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Cubic points on cubic curves and
the Brauer–Manin obstruction on K3 surfaces

by

Ronald van Luijk (Leiden)

1. Introduction. If we want to prove that a variety X defined over the
field of rational numbers Q does not have any rational points, it suffices to
show that X has no real points or no p-adic points for some prime number p.
For some varieties the converse holds as well. Conics, for instance, have a
rational point if and only if they have a real point and a p-adic point for
every prime p, i.e., if and only if they have a point locally everywhere. This
is phrased by saying that conics satisfy the Hasse principle. Selmer’s famous
example of the plane curve given by

(1) 3x3 + 4y3 + 5z3 = 0

shows that cubic curves in general do not satisfy the Hasse principle, as this
smooth curve has points everywhere locally, but it has no points over Q
(see [15]).

Some varieties with points locally everywhere have no global points be-
cause of the so-called Brauer–Manin obstruction to the Hasse principle. This
obstruction is based on the Brauer group of the variety. We refer to [20,
Section 5.2] for a good description of this obstruction. The main idea is the
following. For a smooth, projective, geometrically integral variety X over
a number field k, the set X(Ak) of adelic points on X equals the product∏
vX(kv), where v runs over all places of k, and kv denotes the completion

of k at v. This product is nonempty if and only if X has points locally every-
where. Based on class field theory, one associates to each element g in the
Brauer group BrX of X a certain subset X(Ak)g of X(Ak) that contains the
set X(k) of k-points on X, embedded diagonally in X(Ak). We say there is a
Brauer–Manin obstruction to the Hasse principle if X(Ak) 6= ∅, but for some
subset B ⊂ Br(X) we have

⋂
g∈BX(Ak)g = ∅, and thus X(k) = ∅. Often
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one focuses on the set B = Br1X of so-called algebraic elements, defined as
the kernel of the map BrX → BrXk, where k denotes an algebraic closure
of k. These algebraic elements are relatively easy to get our hands on.

For certain classes of varieties the Brauer–Manin obstruction is the only
obstruction to the Hasse principle. For a cubic curve C with finite Tate–
Shafarevich group, for instance, it is indeed true that if C has points locally
everywhere and there is no Brauer–Manin obstruction, then C contains
a rational point (see [10], or [20, Thm. 6.2.3]). It is conjectured that the
Brauer–Manin obstruction is the only obstruction to the Hasse principle on
all curves of genus at least 2 and all smooth, proper, geometrically integral,
rationally connected varieties over number fields (see [14] and [5]).

For K3 surfaces, however, it is not at all clear whether the Brauer–Manin
obstruction is the only one. Even if in general this is not the case, it could
still be true for special K3 surfaces, such as singular K3 surfaces, which are
those with maximal Picard number 20. A priori, it could be true that the
algebraic part already gives an obstruction, if there is any.

In this paper, a k-cubic point is a point defined over some Galois (Z/3Z)-
extension of k. Our main theorem states the following.

Theorem 1.1. Let k be a number field. Suppose we have a smooth curve
C ⊂ P2

k given by ax3 + by3 + cz3 = 0 such that

(i) the product abc is not a cube in k,
(ii) the curve C has points locally everywhere,
(iii) the curve C has no k-cubic points.

Then there exists a quotient of C ×C, defined over k, such that its minimal
desingularization Y is a singular K3 surface satisfying Y (Ak)Br1 Y 6= ∅ and
Y (k) = ∅.

In other words, if a certain cubic curve exists, then the Brauer–Manin
obstruction coming from the algebraic part of the Brauer group is not the
only obstruction to the Hasse principle for singular K3 surfaces, let alone for
K3 surfaces in general. The existence of any plane cubic curve satisfying the
third condition in Theorem 1.1 is unknown and an interesting object of study
by itself. The curve given by equation (1) satisfies the first two conditions
of Theorem 1.1. Several people have wondered whether it satisfies the third
condition as well. It turns out that this is not the case, as the intersection
points of that curve with the lines

711x+ 172y + 785z = 0,
657x+ 124y + 815z = 0,

4329x+ 3988y + 2495z = 0

are all Q-cubic points.
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In the following section we will construct the quotient X of the surface
C×C associated to a general plane cubic C that will be used in the proof of
Theorem 1.1. We give explicit equations in the case of diagonal cubics and
cubics in Weierstrass form and discuss some of the arithmetic properties
of X and its desingularization Y . In Section 3 we will go deeper into the
geometry in the case that k has characteristic 0 and investigate the Néron–
Severi group of Y . In Section 4 we will prove the main theorem. The fact that
there is no Brauer–Manin obstruction will follow from the fact that Br1 Y
is isomorphic to Br k, which never yields an obstruction. Some related open
problems are stated in the last section.

2. A K3 surface associated to a plane cubic curve. Let k be any
field of characteristic not equal to 2 or 3, and C any smooth projective cubic
curve in P2

k. We extend the regular notion of collinearity by saying that any
three points P , Q, and R on C are collinear if the divisor (P ) + (Q) + (R) is
linearly equivalent with a line section of C. By Bézout’s theorem we know
that for any two points P and Q on C there is a unique third point R on C
such that P , Q, and R are collinear. If P equals Q, then R is the “third”
intersection point of C with the tangent to C at P . This yields a natural
isomorphism

(2) C × C ∼= {(P,Q,R) ∈ C3 : P , Q, and R are collinear}

of varieties. Let ρ be the automorphism of C × C that sends (P,Q) to
(Q,R), where P,Q, and R are collinear. Under the identification of (2) this
corresponds to sending (P,Q,R) to (Q,R, P ). Clearly ρ has order 3. We let
XC denote the quotient (C × C)/ρ, and write X = XC if C is understood.
Let π : C×C → X denote the quotient map. The surface XC is the quotient
mentioned in Theorem 1.1. It is also used in [6], where the number of rational
points on XC is related to random matrix theory.

