) and Corol-

lary 4.3,

(εp|χ)N,p =
(∑
µ6=1Γ

prµtµeµup

∣∣∣χ)
N,p

= Detχ
(∑
µ6=1Γ

prµtµeµ

)
(up|χ)N,p

= (prχδ )δ(up|χ)N,p Detχ(ρp),

where ρp =
∑

µ6=1Γ
tµeµ ∈ A∗p. In order to calculate rχ we apply Lemma 3.6
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and (5.6) to obtain

(5.7) νp(|eΦχ,p(U1
p /EN,p)|) = νp(|eΦχ,p(ZpΓ/[ZpΓΨp(εp)])|) = rχΦχ,p(1).

Let CN,p ⊆ EN,p be the closure of CN ∩E1
N,p embedded by dp into U1

p , i.e.
CN,p = dp(Zp⊗ (CN ∩E1

N,p)) = dp(Zp⊗CN ). Note that the last equality is a
consequence of Zp⊗EN ∼= Zp⊗E1

N,p (a⊗η = a/(pfp−1)⊗ηpfp−1 ∈ Zp⊗E1
N,p

for any a ∈ Zp and any η ∈ EN ).
In [12, p. 157] R. Greenberg (see also [10, Théorème 1]) proved that for

any odd prime number p,

(5.8) νp(|eΦχ,p(U1
p /CN,p)|) = νp

( ∏
µ|Φχ,p

Lp(1, µ∗)
)
.

We also need a conjecture of G. Gras which, as shown by R. Greenberg
in [12], is a consequence of the Main Conjecture proved by B. Mazur and
A. Wiles in [17]. It states that Hp and the p-Sylow subgroup of EN/CN
have isomorphic Jordan–Hölder series as ZpΓ -modules for p > 2. This is
equivalent to

(5.9) |eΦ(EN/CN )p| = |eΦHp|
where Φ is an irreducible nontrivial character of Γ over Qp and the subscript
p indicates that we are dealing with the p-component.

Since EN,p = dp(Zp ⊗ E1
N,p) = dp(Zp ⊗ EN ) and dp is injective (see

Theorem 3.6.2(vi) in [11, Chapter III]) one has

(EN/CN )p ∼= Zp ⊗ (EN/CN ) ∼= (Zp ⊗ EN )/(Zp ⊗ CN ) ∼= EN,p/CN,p,

so by (5.9),
|eΦ(EN,p/CN,p)| = |eΦHp|.

This and (5.8) yield now

νp(|eΦχ,p(U1
p /EN,p)|) = νp

( ∏
µ|Φχ,p

Lp(1, µ∗)
)
− νp(|eΦχ,pHp|).

Since all µ ∈ Γ̂ \ {1Γ } with µ |Φχ,p are conjugate over Qp, we have
µ = χσ for some σ ∈ Ω = Gal(Qp(ζlq)/Qp) (recall that F = Qp(ζlq)). By
Theorem 3.5 and τ(χσ) = χσ(σ∗)σ(τ(χ)), where σ∗ is an integer defined by
σ(ζq) = ζσ∗q , we get Lp(1, µ∗) = σ(Lp(1, χ∗)), which gives νp(Lp(1, µ∗)) =
νp(Lp(1, χ∗)). Thus we obtain

νp(|eΦχ,p(U1
p /EN,p)|) = Φχ,p(1)νp(Lp(1, µ∗))− νp(hχp ),

which together with (5.7) gives

rχ = νp(Lp(1, µ∗))− νp(hχp )/Φχ,p(1).

Finally after putting dp,χ = rχ we arrive at the required formula for odd
primes.
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Now let p = 2. Denote by Ξ the isomorphism U1
2
∼= Z2Γ⊕(Z/2Z)g2 . Since

u2 torZ2(U1
2 ) is a free Z2Γ -generator of U1

2 /torZ2(U1
2 ), the first component

of Ξ(u2) is a unit of Z2Γ . Thus we may assume, without loss of generality,
that this component is 1.

As the torsion submodules of U1
2 and EN,2 are of exponent 2, u2

2 and
ε2

2 are generators of the submodules (U1
2 )2 and (EN,2)2, respectively. By the

same argument we can treat Ξ((U1
2 )2) and Ξ((EN,2)2) as submodules of Z2Γ .

Observe that Γ̃ ε2
2 = 1, hence there exist xµ ∈ Z2[ζl]∗ and integers bµ ≥ 0

such that
ε2

2 =
∑
µ6=1Γ

2bµxµeµu2
2.

Hence we obtain

(5.10) Ξ(ε2
2) =

∑
µ6=1Γ

2bµxµeµ =
∑
µ6=1Γ

2bµeµ
∑
µ 6=1Γ

xµeµ

and arguing as in the case of odd p we get

(5.11) (ε2|χ)N,2 = (2bχδ )δ(u2|χ)N,2 Detχ(ρ2) for some ρ2 ∈ A∗2.

We also have

eΦχ,2 [U1
2 /(EN,2)2] ∼= eΦχ,2 [(Z2Γ ⊕ (Z/2Z)g2)/Z2ΓΞ(ε2

2)]
∼= eΦχ,2 [Z2Γ/Z2ΓΞ(ε2

2)]⊕ eΦχ,2(Z/2Z)g2 ∼= eΦχ,2 [Z2Γ/Z2ΓΞ(ε2
2)]

where the last isomorphism is a consequence of the trivial Γ -action on
(Z/2Z)g2 . Now, using Lemma 3.6 and (5.10), we get

(5.12) ν2(|eΦχ,2(U1
2 /(EN,2)2)|) = bχΦχ,2(1).

As torZ(E1
N,2) = {±1} and Z2 ⊗ {±1} = {1⊗ (±1)} one has torZ2(EN,2) =

{(±1)} and so, by the assumption of the proposition, EN,2/{(±1)} ∼=
Z2Γ/(Γ̃ ). Hence EN,2 ∼= Z2Γ/(Γ̃ ) ⊕ (Z/2Z) and since eΦχ,2(Z/2Z) = {0}
(1Γ - Φχ,2), we obtain

eΦχ,2(EN,2/(EN,2)2) ∼= eΦχ,2{[Z2Γ/(Γ̃ )⊕ (Z/2Z)]/2(Z2Γ/(Γ̃ ))}
∼= eΦχ,2{Z2Γ/(Γ̃ )/2(Z2Γ/(Γ̃ ))}.