The fixed points of ρ are exactly the nine points (P, P ) where P is a flex
of C. Let P be such a flex and let r and s be two copies of a uniformizer
at P . Then modulo the square of the maximal ideal at (P, P ) in C ×C, the
automorphism ρ is given by (r, s) 7→ (s, t) with t = −r− s (cf. [19, p. 115]).
The subring of k[r, s] of invariants under the automorphism (r, s) 7→ (s, t)
is generated as k-algebra by a = −rs − rt − st = r2 + rs + s2, b = 3rst =
−3rs(r+s), and c = r2s+s2t+t2r = r3+3r2s−s3. They satisfy the equation
a3 = b2+bc+c2, which locally describes the corresponding singularity on XC

up to higher degree terms, which do not change the type of singularity. We
conclude that XC has nine singular points, all double points. Each is resolved
after one blow-up, with two smooth (−2)-curves above it, intersecting each
other in one point. Let YC denote the blow-up of XC in its singular points.
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Again, we write Y = YC if C is understood. As the singular locus of X is
defined over k, so is Y .

Definition 2.1. A K3 surface over k is a smooth, projective, geomet-
rically integral surface Z over k with trivial canonical sheaf, for which
H1(Z,OZ) = 0.

Proposition 2.2. The surface Y is a smooth K3 surface.

Proof. We have seen that ρ only has isolated fixed points. The corre-
sponding singularities are A2-singularities, which are rational double points.
From the symmetry of the right-hand side of (2), it follows that ρ fixes the
unique (up to scaling) nonvanishing regular differential of C × C. By [9,
Thm. 2.4], these conditions imply that a relatively minimal model of X is
a K3 surface. By [9, Lemma 2.7], this model is isomorphic to the minimal
resolution Y of X.

We now discuss some of the arithmetic properties of X and Y .

Lemma 2.3. The surface X has a k-rational point if and only if Y does.

Proof. Any k-rational point of Y maps to a k-rational point of X. Con-
versely, suppose X has a k-rational point P . If P is not a singular point,
then the unique point of Y above P is also k-rational. If P is a singular
point, then the unique intersection of the two irreducible components in the
exceptional divisor above P is a k-rational point on Y .

Corollary 2.4. If k is a number field and C has points locally every-
where, then so does Y .

Proof. Let v be any place of k, and kv the corresponding completion. By
assumption, C contains a kv-rational point P . Then π((P, P )) is a kv-rational
point on X. Applying Lemma 2.3 to kv, we find that Y has a kv-rational
point as well, so Y has points locally everywhere.

Lemma 2.5. The k-rational points of X correspond to triples (P,Q,R),
up to cyclic permutation, of collinear points on C that are defined over some
Galois (Z/3Z)-extension l of k and permuted by Gal(l/k).

Proof. Suppose l is a Galois (Z/3Z)-extension of k and (P,Q,R) a triple
of l-rational collinear points, permuted by Gal(l/k). Then all permutations of
(P,Q,R) induced by Gal(l/k) are even, so the orbit {(P,Q), (Q,R), (R,P )}
of ρ is Galois invariant and yields a k-rational point of X. Conversely, any
k-rational point of X corresponds to a Galois invariant orbit of ρ, say
{(P,Q), (Q,R), (R,P )}. This implies that Galois permutes {P,Q,R}, but
only by even permutations, so P , Q, and R are defined over k or over some
Galois (Z/3Z)-extension of k. They are collinear because (P,Q) and (Q,R)
are in the same orbit of ρ.
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Remark 2.6. Note that the words “permuted by Gal(l/k)” mean that
the points P ,Q, andR are either all defined over k, or they are all conjugates.

Lemma 2.7. The surface Y has a k-rational point if and only if there
exists a Galois (Z/3Z)-extension l of k such that C contains three collinear
points defined over l and permuted by Gal(l/k).

Proof. This follows immediately from Lemmas 2.3 and 2.5.

Corollary 2.8. If C has no k-cubic points, then Y has no k-rational
points.

Proof. This follows immediately from Lemma 2.7.

Let J = JacC denote the Jacobian of C. The following proposition is
not needed for the proof of the main theorem, but it is an interesting fact,
conveyed and proved to the author by Bjorn Poonen.

Proposition 2.9. Suppose that J(k) is finite and that 3 does not divide
the order of J(k). Then the converse of Corollary 2.8 holds as well.

Proof. Suppose that C contains a k-cubic point P . If P is k-rational,
then (P, P ) ∈ C × C maps to a k-rational point on X, so Y has a k-
rational point by Lemma 2.3. If P is not k-rational then it is defined over a
(Z/3Z)-extension l of k and has two conjugates Q and R. Let L denote a line
section of C. Then we have (P )+(Q)+(R)−L ∈ J(k), while by assumption
J(k) = 3J(k), so there is an element D ∈ J(k) such that (P ) + (Q) + (R)
− L ∼ 3D. By Riemann–Roch there exist unique points P ′, Q′, R′ ∈ C(l)
that are linearly equivalent to P − D, Q − D, R − D respectively. Then
(P ′) + (Q′) + (R′) ∼ L, so P ′, Q′, and R′ are collinear. Since Gal(l/k)
fixes D, it permutes P ′, Q′, and R′. By Lemma 2.7 the surface Y has a
k-rational point.

Remark 2.10. The Jacobian of the Selmer curve C given by (1) has
trivial Mordell–Weil group over Q. Since C does not have any Q-rational
points, by the proofs of Lemmas 2.3, 2.5, and Proposition 2.9 this implies
that the Galois conjugates of any Q-cubic point on C are collinear, so it
is no surprise that the Q-cubic points mentioned in the introduction come
from intersecting C with a line.

We now show how to find explicit equations for XC . Let P̆2 denote the
dual of P2 and let τ : C × C → P̆2 be the map that sends (P,Q) to the
line through P and Q, and (P, P ) to the tangent to C at P . By Bézout’s
theorem, for a general line L in P2 we have #(L ∩ C) = 3, so there are six
ordered pairs (P,Q) ∈ C × C that map under τ to L. We conclude that τ
is generically 6-to-1. The map τ factors through π, inducing a 2-to-1 map
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ϕ : X → P̆2 that is ramified over the dual C̆ of C:

C × C π //

τ

33X
ϕ // P̆2

The dual C̆ has nine cusps, corresponding to the nine flexes of C. As
a double cover of P2 ramified over a curve with a cusp yields the same
singularity as the A2-singularities of XC , we conclude that XC is not only
birational, but in fact isomorphic to a double cover of P2, ramified over a
sextic with nine cusps.

Remark 2.11. Suppose that an affine piece of C is given by f(x, y) = 0.
Then the function field k(C × C) of C × C is the quotient field of the ring

k[x1, y1, x2, y2]/(f(x1, y1), f(x2, y2)).

The line L through the generic points (x1, y1) and (x2, y2) on C is given by

(3) L : y =
y2 − y1

x2 − x1
x+

x2y1 − x1y2

x2 − x1
.

Let the coordinates of P̆2 be given by r, s, t, where the point [r : s : t]
corresponds to the line in P2 given by rx+sy+tz = 0, or in affine coordinates
y = −

(
r
s

)
x− t/s. Comparing this to equation (3), we find that the inclusion

of function fields

τ∗ : k(P̆2) = k

(
r

s
,
t

s

)
→ k(C × C)

is given by
r

s
= − y2 − y1

x2 − x1
and

t

s
= −x2y1 − x1y2

x2 − x1
.

Let x3 ∈ k(C × C) be the x-coordinate of the third intersection point of
the line L and C. Then the element d = (x1 − x2)(x2 − x3)(x3 − x1) is
invariant under ρ, so it is contained in the function field k(X) of X, em-
bedded in k(C × C) by π∗. The element d is not contained in k(P̆2), as it
is only invariant under even permutations of the xi. Hence d generates the
quadratic extension k(X)/k(P̆2). We may therefore identify k(X) with the
field k(r/s, t/s, d) ⊂ k(C × C).

Example 2.12. After applying a linear transformation defined over some
finite extension of k, we may assume that one of the nine inflection points
of C is equal to [0 : 1 : 0] and that the tangent at that point is the line
at infinity given by z = 0. Assume this can be done over k itself. Then the
affine part given by z = 1 is given by a Weierstrass equation and as the
characteristic of k is not equal to 2 or 3, we can arrange for C to be given by

y2 = x3 +Ax+B
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with A,B ∈ k. With the point O = [0 : 1 : 0] as origin, C obtains the
structure of an elliptic curve. Note that the inflection points of C are exactly
the 3-torsion points on the elliptic curve.

To find an explicit model for XC , we find a relation among r/s, t/s,
and d. The x-coordinates x1, x2, x3 of the intersection points of C with the
generic line L given by rx+ sy + t = 0 are the solutions to the equation

−
(
−r
s
x− t

s

)2

+ x3 +Ax+B = 0.

The square of d = (x1− x2)(x2− x3)(x3− x1) is exactly the discriminant of
this polynomial, which is easy to compute. We find that XC can be given
in weighted projective space P(1, 1, 1, 3) with coordinates r, s, t, u by

u2 = 4Br6 − 4Ar5t+A2r4s2 + 36Br3s2t− 4r3t3 − 18ABr2s4

− 30Ar2s2t2 + 24A2rs4t− (4A3 + 27B2)s6 + 54Bs4t2 − 27s2t4,

with u = s3d. This is exactly the same as in [6], with b = −r/s and a = −t/s
for their variables a and b. The map ϕ : X → P̆2 ramifies where the right-
hand side of the equation vanishes, which describes the dual C̆ of C. We
can describe the cusps of C̆ very explicitly. The cusp corresponding to O is
[0 : 0 : 1]. The slopes dy/dx at the inflection points of C that are not equal
to O are the roots of the polynomial

F = u8 + 18Au4 + 108Bu2 − 27A2.

If α is a root of F , then the corresponding inflection point is (x, y) =(
1
3α

2, α
4+3A
6α

)
. The corresponding cusp on C̆ is [r : s : t] = [6α2 : −6α :

3A − α4]. Note that the splitting field of F is exactly k(C[3]), the field of
definition of all 3-torsion.

Example 2.13. Suppose C is given by

ax3 + by3 + c = 0.

Then as in Example 2.12 we find that in this case XC ⊂ P(1, 1, 1, 3) can be
given by

3u2 = 2abc(cr3s3 + br3t3 + as3t3)− b2c2r6 − a2c2s6 − a2b2t6,

with u = 1
9a

2s3d = 1
9a

2s3(x1−x2)(x2−x3)(x3−x1). Each of the coordinate
axes x = 0 and y = 0 and the line z = 0 at infinity intersect the curve C at
three flexes. Each of the corresponding nine cusps on C̆ lies on one of the
coordinate axes given by rst = 0 in P̆2.

In the next section we will investigate the geometry of Y and find its
Picard group PicY , at least in the general case that C does not admit
complex multiplication. The group PicY is generated by irreducible curves
on Y , of which we will now describe some explicitly.
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Let Π denote the set of the nine cusps of C̆. We will freely identify the
elements of Π with the flexes on C that they correspond to. A priori one
would not expect there to be any conics going through six points of Π, but
it turns out there are 12. They are described by Proposition 2.14 below. Fix
a point O ∈ Π to give C the structure of an elliptic curve. Then Π is the
group C[3] of 3-torsion and thus Π obtains the structure of an F3-vector
space in which a line is any translate of any 1-dimensional linear subspace.
Two different translates of the same subspace are called parallel. The three
points on such lines are actually collinear as points on C. The set of these
12 lines in Π is thus in bijection with the set of triples of collinear points
in Π, and therefore independent of the choice of O.

Proposition 2.14. The six points on any two parallel lines in Π lie on
a conic whose pull back to X consists of two components.

Proof. It suffices to prove this in the setting of Example 2.12. Let l and
m be two parallel lines in Π. After translation by an element of Π = C[3]
we may assume that O is not contained in l∪m. Let P be a point other than
O on the linear subspace that l and m are translates of. By Example 2.12,
the point P corresponds to a root α of F , which factors as F = (u2−α2)fα.
The point −P corresponds to −α and the points in l∪m correspond to the
roots of fα. These points all lie on the conic given by

(4) 27t2 − 6α2rt+ (α4 + 18A)r2 + (α6 + 21Aα2 + 81B)s2 = 0.

From Example 2.12 we find that the pull back of this conic to X is given by
(4) and

α2u2 = (Ar3 + 9Brs2 + 3rt2 − 6As2t)2,

which indeed contains two components.

Remark 2.15. Consider the situation of the proof of Proposition 2.14.
Over the field k(α,

√
−3), the polynomial fα splits as the product of two

cubics such that the points of l correspond to the roots of one of the two
cubics and the points of m correspond to the roots of the other.