From [Z2Γ/(Γ̃ )]/2[Z2Γ/(Γ̃ )] ∼= Z2Γ/[2Z2Γ + (Γ̃ )] and eΦχ,2Γ̃ = 0 we get

eΦχ,2{[Z2Γ/(Γ̃ )]/2[Z2Γ/(Γ̃ )]} ∼= eΦχ,2(Z2Γ/2Z2Γ ),

hence by Lemma 3.6, |eΦχ,2(EN,2/(EN,2)2)| = 2Φχ,2(1), and (5.12) gives

(5.13) ν2(|eΦχ,2(U1
2 /EN,2)|) = (bχ − 1)Φχ,2(1).

Let CN,2 ⊆ EN,2 be the closure of CN ∩ E1
N,2 in U1

2 .
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Now we shall need formulas analogous to (5.8) and (5.9) for p = 2. The
first one comes from Gillard [10, Théorème 1 for l = 2, Γ = {1}] and gives

ν2(|eΦχ,2(U1
N,2/CN,2)|) = ν2

( ∏
µ|Φχ,2

L2(1, µ∗)
)
− Φχ,2(1).

The second
|eΦχ,2(EN/C ′N )2| = |eΦχ,2H2|2Φχ,2(1)

is a special case of the formula in [13, Theorem 4.15]. This theorem is applied
for p = 2, ∆2 = 1 where d(χ′) = Φχ,2(1) (in the notation of [13]) and
|(R : U)χ′ | = 1 because 2 - (R : U) (Proposition 5.1 in [19]). As in our case
C ′N = CN we can replace C ′N by CN in this formula.

Applying these formulas together with (5.11), (5.13) and proceeding as
for odd primes we obtain the asserted formula for p = 2.

Lemma 5.4. Let p be a prime number and let Γ = 〈γ0〉 be a cyclic group
of prime order l 6= p. Put eχ = (1/l)

∑
γ∈Γ χ(γ)γ−1, e1 = (1/l)Γ̃ and e0 =

1− e1 for χ ∈ Γ̂ \ {1Γ }.

(i) If I is an ideal of ZpΓ such that I ⊆ (ZpΓ )0 and rankZp(I) = l − 1,
then

I =


⊕
χ 6=1Γ

prχeχZp in case l | p− 1,

ZpΓpre0 in case l - p− 1.

(ii) If I is an ideal of ZpΓ such that rankZp(I) = l, then

I =


⊕
χ

prχeχZp in case l | p− 1,

ZpΓpre0 ⊕ ZpΓphe1 in case l - p− 1,

where rχ, r and h are nonnegative integers.

Proof. (i) In case l | p−1 we have ζl∈Zp and hence (ZpΓ )0 =
⊕

χ 6=1Γ
eχZp.

Let I be a nontrivial ideal of (ZpΓ )0 with rankZp(I) = l − 1. Then
QpI =

⊕
χ 6=1Γ

eχQp and so, for any χ 6= 1Γ , there exists a nonnegative
integer rχ such that prχeχ ∈ I. Choose rχ to be minimal.

Suppose x ∈ I and x =
∑

χ 6=1Γ
aχeχ with aχ ∈ Zp. Since, for each

µ 6= 1Γ , xeµ ∈ I and xeµ = aµeµ, we have prµ | aµ. Thus x ∈
⊕

χ 6=1Γ
prχeχZp,

so I ⊆
⊕

χ 6=1Γ
prχeχZp. As the opposite inclusion is obvious, the first case

of (i) follows.
In the case l - p − 1, ZpΓe0 = {

∑l−1
j=0 ajγ

j
0 ∈ ZpΓ :

∑l−1
j=0 aj = 0}, so

the map defined by
∑l−1

j=0 ajγ
j
0 7→

∑l−1
j=0 ajζ

j
l establishes a ZpΓ -isomorphism
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ZpΓe0
∼= Zp[ζl]. As any submodule of Zp[ζl] is of the form Zp[ζl]pr it follows

that each ideal of ZpΓ contained in (ZpΓ )0 has the desired form.
(ii) If l | p−1, then it suffices to apply the same argument as in the proof

of (i). If l - p− 1, then QpI = QpΓe0 ⊕Qpe1, where e0 and e1 are primitive
idempotents of QpΓ . Observe that there exists a nonnegative integer h such
that phe1 ∈ I and choose h to be minimal. Let x ∈ I. As I ⊆ ZΓp =
ZpΓe0 ⊕ Zpe1, there exist a0 ∈ ZpΓ and a1 ∈ Zp such that x = a0e0 + a1e1.
Since xe1 = a1e1 ∈ I, we then have ph | a1 and therefore x ∈ I0 ⊕ Zpphe1.
As rankZp(I

0) = l − 1 it follows from (i) that I ⊆ ZpΓpre0 ⊕ Zpphe1. This
completes the proof of (ii) because the opposite inclusion is obvious.

Proposition 5.5. Let N/Q be a tame real Abelian extension of odd
prime degree l. Let ap be a free ZpΓ -generator of Zp ⊗ ON and for any
prime p 6= 2 let up be a free ZpΓ -generator of U1

p . Let u2 ∈ U1
2 be such that

its image is a free Z2Γ -generator of U1
2 /torZp(U

1
2 ). Then for any prime p

and any χ ∈ Γ̂ \ {1Γ } there exists wp ∈ A∗p such that

(up|χ)N,p = psp [ap|χ]N,p Detχ(wp)

where sp = 1 with two exceptions:

• sp = 0 when gp = fp = 1 and l | p− 1,
• s2 = 2 when g2 = l or f2 = 1.