Remark 2.16. The fact that the conics of Proposition 2.14 have a re-
ducible pull back to X also follows without explicit equations. Set H = τ∗L
for any line L ⊂ P̆2 that does not go through any of the P ∈ Π. For each
P ∈ Π, let ΘP ∈ Div Y be the sum of the two (−2)-curves above the sin-
gular point on X corresponding to P . As these curves intersect each other
once, we find Θ2

P = −2, while we also have H · ΘP = 0 and H2 = 2. Any
curve Γ ⊂ P̆2 of degree m that goes through P ∈ Π with multiplicity aP
pulls back to a curve on X whose strict transformation to Y is linearly
equivalent to

D = mH −
∑
P∈Π

aPΘP .
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We have D2 = 2m2 − 2
∑
a2
P . For a conic Γ through six of the points

of Π we get D2 = −4. Let pa(D) be the arithmetic genus of D. As the
canonical divisor KY of Y is trivial, we find from the adjunction formula
2pa(D)−2 = D ·(D+KY ) (see [7, Prop. V.1.5]) that pa(D) = −1 is negative,
which implies that D is reducible.

We can use the same idea to find (−2)-curves on Y . For instance, the
strict transformation on Y of any pull back to X of a line through two points
of Π, or of a conic through five points of Π will be such a curve.

3. The geometry of the surface. In this section we investigate some
geometric properties of X and Y . As our main theorem only concerns char-
acteristic 0, we will for convenience assume that the ground field k equals C
throughout this section. Several of the results, however, also hold in posi-
tive characteristic, which we will point out at times. We start with a quick
review of lattices.

A lattice is a free Z-module L of finite rank, endowed with a symmetric,
bilinear, nondegenerate map L × L → Q, (x, y) 7→ x · y, called the pairing
of the lattice. An integral lattice is a lattice with a Z-valued pairing. A lat-
tice L is called even if x · x ∈ 2Z for every x ∈ L. Every even lattice is
integral. If L is a lattice and m a rational number, then L(m) is the lattice
obtained from L by scaling its pairing by a factor m. A sublattice of a lat-
tice Λ is a submodule L of Λ such that the induced bilinear pairing on L is
nondegenerate. The orthogonal complement in Λ of a sublattice L of Λ is

L⊥ = {λ ∈ Λ : λ · x = 0 for all x ∈ L}.

A sublattice L of Λ is primitive if Λ/L is torsion-free. The minimal primitive
sublattice of Λ containing a given sublattice L is (L⊥)⊥ = (L⊗Q)∩Λ. The
Gram matrix of a lattice L with respect to a given basis x = (x1, . . . , xn) is
Ix = (〈xi, xj〉)i,j . The discriminant of L is defined by discL = det Ix for any
basis x of L. A unimodular lattice is an integral lattice with discriminant ±1.
For any sublattice L of finite index in Λ we have discL = [Λ : L]2 · discΛ.
The dual lattice of a lattice L is

Ľ = {x ∈ L⊗Q : x · λ ∈ Z for all λ ∈ L}.

If L is integral, then L is contained in Ľ with finite index [Ľ : L] = |discL|
and the quotient AL = Ľ/L is called the dual-quotient of L. If L is a primitive
sublattice of a unimodular lattice Λ, then the dual-quotients AL and AL⊥
are isomorphic as groups, and we have |discL| = |discL⊥|. For more details
on these dual-quotients and the discriminant form defined on them, see [12].

If Z is a smooth projective irreducible surface, let Pic0 Z ⊂ PicZ de-
note the group of divisor classes that are algebraically equivalent to 0. The
quotient NS(Z) = PicZ/Pic0 Z is called the Néron–Severi group of Z. The
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exponential map C → C∗, z 7→ exp(2πiz), induces a short exact sequence
0 → Z → OZ → O∗Z → 1 of sheaves on the complex analytic space Zh
associated to Z. The induced long exact sequence includes H1(Zh,OZ) →
H1(Zh,O∗Z) → H2(Zh,Z). There is an isomorphism H1(Zh,O∗Z) ∼= PicZ
and the image of the first map H1(Zh,OZ)→ H1(Zh,O∗Z) is exactly Pic0 Z.
We conclude that there is an embedding NS(Z) ↪→ H2(Zh,Z). The in-
tersection pairing induces a pairing on NS(Z), which coincides with the
cup-product on H2(Zh,Z). By abuse of notation we will write H2(Z,Z) =
H2(Zh,Z). See [7, App. B.5] for statements, and [17] and [2, §IV.2] for more
details.

Proposition 3.1. If Z is a K3 surface, then Pic0 Z = 0 and we have
an isomorphism PicZ ∼= NS(Z).

Proof. By definition we have H1(Z,OZ) = 0, so from the above we find
Pic0 Z = 0. The isomorphism follows immediately.

Note that by fixing a point on C, the surface C×C obtains the structure
of an abelian surface.

Proposition 3.2. Let Z be an abelian surface (resp. K3 surface). Then
H2(Z,Z) is an even lattice with discriminant −1 of rank 6 (resp. 22) in
which NS(Z) embeds as a primitive sublattice.

Proof. The lattice H2(Z,Z) is even by [2, Lemma VIII.3.1]. If Z is an
abelian surface, then this lattice is unimodular by [2, §V.3], and indefi-
nite by the Hodge index theorem (see [7, Thm. V.1.9]. From the classifi-
cation of even indefinite unimodular lattices we find that H2(Z,Z) is iso-
morphic to U3, where U is the hyperbolic lattice with discriminant −1 (see
[16, Thm. V.5]). A similar argument holds for K3 surfaces (see [2, Prop.
VIII.3.3 (VIII.3.2 in first edition)]). This implies that in both cases the
map H2(Z,Z) → H2(Z,C) is injective, so NS(Z) is the image of PicZ
in H2(Z,C). By [2, Thm. IV.2.13 (IV.2.12 in first edition)], this image is
the intersection of H2(X,Z) with the C-vector space H1,1(X,ΩX) inside
H2(X,C). This implies the last part of the claim.

Remark 3.3. From Propositions 3.1 and 3.2 it follows that linear, al-
gebraic, and numerical equivalence all coincide on a complex K3 surface. In
positive characteristic this is the case as well (see [4, Thm. 5]).