Proof. Assume first gp = l. Then U1
p =

∏
γ∈Γ (1 + pZp) and Zp ⊗ ON =∏

γ∈Γ Zp. Consider the case p 6= 2 and let Ψ be the isomorphism U1
p
∼= ZpΓ

defined in Proposition 5.1.
Put Ψ(up) =

∑
γ∈Γ wγγ and up = (uγ)γ . Observe that Ψ(up) is the image

of a free generator, so it lies in (ZpΓ )∗. Thus

Ψ(up)eχ =
1
p

∑
γ∈Γ

logp(uγ)γ−1eχ =
1
p

∑
γ∈Γ

χ̄(γ) logp(uγ)eχ

but Ψ(up)eχ =
∑

γ∈Γ wγχ(γ)eχ. Therefore

1
p

∑
γ∈Γ

χ̄(γ) logp(uγ) =
∑
γ∈Γ

wγχ(γ)

and by (5.2) we get

(up|χ)N,p = (χťs(t))t,s
(
p
∑
γ∈Γ

wγχ
ťs(γ)

)
ťs

= pDetχ(w)(χťs(t))ťs,

where w =
∑

γ∈Γ wγ γ̃ ∈ A∗p.
On the other hand for ap = (aγ)γ ∈

∏
γ∈Γ Zp, using arguments as above

and the isomorphism
∏
γ∈Γ Zp ∼= ZpΓ given by (aγ)γ 7→

∑
γ∈Γ aγγ

−1 we
obtain
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[ap|χ]N,p = (χťs(t))ťs
(∑
γ∈Γ

aγχ̄
ťs(γ)

)
ťs

= Detχ(α)(χťs(t))ťs

with α =
∑

γ∈Γ aγ γ̃ ∈ A∗p.
Thus (up|χ)N,p = p[ap|χ]N,p Detχ(wα−1), i.e. sp = 1, which shows the

required formula in the case under consideration.
In the case p = 2 and g2 = l let Ψ2 :

∏
γ∈Γ Z2 → Z2Γ be the Z2Γ -

homomorphism defined by

Ψ2 : (uγ)γ 7→
1
4

∑
γ∈Γ

log2(uγ)γ−1 where uγ ∈ 1 + 2Z2.

As log2(1+2Z2) = log2({±1}(1+4Z2)) = 4Z2, Ψ2 is surjective and its kernel
is torZ2(U1

2 ).
Since, by assumption,u2 torZ2(U1

2) is a freeZ2Γ -generator ofU1
2 /torZ2(U1

2),
Ψ2(u2) is a unit of Z2Γ . Indeed, let u ∈ U1

2 be such that Ψ2(u) = 1. Then there
is β ∈ Z2Γ such that u kerΨ2 = (βu2) kerΨ2, whence βΨ2(u2) = Ψ2(u) = 1.
Now proceeding as in the case gp = l and p 6= 2 with Ψ2(u2) we get

(u2|χ)N,2 = 4[a2|χ]N,2Detχ(w2) for some w2 ∈ A∗2, i.e. s2 = 2.

Now suppose that gp = 1, p 6= 2 and note that Zp ⊗ ON = Op and
U1
p = U1

p with p being the only prime ideal of ON above p.
First assume that fp = l and p 6= 2. Then ep = 1, so 1 > ep/(p− 1)

and the map (1/p) logp : U1
p → Op is a ZpΓ -isomorphism. Consequently,

(1/p) logp(up) is a free ZpΓ -generator of the ring of integers Op so logp(up) =
pxpap for some xp ∈ (ZpΓ )∗, and hence by (5.1),

(5.14) (up|χ)N,p = (up|χs)s = p[ap|χs]s Detχ(xp),

so sp = 1.
In order to examine the case fp = 1 and p 6= 2 assume first that l - p− 1.

In this case let Ψ0 denote a ZpΓ -isomorphism U1
p → ZpΓ . Then, by Lemma

5.4(ii), we obtain

Ψ0(Ump ) = ZpΓprme0 ⊕ Zpphme1 = ZpΓ (prme0 + phme1)

for integers m ≥ 1. Note that r1 = h1 = 0 and rm+1 ≥ rm, hm+1 ≥ hm.
As |U jp/U j+1

p | = pfp for integers j ≥ 1, we have

(5.15) |U1
p /U

m
p | = pfp(m−1).

On the other hand

|U1
p /U

m
p | = |ZpΓ/Ψ0(Ump )| = |ZpΓ/(ZpΓprme0 ⊕ Zpphme1)| = p(l−1)rm+hm ,

whence by (5.15),

(5.16) (l − 1)rm + hm = fp(m− 1) = m− 1.
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Since Ψ0(up)(prme0 +phme1) is a generator of Φ0(Ump ), it follows that up,m =
(prme0 + phme1)up is a generator of Ump . Note that up,1 = up. Consequently,
for any χ 6= 1Γ we have (up,m|χ)N,p = Detχ(prme0 + phme1)(up|χ)N,p =
prm(up|χ)N,p because Detχ(e1) = 0. Thus

(5.17) (up,m|χ)N,p = prm(up|χ)N,p.

Now we put m = 2 in (5.16), whence (l−1)r2 +h2 = 1 and so r2 = 0, h2 = 1.
By the formula |U jp/U j+1

p | = p for integers j ≥ 1 one has (l− 1)(rj+1− rj) +
hj+1 − hj = 1, whence rj+1 = rj and hj+1 = hj + 1. This implies rm = 0
and consequently for m = l, by (5.17), we obtain (up|χ)N,p = (up,l|χ)N,p.
Since ep/(p − 1) = l/(p − 1) < l, the map (1/p) logp : U lp → Op is a ZpΓ -
isomorphism and thus (1/p) logp(up,l) is a free generator of Op, giving the
formula (5.14), i.e. sp = 1.

Now let l | p − 1. Let Θ be a ZpΓ -isomorphism Op
∼= ZpΓ such that

Θ(ap) = 1 and let p̂ denote the closure of p in Op. Since ζl ∈ Zp, Lemma 5.4
gives

Θ(p̂) =
⊕
χ∈Γ̂

Zpptχeχ = ZpΓ
∑
χ∈Γ̂

ptχeχ with some integers tχ ≥ 0.

This and |Op/p̂| = p imply

(5.18)
∑
χ∈Γ̂

tχ = 1.

On the other hand as ep/(p − 1) < 1 the mapping logp establishes a ZpΓ -
isomorphism U1

p
∼= p̂ and thus Θ(logp(up)) is a ZpΓ -free generator of Θ(p̂).