Lemma 3.4. Let Z be an abelian variety or a K3 surface. Let D be a
curve on Z with arithmetic genus pa(D). Then D2 = 2pa(D)− 2.

Proof. The canonical divisor KZ is trivial for both abelian varieties and
K3 surfaces. The adjunction formula therefore implies that 2pa(D) − 2 =
D · (D +KZ) = D2 (see [7, Prop. V.1.5]).
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Lemma 3.5. Take any point R ∈ C and define the divisors

D1 = {(P,Q) : P,Q,R collinear}, D2 = C × {R}, D3 = {R} × C
on C×C. The automorphism ρ acts on theDi as the permutation (D1 D2 D3).
The images in NS(C ×C) of the Di are independent of the choice of R. We
have Di · Dj = 1 if i 6= j, and D2

i = 0. The elements D1, D2, D3 are
numerically independent.

Proof. The first statement is obvious. All fibers of the projection of C×C
onto the second copy of C are algebraically equivalent to each other, so the
image of D2 in NS(C × C) is independent of R. As D1 and D3 are in the
orbit of D2 under ρ, their images are independent of R as well. The divisors
D2 and D3 intersect each other transversally in one point, so D2 ·D3 = 1.
As D2 is isomorphic to C, the genus pa(D2) of D2 equals 1, so Lemma 3.4
gives D2

2 = 0. The other intersection numbers follow by applying ρ. The last
statement follows immediately.

For any R ∈ C the three divisors Di of Lemma 3.5 all map birationally
to the same curve on XC , namely the pull back ϕ∗(R̆) of the dual R̆ of R,
i.e., the line in P̆2 consisting of all lines in P2 going through R.

For each P ∈ Π, let LP ⊂ NS(Y ) be the lattice generated by the two
(−2)-curves above the singularity on X corresponding to P . Then the lattice
L generated by all these (−2)-curves is isomorphic to the orthogonal direct
sum

⊕
P∈Π LP . For each P ∈ Π, the dual-quotient ALP is a 1-dimensional

F3-vector space. Let Λ = (L⊥)⊥ be the minimal primitive sublattice of
NS(Y ) that contains L. Then Λ is contained in the dual Ľ of L, so Λ/L is
a subspace of the dual-quotient AL ∼=

⊕
P∈Π ALP .

Lemma 3.6. We can identify each ALP with F3 and give Π the structure
of an F3-vector space in such a way that

Λ/L ⊂
⊕
P∈Π

ALP
∼= FΠ3

consists of all affine linear functions Π → F3.

Proof. See [3, Thm. 2.5]. The subspace Λ/L corresponds to L3 as defined
on page 269 of [3].

Corollary 3.7. We have [Λ : L] = 27 and discΛ = 27.

Proof. The first equality follows from Lemma 3.6 and the fact that there
are 27 affine linear functions F2

3 → F3. The second equality then follows from
the equation [Λ : L]2 · discΛ = discL = 39.

Remark 3.8. Fix a point O ∈ Π. Then C obtains the structure of an
elliptic curve and Π corresponds to the group C[3] of 3-torsion elements,
which naturally has the structure of an F3-vector space. The 24 nonconstant
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affine linear functions Π → F3 correspond to the irreducible components of
the 12 pull backs of the conics of Proposition 2.14.

Let TC×C and TY denote the orthogonal complements of NS(C×C) and
NS(Y ) in H2(C × C,Z) and H2(Y,Z) respectively. The main result of this
section is the following.

Proposition 3.9. There is a natural isomorphism TY ∼= TC×C(3) of
lattices.

Proof. For convenience write Hρ
C×C = H2(C ×C,Z)〈ρ〉. From Katsura’s

table in [9, p. 17], we find rkHρ
C×C = 4 and the remaining eigenvalues of ρ∗

acting on H2(C×C,Z) are ζ and ζ2, where ζ is a primitive cube root of unity.
Let Γ ′ ⊂ NS(C × C) denote the sublattice generated by the Di of Proposi-
tion 3.5, and set D = D1 + D2 + D3. By Proposition 3.5, D is fixed by ρ.
As ρ∗ acts unitarily on H2(C×C,C), its eigenspaces corresponding to differ-
ent eigenvalues are orthogonal. We conclude from Proposition 3.5 that the
orthogonal complement Γ of 〈D〉 inside Γ ′ corresponds to the eigenvalues ζ
and ζ2, which in turn implies Hρ

C×C = Γ⊥ inside the unimodular lattice
H2(C×C,Z), because Hρ

C×C corresponds to the eigenvalue 1. The lattice Γ
is generated by D1−D2 and D2−D3 and has discriminant 3, so it is primitive
and we also have |discHρ

C×C | = |discΓ | = 3. Set N = Γ ′⊥. Taking orthog-
onal complements in Γ ⊂ Γ ′ ⊂ NS(C × C) we find TC×C ⊂ N ⊂ Hρ

C×C .
From the fact that (Γ ′/Γ ) ⊗ Q is generated by D, it follows that N is the
orthogonal complement of D inside Hρ

C×C .
Let HX denote the orthogonal complement of L (or Λ) in the unimodular

lattice H2(Y,Z), so that by Corollary 3.7 we have |discHX | = |discΛ| = 27.
Recall that π denotes the quotient map C × C → XC . There are maps
π∗ : HX → Hρ

C×C and π∗ : Hρ
C×C → HX such that π∗ and π∗ send tran-

scendental cycles to transcendental cycles and

(i) π∗(x) · π∗(y) = 3x · y, ∀x, y ∈ HX ,

(ii) π∗(x) · π∗(y) = 3x · y, ∀x, y ∈ Hρ
C×C ,

(iii) π∗(π∗(x)) = 3x, ∀x ∈ HX ,

(iv) π∗(π∗(x)) = 3x, ∀x ∈ Hρ
C×C ;

see [8, §1] and [3, p. 273]. From (iv) and the fact that H2(C×C,Z) is torsion-
free, we find that π∗ is injective. Therefore, by (ii) we have an isomorphism
π∗(H

ρ
C×C) ∼= Hρ

C×C(3) and

|discπ∗(H
ρ
C×C)| = |discHρ

C×C(3)| = 3rkHρ
C×C · |discHρ

C×C | = 35.

From
[HX : π∗(H

ρ
C×C)]2 · |discHX | = |discπ∗(H

ρ
C×C)|,

we then find [HX : π∗(H
ρ
C×C)] = 3.
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Recall that π∗(D1) = π∗(D2) = π∗(D3) = H, where H denotes the
class of the strict transformation of the pull back of a line in P̆2 to X.
Therefore, π∗(D) = 3H. From 9 - 6 = D2 we conclude D 6∈ 3Hρ

C×C , and thus
3H = π∗(D) 6∈ 3π∗(H

ρ
C×C), which implies H ∈ HX\π∗(Hρ

C×C). As the index
[HX : π∗(H

ρ
C×C)] = 3 is prime, it follows that HX/π∗(H

ρ
C×C) is generated

by H, so the orthogonal complement π∗(N) of 3H = π∗(D) in π∗(H
ρ
C×C) is

primitive in HX . From the primitive inclusion π∗(TC×C) ⊂ π∗(N) it follows
that also π∗(TC×C) is primitive in HX , and thus in H2(Y,Z).

From L ⊂ NS(Y ) we find TY ⊂ HX . From (i)–(iv) and the fact that
π∗ and π∗ send transcendental elements to transcendental elements, we
find 3TY ⊂ π∗(TC×C) ⊂ TY . This implies rkTY = rkTC×C and together
with the fact that π∗(TC×C) is primitive in H2(Y,Z), it follows that TY =
π∗(TC×C) ∼= TC×C(3), where the last isomorphism follows from π∗(H

ρ
C×C) ∼=

Hρ
C×C(3).

Remark 3.10. Proposition 3.9 is mentioned without proof in [13], where
it is claimed that the proof is exactly the same as in the classical Kummer
case, where Y is the desingularization of the quotient X of an abelian surface
A by an involution ι. Indeed there are many similarities between the proof of
the classical case (see for instance [11, Prop. 4.3]) and the one just presented,
but there are some essential differences. A first difference is that in the
classical case ι acts trivially on H2(A,Z). There is, however, a much more
significant difference. In the classical case the lattice π∗H2(A,Z)〈ι〉 is easily
proved to be primitive in the orthogonal complement HX of the lattice L
generated by the 16 exceptional divisors on Y . This immediately implies that
π∗TA is primitive in H2(Y,Z). As in our case the index [HX : π∗H

ρ
C×C ] = 3

is not trivial, certainly the classical proof does not directly apply.

As before, let JacC denote the Jacobian of C and End Jac(C) its endo-
morphism ring, which is isomorphic to Z or an order in either an imaginary
quadratic field or a quaternion algebra.

Proposition 3.11. We have rk NS(C × C) = 2 + rk End JacC.

Proof. Note that for a curve D the group Pic0D is the kernel of the
degree map PicD → Z, so that we have an isomorphism NS(D) ∼= Z. The
statement then follows from [18, App.] or [1, Thm. 3.11].

Proposition 3.12. With r = rk End JacC we have

rk NS(Y ) = 18 + r and disc NS(Y ) = 34−r disc NS(C × C).

Proof. By Propositions 3.2 and 3.11 we get rkTC×C = 6−rk NS(C×C) =
4− r. From Propositions 3.2 and 3.9 we then conclude

rk NS(Y ) = 22− rkTY = 22− rkTC×C = 18 + r.
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From Proposition 3.9 we also get

discTY = discTC×C(3) = 3rkTC×C discTC×C = 34−r discTC×C .

From Proposition 3.2 we then find

disc NS(Y ) = −discTY = −34−r discTC×C = 34−r disc NS(C × C).

Remark 3.13. The conclusion rk NS(Y ) = 18+rk End JacC of Proposi-
tion 3.12 is much weaker than the statement of Proposition 3.9 as it suffices
to work with coefficients in Q or C instead of Z in the cohomology. By
working with étale cohomology instead, we can deduce the same equation
in positive characteristic. For most of the details, see [9], which only gives
rk NS(Y ) ≥ 19 ([9, p. 17]).

Corollary 3.14. If C does not admit complex multiplication, then the
Néron–Severi lattice NS(YC) has rank 19, discriminant 54, and is generated
by the pull back H of a line in P̆2, the irreducible components above the
P ∈ Π, and the irreducible components of the pull backs of the conics of
Proposition 2.14.

Proof. If C does not admit complex multiplication, then End JacC has
rank r = 1 by definition, so by Proposition 3.12 we have rk NS(YC) = 19 and
27 | disc NS(Y ). The lattice Λ generated by the irreducible components above
the P ∈ Π and the conics of Proposition 2.14 has rank 18 and discriminant
27 by Corollary 3.7 and Remark 3.8. The class H is orthogonal to Λ and
satisfies H2 = 2, so 〈H〉 ⊕ Λ has discriminant 27 · 2 = 54 and rank 19, and
thus finite index in NS(Y ). From

disc NS(Y ) · [NS(Y ) : 〈H〉 ⊕ Λ]2 = disc〈H〉 ⊕ Λ = 54,

and the fact that 27 |disc NS(Y ), we find that the index equals 1, so NS(Y ) =
〈H〉 ⊕ Λ.

4. Diagonal cubics and the proof of the main theorem. Let C ⊂
P2 be a diagonal cubic, defined over a number field k, given by ax3 + by3 +
cz3 = 0. Let ζ ∈ k denote a primitive cube root of unity. Then J = JacC
is an elliptic curve of j-invariant 0, with endomorphism ring End J ∼= Z[ζ].
Consider the automorphism ζx : [x : y : z] 7→ [ζx : y : z] of C. The line
through a point P = [x0 : y0 : z0] and ζxP is given by z0y − y0z = 0 and
also goes through ζ2

xP , so the map τ : C ×C → P̆2 sends both (P, ζxP ) and
(P, ζ2

xP ) to [0 : z0 : −y0]. It follows that both curves

D4 = {(P, ζxP ) ∈ C × C : P ∈ C}, D5 = {(P, ζ2
xP ) ∈ C × C : P ∈ C}

map under τ to the line Lr in P̆2 given by r = 0. However, the two curves
are both fixed by ρ, so they map to different curves in XC . Hence, the pull
back to XC of Lr consists of two irreducible components. The same could
be concluded from an argument similar to that in Remark 2.16. The line Lr
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goes through three cusps of C̆ (see Example 2.13), so the strict transform D
on YC of the pull back to XC of Lr is linearly equivalent to H−

∑
P∈Π∩Lr ΘP ,

which implies D2 = −4 < −2, so D is reducible. Obviously, the same holds
for the lines given by s = 0 and t = 0.