This means that Θ(logp(up)) = xp
∑

χ∈Γ̂ p
tχeχ for some xp ∈ (ZpΓ )∗ and

consequently logp(up) = xp
∑

χ∈Γ̂ p
tχeχap. Thus

(5.19) (up|χ) = [logp(up)|χ] = ptχ Detχ(xp)[ap|χ].

By (5.18) in order to show that all tχ are equal to 0 for χ ∈ Γ̂ \ {1Γ } it
suffices to prove that t1Γ ≥ 1. To this end note that Γ̃Θ(p̂) = Zppt1Γ e1Γ and
Γ̃ p̂ ⊆ p̂ ∩ Zp = pZp, whence Θ(Γ̃ p̂) = Zppt1Γ e1Γ ⊆ pZpΓ , and so t1Γ ≥ 1,
showing that sp = 0.

Now we consider the case p = 2 and g2 = 1. For any integer m ≥ 1 put
U
m
2 = (Um2 {±1})/{±1} and observe that U1

2 = U1
2 /{±1} with u2 = u2{±1}

as free Z2Γ -generator. Let Ψ2 denote a Z2Γ -isomorphism U
1
2
∼= Z2Γ . Then

by Lemma 5.4(ii) (the case l - p− 1),

Ψ2(Um2 ) = Z2Γ2rme0 ⊕ Z22hme1 = Z2Γ (2rme0 + 2hme1), m ≥ 1,

and again as in the case p 6= 2, r1 = h1 = 0 and rm+1 ≥ rm, hm+1 ≥ hm.
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Note that
|U1

2/U
m
2 | = |U1

2 /U
m
2 {±1}|,

and −1 ∈ Um2 if and only if 1 ≤ m ≤ e2. Since the kernel of the homomor-
phism U1

2 /U
m
2 → U1

2 /U
m
2 {±1} is nontrivial and equal to {±1 ·Um2 } precisely

when −1 /∈ Um2 , by (5.15) (also true for p = 2) we have

|U1
2/U

m
2 | =

{
2f2(m−1), 1 ≤ m ≤ e2,
2f2(m−1)−1, m > e2.

On the other hand

|U1
2/U

m
2 | = |Z2Γ/Ψ2(Um2 )| = |Z2Γ/(Z2Γ2rme0 ⊕ Z22hme1)| = 2(l−1)rm+hm ,

whence

(5.20) (l − 1)rm + hm =
{
f2(m− 1), 1 ≤ m ≤ e2,

f2(m− 1)− 1, m > e2.

Since Ψ2(u2)(2rme0 + 2hme1) is a generator of Ψ2(Um2 ), it follows that
u2,m{±1} is a generator of Um2 , where u2,m = (2rme0 + 2hme1)u2. Note
that u2,1{±1} = u2. Consequently, for any χ 6= 1Γ we have (u2,m|χ)N,2 =
Detχ(2rme0 + 2hme1)(u2|χ)N,2 = 2rm(u2|χ)N,2 because Detχ(e1) = 0. Thus

(5.21) (u2,m|χ)N,2 = 2rm(u2|χ)N,2.

To consider the case p = 2 and f2 = l we put m = 2 in (5.20). As e2 = 1
we obtain (l − 1)r2 + h2 = l − 1, whence r2 ∈ {0, 1}.

We shall prove that r2 = 1. Since the extension Np/Q2 is unramified,
the norm map is surjective on U2

2 , i.e. Γ̃U2
2 = 1 + 22Z2. The above and

1 + 2Z2 = (1 + 4Z2){±1} imply

Γ̃U
1
2 = (Γ̃U1

2 )/{±1} = (1 + 2Z2)/{±1} = ((1 + 4Z2){±1})/{±1} = Γ̃U
2
2

and so Ψ2(Γ̃U1
2) = Ψ2(Γ̃U2

2). Thus from Γ̃ Ψ2(U1
2) = Z2e1 and Γ̃ Ψ2(U2

2) =
Z22h2e1 we infer that h2 = 0, whence r2 = 1 and so by (5.21), (u2,2|χ)N,2 =
2(u2|χ)N,2.

Because −1 /∈ U2
2 (2 > e2), we have U2

2
∼= U2

2 and u2,2 is a free Z2Γ -
generator of U2

2 . Since e2 = 1, it follows that 1
4 log2 is a Z2Γ -isomorphism

U2
2
∼= O2. Therefore

[log2(u2,2)|χ]N,2 = 4[a2|χ]N,2 Detχ(y) for some y ∈ (Z2Γ )∗

and so by [log2(u2,2)|χ]N,2 = (u2,2|χ)N,2 = 2(u2|χ)N,2 we have

(u2|χ)N,2 = 2[a2|χ]N,2 Detχ(y) for some y ∈ (Z2Γ )∗,

proving that s2 = 1 for f2 = l.
In the case f2 = 1 and e2 = l we put m = 2 in (5.20) to get (l−1)r2 +h2

= 1, whence r2 = 0, h2 = 1. It turns out that rj = 0 for each j. In order to
prove this we apply (5.20) for l ≥ j ≥ 2 and obtain (l − 1)rj + hj = j − 1,
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whence (l−1)(rj−rj−1)+hj−hj−1 = 1, which implies rj = 0 and hj = j−1
for l ≥ j ≥ 2. For j ≥ l + 1 we have (l − 1)rj + hj = j − 2, which gives
(l − 1)rl+1 + hl+1 = l − 1 and so rl+1 = 0 because hl+1 ≥ hl = l − 1. After
subtracting suitable equations we obtain (l − 1)(rj+1 − rj) + hj+1 − hj = 1
for j ≥ l + 1, proving that rj = 0 for j ≥ l + 1.

Now by putting m = 2l in (5.21) we obtain (u2,2l|χ)N,2 = (u2|χ)N,2.
Since −1 /∈ U2l

2 (2l > e2), we get U2l
2
∼= U2l

2 and u2,2l is a free Z2Γ -generator
of U2l

2 .
On the other hand in our case 2l > e2 and so log2 establishes an isomor-

phism U2l
2
∼= p̂2l = 4Op. Therefore

[log2(u2,2l)|χ]N,2 = 4[a2|χ]N,2 Detχ(x) for some x ∈ (Z2Γ )∗,

whence

(u2|χ)N,2 = 4[a2|χ]N,2 Detχ(x) for some x ∈ (Z2Γ )∗,

showing that s2 = 2 for f2 = 1.
Finally if p = l, then ep = 1 asN/Q is tame, ep/(p−1) < 1 and so the map

(1/p) logp : U1
p → Op is a ZpΓ -isomorphism. Consequently, (1/p) logp(up) is

a free generator of Op and proceeding as in the preceding cases we obtain

(up|χ)N,p = p[ap|χs]s Detχ(xp) for some xp ∈ (ZpΓ )∗,

completing the proof of our proposition.