By Proposition 3.11 we have rk NS(C ×C) = 4. The divisors D1, D2, D3

of Proposition 3.5 and D4 from above mutually intersect each other exactly
once. They are all isomorphic to C, so they have genus 1 and we have D2

i = 0
by Lemma 3.4. It follows that the Di (1 ≤ i ≤ 4) generate a sublattice V of
NS(C×C) of rank 4 and discriminant −3. As this discriminant is squarefree,
we find NS(C×C) = V , and thus disc NS(C×C) = −3. By Proposition 3.12
we conclude disc NS(Y ) = −27 and rk NS(Y ) = 20. We will now describe
the Néron–Severi group more concretely.

By Example 2.13, the pull back of the line Lr given by r = 0 to XC ⊂
P(1, 1, 1, 3) is given by r = 0 and −3u2 = a2(bt3 − cs3)2. We will denote the
two components byDω

r , where ω ∈ {ζ, ζ2} is such that 1+2ω = a(bt3−cs3)/u
on the corresponding component. We have Dζ

r + Dζ2
r ∼ H −

∑
P∈Π∩Lr ΘP

with ΘP as in Remark 2.16. Similarly, Dω
s and Dω

t denote the irreducible
components above s = 0 and t = 0 with ω such that 1 + 2ω equals the value
along the corresponding component of b(cr3 − at3)/u and c(as3 − br3)/u
respectively.

Choose elements α, β ∈ k such that α3 = −c/b and β3 = −a/c, and set
γ = −α−1β−1, so that γ3 = −b/a. The flexes of C are given by [0 : α : ζi],
[ζi : 0 : β], and [γ : ζi : 0], with 0 ≤ i ≤ 2. The corresponding cusps
of C̆ are [0 : −ζi : α], [β : 0 : −ζi], and [−ζi : γ : 0] respectively. Let
O, P , and Q denote the cusps [0 : −1 : α], [0 : −ζ : α], and [β : 0 : −1]
respectively. Identifying the cusps of C̆ with the flexes of C, the curve C
gets the structure of an elliptic curve with origin O. The following addition
table shows what the other cusps correspond to.

O Q −Q
O [0 : −1 : α] [β : 0 : −1] [−1 : γ : 0]

P [0 : −ζ : α] [β : 0 : −ζ] [−ζ : γ : 0]

−P [0 : −ζ2 : α] [β : 0 : −ζ2] [−ζ2 : γ : 0]

The curve in P̆2 given by

r2 + α2β2s2 + β2t2 + αβrs− βrt− αβ2st = 0

is one of the conics of Proposition 2.14, going through the points nQ ± P
for any integer n. Its pull back to XC ⊂ P(1, 1, 1, 3) is given by the same
equation together with α2u = ±β2c2rst, therefore containing two irreducible
components that we will denote according to the sign in the equation by
D±α,β. By choosing α and β differently, we get nine out of the twelve conics
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of Proposition 2.14. The remaining three are the three possible pairs out of
the three lines given by rst = 0.

Take any α′ ∈ {α, ζα, ζ2α} and consider the affine coordinates u′ = u/s3,
r′ = r/s, and t′ = t/s + α′. By Example 2.13, XC is locally given by
u′2 = −3a2b2α′4t′2 + (higher order terms), where the point R = [0 : −1 : α′]
corresponds to (0, 0, 0). Therefore, the square of the ratio 3abα′2t′/u′ equals
−3 on both irreducible components of the exceptional divisor of the blow-up
at R. We denote these components by Θωr,α′ or ΘωR, with ω ∈ {ζ, ζ2} such that
1+2ω = 3abα′2t′/u′ = 3abα′2s2(t+α′s)/u on the corresponding component.
Note that ΘζR+Θζ

2

R = ΘR (cf. Remark 2.16). Similarly, for β′ ∈ {β, ζβ, ζ2β}
and R = [β′ : 0 : −1], we denote the irreducible components above R by Θωs,β′
or ΘωR, with ω such that 1 + 2ω = 3bcβ′2t2(r + β′t)/u. For γ′ ∈ {γ, ζγ, ζ2γ}
and R = [−1 : γ′ : 0], we denote the irreducible components above R by
Θωt,γ′ or ΘωR in such a way that we have 1 + 2ω = 3acγ′2r2(s+ γ′r)/u on the
corresponding component.

We will see that the 43 divisors H, ΘωR, Dω
v and D±α′,β′ generate the

Néron–Severi group. Their intersection numbers are easily computed from
the above and given by

H2 = 2, H ·Dω
v = 1, D+

α′,β′ ·D
−
α′′,β′′ = 0,

H ·ΘωR = 0, H ·D±α′,β′ = 2, Dω
v ·D±α′,β′ = 0,

Θω1
v,δ ·Θ

ω2
w,δ′ =


−2 if v = w and δ = δ′ and ω1 = ω2,
1 if v = w and δ = δ′ and ω1 6= ω2,
0 otherwise,

Dω1
v ·Dω2

w =


−2 if v = w and ω1 = ω2,
1 if v 6= w and ω1 6= ω2,
0 otherwise,

Dε
α′,β′ ·Dε

α′′,β′′ =


−2 if α′′ = α′ and β′′ = β′,
1 if α′′α′−1 = β′′β′−1 6= 1,
0 otherwise,

Dω1
v ·Θ

ω2
w,δ =

{
1 if v = w and ω1 = ω2,
0 otherwise,

Dε
α′,β′ ·Θωv,δ =


1 if v = r and α′/δ = ωε,

1 if v = s and β′/δ = ωε,

1 if v = t and γ′/δ = ωε (γ′ = −(α′β′)−1),
0 otherwise
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for anyR ∈ Π, v, w ∈ {r, s, t}, ω ∈ {ζ, ζ2}, ε ∈ {+,−}, α′, α′′ ∈ {α, ζα, ζ2α},
β′, β′′ ∈ {β, ζβ, ζ2β}, δ ∈ {ζiα, ζiβ, ζiγ : 0 ≤ i ≤ 2} and ω+ = ω and
ω− = ω−1. The names of all the divisors are chosen to optimize symmetry.
In particular, under the identification of the multiplicative group µ3 with
the additive group F3, and with the F3-vector space structure on Π coming
from the addition on the elliptic curve, the superscripts of the ΘωR corre-
spond exactly to the choices that need to be made in Lemma 3.6. Many of
these intersection numbers follow from that lemma, but we preferred this
concrete distinction between the ΘζR and Θζ

2

R , which more easily reveals the
intersection numbers with the Dω

v and where the Galois action on these
divisors is given by the action on the superscripts and subscripts.