Now we can formulate the main theorem of this section.

Theorem 5.6. Let N be a tame real cyclic field of prime degree l > 2
and let γ0 generate Γ . For any prime p 6= l put

ωp,χ = pdp,χ+sp , ωl,χ = Detχ(1− γ̃0)ml l, ω∞,χ = 1,

where dp,χ, sp, and ml are from Propositions 5.2, 5.3 and 5.5. Then the map

χ 7→ τ(N/Q, χ)
(

[(χ∗(p)/p− 1)τ(χ∗)]δ

Lp(1, χδ∗)
ωp,χδ

)
δ,p

with δ ∈ Ť S

is a representative of (EN )A in

HomΩ(R′Γ , J(F ))/[HomΩ(R′Γ , F
∗) Det(U(A))],

where τ(N/Q, χ) is the Galois Gauss sum and χ∗ is the primitive character
for χ.

The definition and the properties of Galois Gauss sum can be found in [7].
We recall that for p =∞ we put χ∗(p)/p−1 = −1 and L∞(s, χ∗) = L(s, χ∗).

Proof. Note that as A ∼= Z[ζl] is a maximal order it follows that EN is
A-locally free, i.e. for any prime p, Zp ⊗ EN and R ⊗ EN are Ap-free and
A∞-free respectively. Since N is tame, Noether’s theorem implies that ON is
Z-locally free, i.e. Zp⊗ON and R⊗ON are ZpΓ -free and RΓ -free respectively.
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To apply Theorem 4.6 we shall prove, for each prime p, the existence of
εp ∈ (Zp ⊗ EN )0 whose image is a free Ap-generator of Zp ⊗ EN .

Assume first that p is odd. Then

Zp ⊗ EN ∼= (Zp ⊗ EN )/(Zp ⊗ {±1}) ∼= Zp ⊗ EN
and (Zp ⊗ EN )0 = Zp ⊗ EN because for any a ⊗ η ∈ Zp ⊗ EN one has
Γ̃ (a⊗ η) = a⊗ (±1) = (a/2)⊗ 1 = 1⊗ 1. Therefore there is εp ∈ (Zp⊗EN )0

whose image is a free Ap-generator of Zp ⊗ EN for odd p.
For p = 2 we have Z2 ⊗ {±1} = {1 ⊗ (±1)} and so Z2 ⊗ EN ∼= Z2 ⊗

EN/{1⊗ (±1)}. Let ε2 ∈ Z2 ⊗EN be such that ε2 mod {1⊗ (±1)} is a free
A2-generator of Z2⊗EN/{1⊗ (±1)}. Then Γ̃ ε2 ∈ {1⊗ (±1)} and if we had
Γ̃ ε2 = 1 ⊗ (−1) 6= 1 ⊗ 1, then we can take ε2(1 ⊗ (−1)) which belongs to
(Z2 ⊗ EN )0 (because |Γ | is odd) and its image generates Z2 ⊗ EN .

In the infinite case one has R⊗EN ∼= R⊗EN . Then we put ε∞ = 1⊗ε0 ∈
R ⊗ EN = (R ⊗ EN )0, where ε0 and its conjugates generate a subgroup of
finite index in EN .

Thus according to Theorem 4.6 for the above defined εp we infer that the
map

χ 7→ ((εp)p|χ)N

(
[(χ∗(p)/p− 1)τ(χ∗)]δ

Lp(1, χδ∗)

)
δ,p

with δ ∈ ŤpSp

represents the class of EN .
Observe that dp(εp) is a free Ap-generator of EN,p for odd or infinite

prime p, and d2(ε2){(±1)} is a free A2-generator of EN,2/{(±1)}. By defi-
nition (εp|χ)N,p = (dp(εp)|χ)N,p and after applying Propositions 5.2 and 5.3
for dp(εp) and d2(ε2){(±1)} we obtain

(εl|χ)N,l = Detχ(1− γ̃0)ml(ul|χ)N,l Detχ(ρl),

(εp|χ)N,p = (pdp,χδ )δ(up|χ)N,p Detχ(ρp),

where ρp ∈ A∗p and the existence of free generators up and u2 torZ2(U1
2 ) is a

consequence of Proposition 5.1.
Next, by Proposition 5.5 we obtain

(εp|χ)N,p = Detχ(xp)ωp,χ[ap|χ]N,p
for some xp ∈ ZpΓ ∗ and some ap that is a free ZpΓ -generator of Zp ⊗ ON
(the existence of ap follows from Noether’s theorem on tame extensions).

Thus for p 6= l the map

χ 7→ (ωp,χťs [(χ∗(p)/p− 1)τ(χ∗)]ťs/Lp(1, χťs∗ ))ťs[ap|χ]N,p

is the pth component of the map which represents the class of EN in Cl(A).
If p = l > 2, then a reasoning as for p 6= l, together with Propositions

5.1 and 5.3, gives the lth component of the above map.
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In the infinite case let u∞ = (uγ)γ be a free RΓ -generator of U1
∞, and

Ψ∞ be the RΓ -isomorphism U1
∞
∼= RΓ defined in the proof of Proposition

5.1. Then since

Ψ∞(EN,∞) ⊆ Ψ∞((U1
N,∞)0) = (RΓ )0 = RΓ (γ0 − 1)

and EN,∞ = d∞(R⊗EN ) has R-dimension |Γ |−1, we infer that Ψ∞(EN,∞) =
RΓ (γ0 − 1). Hence Ψ∞(d∞(ε∞)) and Ψ∞(u∞(γ0 − 1)) are A∞-generators
of Ψ∞(EN,∞). Then, by arguing as in the proof of Proposition 5.3, there
exists x ∈ A∗∞ such that d∞(ε∞) = x(γ0 − 1)u∞, whence (d∞(ε∞)|χ)N,∞ =
Detχ(x(γ0−1))(u∞|χ)N,∞. As Log∞ : U1

N,∞ → R⊗ON =
∏
γ∈Γ R is an RΓ -

isomorphism it follows that a∞ = (log∞(uγ))γ is a free generator of R⊗ON .
Note that, by definition, (ε∞|χ)N,∞ = (d∞(ε∞)|χ)N,∞ and (u∞|χ)N,∞ =
[a∞|χ]N,∞, so (ε∞|χ)N,∞ = Detχ(x(γ0 − 1))[a∞|χ]N,∞. Since γ̃0 − 1̃ ∈ A∗∞,
the map

χ 7→ ([τ(χ∗)]ts/L(1, χts∗ ))t,s[a∞|χ]N,∞

is the coordinate at ∞ of the map considered above.
By the formula (5.24) of Chapter I and Theorem 6 of the book [7] the

map χ 7→ [a|χ]Nτ(N/Q, χ)−1 is a representative of the class of ON in the
locally free class group

Cl(ZΓ ) ∼= HomΩ(RΓ , J(F ))/[HomΩ(RΓ , F ∗) Det(U(ZΓ ))].

On the other hand since N/Q is an Abelian tame extension, N has a nor-
mal integral basis, i.e. ON ∼= ZΓ and therefore the class of (ON ) is trivial.
Consequently, the maps χ 7→ [a|χ]N and χ 7→ τ(N/Q, χ) are equal modulo
HomΩ(RΓ , F ∗) Det(U(ZΓ )) and so equal modulo HomΩ(R′Γ , F

∗) Det(U(A)).
Thus after replacing [a|χ]N by τ(N/Q, χ) we obtain the required formula.

6. Minkowski units in fields of a prime degree. Now we are able to
give sufficient and necessary conditions for real cyclic fields of prime degree
to have the simplest multiplicative Galois module structure, i.e. to have their
groups of units A-free modulo torsion. This is equivalent to the existence of
units which together with their conjugates are fundamental units; such units
are called Minkowski units.

Using these conditions we also give new examples of fields having Min-
kowski units. Let hl denote the class number of the lth cyclotomic field.

Theorem 6.1. Let N/Q be a real, tame and cyclic extension of prime
degree l > 2 and let l be regular, i.e. hl is prime to l. Then N has a Minkowski
unit if and only if

νp(hχp )Φµ,p(1) = νp(hµp )Φχ,p(1)

for any χ, µ ∈ Γ̂ \ {1Γ }, and for any odd prime p 6= l dividing hN .
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Proof. Because A is commutative it satisfies the Eichler condition (see
Proposition 51.2 in [5]) which is sufficient for A to have locally free can-
cellation. This means that (X)A = (Y )A implies X ∼= Y for A-locally free
modules X and Y ([5, pp. 303–304]). Thus in order to show that EN ∼= A, it
suffices to prove that the class (EN )A in Cl(A) is trivial. Since A and Z[ζl]
are isomorphic rings, we have |Cl(A)| = hl, and from the assumption that
hl is prime to l, one concludes that (EN )A = 1 if and only if (EN )lA = 1.

Let f ∈ HomΩ(R′Γ , J(F )) be a homomorphism representing the class
(EN )A in Cl(A) as defined in Theorem 5.6. Thus in order to examine whether
EN ∼= A it suffices to consider the function f l.

In view of Remark 3.2 we can always assume that each homomorphism
representing a class in Cl(A) has its component at infinity equal to 1.

For any χ 6= 1Γ we put

(6.1) f(χ) = τ(N/Q, χ)(ωp,χδ/Wχδ,p)p,δ

where

Wχδ,p =
Lp(1, χδ∗)

[(χ∗(p)/p− 1)τ(χ∗)]δ
=

Lp(1, χδ∗)χ
δ
∗(δ∗)

(χδ∗(p)/p− 1)τ(χδ∗)

with an integer δ∗ such that δ(ζq) = ζδ∗q .
Since we need only an evaluation of νp(W l

χδ,p
) it suffices to consider

Wχ,p =
Lp(1, χ∗)p

(χ∗(p)− p)τ(χ∗)
=

1
q

q∑
a=1

χ∗(a) logp(1− ζaq )

where the last equality is a consequence of Theorem 3.5.
Hence for any σ ∈ Gal(Qp(ζlq)/Qp) and χ 6= 1Γ , one has

(6.2) σ(Wχ,p) = χ∗(σ∗)Wχσ ,p

where σ∗ is an integer defined by σ(ζq) = ζσ∗q .
Now using Leopoldt’s p-adic class number formula (see Theorem 5.24 in

[20])
2l−1hNRl(N)√

dN
=
∏
χ∗ 6=1

(
1− χ∗(l)

l

)−1

Ll(1, χ∗)

and
∏
χ∈ bΓ τ(χ∗) =

√
dN , we get 2l−1hNRl(N)/dN =

∏
χ 6=1Γ

Wχ,l.

Observe that for p = l all characters χ ∈ Γ̂ \ {1Γ } are conjugate over Ql

since the decomposition group of l in Q(ζl) is the whole group Gal(Q(ζl)/Q).
This in turn by (6.2) shows that νl(Wχ,l) = νl(Wµ,l) for all χ, µ ∈ Γ̂ \ {1Γ }.
Thus the above and l - dN (N/Q is tame) imply

(6.3) (l − 1)νl(Wχ,l) = νl

(
2l−1hNRl(N)

dN

)
= νl(hNRl(N)) for χ 6= 1Γ .
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Since νp(Wχ,p) = νp(Lp(1, χ∗))+1−νp(τ(χ∗)), Theorem 5.6 and (6.3) imply

νl

(
ωl,χ
Wχ,l

)
=

1
l − 1

(1− νl(hN )),

ν2

(
ω2,χ

Wχ,2

)
= s2 − 2 + ν2(τ(χ∗))− ν2(hχ2 )/Φχ,2(1),

νp

(
ωp,χ
Wχ,p

)
= sp − 1 + νp(τ(χ∗))− νp(hχp )/Φχ,p(1) for other primes p.