Proposition 4.1. The Néron–Severi group of Y has rank 20 and dis-
criminant −27. It is generated by the Galois-invariant set

{Dζ
r , D

ζ2

r } ∪ {ΘωR : R ∈ Π, ω ∈ {ζ, ζ2}}
∪ {D+

α′,β′ : α′ ∈ {α, ζα, ζ2α}, β′ ∈ {β, ζβ, ζ2β}}.
Proof. The 29 given divisors generate a lattice Λ of rank 20 and discrim-

inant −27. As we have already proved that rk NS(Y ) = 20 and disc NS(Y ) =
−27, we conclude Λ = NS(Y ).

Proposition 4.2. If abc is not a cube in k, then H1(k,PicY ) = {1}.
Proof. From Proposition 4.1 we know a Galois-invariant set of generators

for PicY . Let ρ, σ, τ be the automorphisms of PicY induced by acting as
follows on the superscript and subscripts:

ρ : (α, β, ζ) 7→ (ζα, β, ζ),
σ : (α, β, ζ) 7→ (α, ζβ, ζ),

τ : (α, β, ζ) 7→ (α, β, ζ2).

The automorphisms ρ and σ commute and the group G = 〈ρ, σ, τ〉 is isomor-
phic to the semi-direct product 〈ρ, σ〉o 〈τ〉 ∼= (Z/3Z)2 oZ/2Z, where τ acts
on 〈ρ, σ〉 by inversion. The group PicY is defined over k(ζ, α, β), so we have
H1(k,PicY ) ∼= H1(k(ζ, α, β)/k,PicY ). The Galois group Gal(k(ζ, α, β)/k)
injects into G. In for instance magma we can compute H1(H,PicY ) for ev-
ery subgroupH ofG (see [21]). It turns out that ifH1(H,PicY ) is nontrivial,
then H is contained in 〈ρσ, τ〉. This implies that if H1(k(ζ, α, β)/k,PicY )
is nontrivial, then Gal(k(ζ, α, β)/k) injects into the group 〈ρσ, τ〉, so β/α is
fixed by the action of Galois and therefore contained in k, so abc = (cβ/α)3

is a cube in k.

Proof of Theorem 1.1. By Proposition 2.2 the surface Y is a K3 surface.
As its Picard number equals 20 by Proposition 4.1, it is in fact a singular K3
surface. By Corollary 2.8 we have Y (k) = ∅. By Corollary 2.4 the surface Y
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has points locally everywhere, so Y (Ak) 6= ∅. By the Hochschild–Serre spec-
tral sequence we have an exact sequence Br k → Br1 Y → H1(k,PicY ) (see
[20, Cor. 2.3.9]). By Proposition 4.2 we find Br1 Y = im Br k. As Br k never
yields a Brauer–Manin obstruction, we find Y (Ak)Br1 Y 6= ∅.

Remark 4.3. For some fields k the conditions (ii) and (iii) of Theo-
rem 1.1 imply condition (i). To see this, assume that we have a smooth
curve C ⊂ P2

k given by ax3 + by3 + cz3 = 0 that satisfies conditions
(ii) and (iii) while abc is a cube in the number field k, say abc = d3.
For any λ ∈ k we consider e = λ3b/a. Then the linear transformation
[x : y : z] → [x : λ−1y : λ−2b−1dz] sends C isomorphically to the curve
given by x3 + ey3 + e2z3, so without loss of generality we will assume a = 1
and b = e and c = e2. By picking λ suitably, we may also assume that e
is integral. Let p be a place of k. If 3 - vp(e), then C is not locally solvable
at p as the three terms of the defining equation have different valuations,
so we find 3 | vp(e) for each place p of k, which means that the ideal (e) is
the cube of some ideal I of the ring Ok of integers of k. Now assume that
the class number of k is not a multiple of 3. Then from the fact that I3 is
principal we find that I itself is principal, so e = uv3 for some v ∈ Ok and
u ∈ O∗k. By rescaling y and z by a factor of v and v2 respectively, we may
assume v = 1, so that C is given by x3 +uy3 +u2z3 = 0. This means that C
is isomorphic to one in a fixed finite set of curves, depending on k, namely
those curves given by x3 +wy3 +w2z3 = 0 where w ∈ O∗k runs over a set of
representatives of O∗k/(O∗k)3. For some fields k, none of these curves satisfy
both (ii) and (iii) so that we have a contradiction. For k = Q for instance,
the group O∗k/(O∗k)3 is trivial and the curve x3 + y3 + z3 = 0 does not sat-
isfy (iii) as it contains the point [0 : −1 : 1]. For any imaginary quadratic
field the same argument holds, except for k = Q(

√
−3), where O∗k/(O∗k)3 is

generated by a primitive cube root ζ of unity. In that case there is one extra
isomorphism class represented by the curve given by x3 + ζy3 + ζ2z3 = 0,
which contains the rational point [1 : 1 : 1]. We conclude that if k = Q or
k is an imaginary quadratic field whose class number is not a multiple of 3,
then conditions (ii) and (iii) of Theorem 1.1 imply condition (i).

5. Open problems

Question 1. Is there any (not necessarily diagonal) plane cubic curve
over a number field k that has points locally everywhere, but no k-cubic
points?

Question 2. Is there any diagonal plane cubic curve over a number
field k that has points locally everywhere, but no k-cubic points?
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Question 3. Is the Brauer–Manin obstruction the only obstruction to
the Hasse principle on K3 surfaces?
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2006.

[2] W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces,
2nd ed., Ergeb. Math. Grenzgeb. 4, Springer, 2004.
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