This and the fact that sp = 1 for all unramified primes p in N (see Propo-
sition 5.5) show that νp(ωp,χ/Wχ,p) = 0 for any χ 6= 1Γ and almost all
primes p. Thus we obtain(

ωp,χδ

Wχδ,p

)
p,δ

∈ J(F ), δ ∈ ŤpSp.

If we take any σ ∈ Ω which is the identity on Qp(ζl), then (6.2) gives
σ(W l

χ,p) = W l
χ,p, showing that W l

χ,p ∈ Qp(ζl) and consequently (ωp,χ/Wχ,p)l

∈ Qp(ζl).
Note that for any prime pF in F over p one has Qp(ζl) ⊆ FpF , so each δ

from the decomposition group ∆F,p is an extension of some automorphism
of Qp(ζl). This and the fact that νp(Lp(1, χσ∗ )) = νp(σLp(1, χ∗)) for σ ∈
Gal(Qp(ζl)/Qp) imply that ωp,χδ = δ(ωp,χ) for each δ ∈ ∆F,p. Similarly using
(6.2) we obtain (Wχδ,p)l = δ(Wχ,p)l for δ ∈ ∆F,p. Now applying Remark 2.1
to the mapping defined by

D(χ) = (Dp(χδ))δ,p =
(
ωp,χδ

Wχδ,p

)l
p,δ

with δ ∈ Ť S

we deduce that D ∈ HomΩ(R′Γ , J(Q(ζl))).
As (ωp,χ/Wχ,p)l and τ(χ∗)l ∈ Qp(ζl), for odd p 6= l the numbers

aχ,p = νp((ωp,χ/Wχ,p)l)− νp(τ(χ∗)l)− l(sp − 1) = −lνp(hχp )/Φχ,p(1),

aχ,2 = ν2((ω2,χ/Wχ,2)l)− ν2(τ(χ∗)l)− l(s2 − 2) = −lν2(hχ2 )/Φχ,2(1)

are rational integers. Thus we can define a mapping F on R′Γ by putting
F(χ) = (Fp(χδ))p,δ where Fp(χ) = paχ,p for p 6= l and Fl(χ) = 1.

We also define mappings B(χ) = (Bp(χδ))p,δ and G(χ) = (Gp(χδ))p,δ by

Bp(χ) = pbp with b2 = l(s2 − 2), bp = l(sp − 1) for odd prime p 6= l,

Bl(χ) = (1− χ(γ0))l(1−νl(hN )).

The mapping G is defined by

(6.4) Gp(χ) = Dp(χ)F−1
p (χ)B−1

p (χ)τ(χ∗)−l.
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Since Bp(χ) = 1 for almost all p and Bp(χσ) = σ(Bp(χ)) for σ ∈ Ω, it
follows that B ∈ HomΩ(R′Γ , J(Q(ζl))). Similarly τ(χσ∗ )

l = σ(τ(χ∗)l) ∈ Q(ζl)
for σ ∈ Ω, so the map χ 7→ (τ(χδ∗)

l)p,δ is in HomΩ(R′Γ , J(Q(ζl))).
Using similar arguments applied to ωp,χ we get aχδ,p = aχ,p and so

Fp(χδ) = δ(Fp(χ)) for any δ∈∆F,p. Hence by Remark 2.1 we infer that F∈
HomΩ(R′Γ , J(Q(ζl))), which togetherwith (6.4) givesG∈HomΩ(R′Γ , J(Q(ζl))).
The definition of G in (6.4) and νl(τ∗(χ)) = 0 show that Gp(χ) ∈ Zp[ζl]∗ for
any p and χ 6= 1Γ . Since, for any representative t ∈ TQ(ζl),p, the completion
of Q(ζl) at t(pQ(ζl)) is Qp(t(ζl)) = Qp(ζl), we have

G ∈ HomΩ

(
R′Γ ,

∏
p

∏
t

O∗Q(ζl)pt

)
= HomΩ

(
R′Γ ,

∏
p

∏
t

Zp[ζl]∗
)
⊆ HomΩ

(
R′Γ ,

∏
p

F ∗p

)
where t runs over TQ(ζl),p and pt denotes t(pQ(ζl)) for short.

We shall prove that G ∈ Det(U(A)).
For any prime p 6= l define G′p ∈ HomΩ(RΓ ,

∏
t Zp[ζl]∗) to be G′p(χ) =

Gp(χ) for χ 6= 1Γ and G′p(1Γ ) = 1. Since p - l = |Γ |, ZpΓ is a maximal
order in QpΓ and by Proposition 2.2 in [7] we get HomΩ(RΓ ,

∏
t Zp[ζl]∗) =

Det((ZpΓ )∗). Consequently, G′p ∈ Det((ZpΓ )∗) and so Gp ∈ Det(A∗p) because
the image (under γ 7→ γ̃) of any unit of ZpΓ is a unit of Ap and they have
the same Detχ.

For p = l let χ 6= 1Γ and let γ0 be a generator of Γ with χ(γ0) = ζl.
Put Gl(χ) =

∑l−2
j=0 ajζ

j
l ∈ Zp[ζl]∗. Since

∑l−1
j=0 xj γ̃

j
0 7→

∑l−1
j=0 xjζ

j
l is a

ring isomorphism Al
∼= Zl[ζl], we have

∑l−1
j=0 aj γ̃

j
0 ∈ A∗l . Also note that

Detχ(
∑l−1

j=0 aj γ̃
j
0) = (Gl(χσ))σ. Let µ be any nontrivial character of Γ . Since,

in this case, all nontrivial characters of Γ are conjugate over Ql, we have
µ = χρ for some ρ ∈ Gal(Ql(ζl)/Ql) and so

Detµ
( l−1∑
j=0

aj γ̃
j
0

)
=
( l−1∑
j=0

ajχ
ρσ(γj0)

)
σ

= (ρ(Gl(χσ)))σ = (Gl(χρσ))σ = (Gl(µσ))σ,

which shows that Gl∈Det(A∗l ). Thus G=(Gp)p∈Det(
∏
p A∗p)=Det(U(A)).

We will show that B ∈ HomΩ(R′Γ , F
∗) Det(U(A)). To see this observe

that Bp(χ) = 1 for almost primes so we can put B̃(χ) =
∏
p Bp(χ) ∈ F ∗ for

any χ 6= 1Γ and define the map B′ : χ 7→ (B̃(χσ))p,σ. It is clear that B′ ∈
HomΩ(R′Γ , F

∗). As Bp(χ) is a power of p for p 6= l and Bl(χ) is a power of
1− ζl times a unit of Z[ζl] we deduce that B/B′ ∈ HomΩ(R′Γ ,

∏
p

∏
t Zp[ζl]∗)

where t runs over TQ(ζl),p. Then after proceeding as for G we obtain B/B′ ∈
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Det(U(A)), whence

(6.5) B = B′(B/B′) ∈ HomΩ(R′Γ , F
∗) Det(U(A)).

Since the Galois Gauss sum τ(χ,N/Q) is an algebraic number in F and
τ(χσ, N/Q)/σ(τ(χ,N/Q)) is an lth root of unity for any σ ∈ Ω (see Theorem
20B(ii) in [8]),

χ 7→ τ(χ,N/Q)l is an element of HomΩ(R′Γ , F
∗).

We can say the same about the function

χ 7→ (τ(χσ∗ )
l)p,σ.

Thus by (6.1), the definition of D, (6.4) and (6.5) we may write

(6.6) f l = FF′ with F′ ∈ HomΩ(R′Γ , F
∗) Det(U(A)).

Now assume that the conditions of our theorem are satisfied. Then for
any prime p and any σ ∈ Ω we have Fp(χσ) = σ(Fp(χ)). Since Fp(χ) is
always a power of p and equals 1 for almost all p, we can apply the same
arguments as used for B to get F ∈ HomΩ(R′Γ , F

∗) Det(U(A)). Thus by (6.6)
we have f l ∈ HomΩ(R′Γ , F

∗) Det(U(A)), which proves that EN is A-free.
Conversely, suppose that EN is A-free. Then the representing function

f of the class (EN )A belongs to HomΩ(R′Γ , F
∗) Det(U(A)) and so does f l.

Consequently, according to (6.6) we have F ∈ HomΩ(R′Γ , F
∗) Det(U(A)).

Thus, by the definition of F, we may write

(Fp(χσ))σ = (pap,χσ )σ = (Z(χσ))σ(yp,χσ)σ ∈
∏

σ∈TF,p

F ∗σ(pF )

where Z ∈ HomΩ(R′Γ , F
∗) and the mapping χ 7→ (yp,χσ)σ is an element

of Det((A∗p)). Hence yp,χσ ∈ O∗Fσ(pF )
and since pap,χσ = Z(χσ)yp,χσ one has

yp,χσ ∈ F ∩ O∗Fσ(pF )
. It follows that

νσ(pF )(p
ap,χσ ) = νσ(pF )(σ(Z(χ))) and so eap,χσ = νpF (Z(χ))

where νpF denotes the normalized pF -adic exponential valuation (i.e. with
image Z) in FpF and e is the ramification index of p in F . The above equalities
show that for any σ from Tf,p, the set of representatives of the decomposition
group of p in F , and for any nontrivial character χ one has ap,χσ = ap,χ. This
is also true for any σ from the decomposition group for p, as a consequence
of the Ω-invariance of (Fp(χσ))σ and Remark 2.1. Thus for any p, χ 6= 1Γ
and σ ∈ Ω one has ap,χσ = ap,χ, and our theorem follows.

Now we apply the above theorem to give examples of fields having Min-
kowski units. This will be done in two corollaries.

Corollary 6.2. Let N/Q be a real, tame and cyclic extension of prime
degree l > 2 and let l be regular. Then N has a Minkowski unit in the
following two cases:
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(i) hN = 1,
(ii) any prime p dividing hN is a primitive root modulo l.
Proof. (i) In the case hN = 1, the homomorphism F defined in the proof

of Theorem 6.1 has all values equal to 1, so F represents the trivial class.
(ii) If p is a primitive root of unity modulo l, then the decomposition

group of p is the whole group Gal(Q(ζl)/Q) ∼= Gal(Ql(ζl)/Ql) and so all
nontrivial characters of Γ are conjugate over Qp. Consequently, Φχ,p = Φµ,p
for all χ, µ ∈ Γ̂ \ {1Γ } and for p |hN . Thus the condition of Theorem 6.1 is
satisfied and the existence of a Minkowski unit follows.

The next corollary provides concrete examples of fields with Minkowski
units. As is well known, all real Abelian fields of prime degree over Q less
than 23 have Minkowski units (see [3]); below we shall give fields of degree
l ≥ 23. Let Q(ζq)+ denote the maximal real subfield of Q(ζq) and h+

q its
class number.

Corollary 6.3. Let l and q be odd prime numbers such that l is regular
and q ≡ 1 (mod l). Let N be the unique real subfield of Q(ζq) such that
(N : Q) = l. Then N has a Minkowski unit for the following pairs (l, q):

(i) (23, 47), (29, 59) (i.e. N = Q(ζ47)+, Q(ζ59)+). In this case hN = 1
(see tables in [20]).

(ii) (41, 83), (53, 107) (i.e. N = Q(ζ83)+, Q(ζ107)+), (23, 139) (tables
in [20]) on the assumption that the generalized Riemann hypothesis
holds.

(iii) l | q − 1 and q is a prime less than 10 000 from Schoof’s table ([18])
such that h+

q = 1. There are 564 such pairs.
(iv) l | q − 1 and q is a prime less than 10 000 from Schoof’s table ([18])

such that h+
q > 1 and all prime factors of h+

q (possible factors of
hN ) are primitive roots of unity modulo l. There are 47 such pairs.

The correctness of the examples in (iii), which is highly probable, depends
on whether the entries in Schoof’s table are equal to h+

q for suitable q’s (see
the discussion in [20, pp. 420–421]).

Proof. All the above fields satisfy one of the conditions of Corollary 6.2.
In case N is a proper subfield of Q(ζq)+ we use the relation hN |h+

q (see
Theorem 22 in [20]). Then if h+

q > 1 we consider prime factors of h+
q as

possible factors of hN and check whether they are primitive roots of unity
modulo l.
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